CMOS preamplifiers for multi-channel detectors

P. O'Connor, BNL

1. Charge-Sensitive Amplifiers in Scaled CMOS
2. Charge Amplifiers Optimized for High Resolution

3. Efficient Architecture for Multichannel Readout



CMOS Scaling

Driven by digital VLSI circuit needs
Goals: in each generation
2X increase in density
1.5X increase in speed
Control short-channel effects, threshold fluctuations

< 1failurein 10’ chip-hours
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Power Supply and Threshold Voltage {V)
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Technology Roadmap
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Memory Scaling
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IBM Cu-11 Process (Blue Logic)

[1] IBM Corp.'s new CMOS ?s pml:essfo ng |Cs uses copp
Interconnections, and has effective transistor channel-lengths of enly 0.12 pm. It is the first

commercial fabrication process to use copper wires [see *The Damascus connection,” p. 25].
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Section showing Cu-11 copper and Jow-k
dislecine procass.

Lerr =0.08 pm, Lgrawn =0.11 pm

Up to 40 million wireable gates

Trench capacitor embedded DRAM with up to 16 Mb per
macro

Dense high-performance,comp lable SRAMs

Power supply:1.2 V with 1.5V opt on

1/O power supply:3.3 V(dua oxide option)/

2.5 V(dual oxide option)/1.8 V/1.5V

Power dissipation of 0.009 pW/MHZz/gate

Gate delays of 27 picoseconds (2-input NAND gate)
Seven levels of copper for global routing

Low-k dielectric for high performance and reduced
power and noise

HyperBGA (flip chip):2577 total leads



White series noise

Parameter g=gn * Ry

Long channel g= 1 linear

1/2 weak inversion 1.4
2/3 strong inversion X

Short channel g difficult to model

High g(g=2 — 4) reported in experimental
submicron NMOS devices

Strong increase in gat high Vps, high Ip/W

Recent results on submicron CMOS at low

Vs, |D/W 0.6
02 04 06 08 1 12 14
0.8 <g< 1.35| Lg, um
. . . _ XXX 0.7 um
Shallow junctions increase S/D series +++ 0.5 um
resistance => noise 000 0.35um
¢ 0.25um

empirical fit



ENC scaling -- white series noise

strong-inversion square-law:
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Power scaling

Power required to achieve a given ENC

1. FET in strong-inversion square-law:
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66% decrease/generation

2. FET in velocity saturation:
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1/f noise

1. 1/f sets the min. achievable EW ,

ENCf,min = 2Va2KFCdet ?

ENCmin

1
where eif — KF 1108 116?140t 11610 1407
, (:: \/\/l_ Cdet
ox —— KF=10-25
-------- KF = 10-24
—— KF=10-23
2. Technology generations below 0.25 mm with n+/p+ poly gates will have Minimum ENC vs. detector capacitance

high PMOS 1/f noise (surface channel device).

3. Advanced processes require ultrathin gate dielectrics and low thermal budgets, 10
resulting in oxides with higher trap densities.
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4. Hot-carrier stress generates new oxide/interface traps. Low frequency noise is S| e
much more sensitive to HC stress than static parameters: 1 =
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M easured 1/f noise coefficient for several
submicron CMOS processes



Beyond scaled CMOS

1. CMOS scaling can be expected to continue until the 0.07mm - 1.5 nm - 1V (Lg - tox - Vdd ) generation.
2. Further scaling will not improve the transistor properties for digital applications:

gate current > 1 Alcm?
S/D junction resistance too high
no increase in current drive with further scaling

3. Moadifications to the basic bulk MOSFET:
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Top- and bottom-gated device

Si,-Ge; ., channels

High - egate dielectric
4. Nanoscale devices




Charge Amplifiers Optimized for High
Resolution

0.5 mm CMOS, 3V supply
Cdet ~ 1 -4 pF, leak ~ 1 - 100 nA, t, ~ 200 - 4000 nsec, gain ~ 30 - 200 mV/fC
Continuous reset implemented by compensated nonlinear pole-zero cancellation

adapts to wide range of leakage current

no change of pulse shape

stable to process/temperature/supply variation
minimum parallel noise

no adjustment by user

High-order shaping with complex poles, active-RC sections
Adjustable peaking time and gain; both bipolar and unipolar shaping
Rail-to-rail Class AB output stages

4 - 16 amplifiers/chip



Nonlinear Pole-Zero Compensation
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Classical
RF - CF=RC -CC

Zero created by RC,CC cancels pole formed by
RF, CF

|C version

CC=N-CF
(W/L)ve =N - (W/L)we

Zero created by MC, CC cancels pole formed
by MF, CF

Rely on good matching characteristics of
CMOS FETs and capacitors



Amplifier performance

Pulse vs. Temperature Gain variation
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Measured amplifier performance

ENC 26 + 27 e-/pF

Linearity error < 0.3% full scale

Cross Tak (packaged) < 0.5% (<0.1% non-
adjacent)

Baseline dispersion 2mV rms

Power dissipation 18 mW/chan.

Stability improvements for practical use

lleak Supply Temperature | Rate (to 5/tp) | Cin Zload
Gain < 0.1%/nA <.001%/V -0.04%/°C <0.1% <0.1%/pF No slew-rate
limit
Baseline <0.3mV/nA | <30 nV/IV 75 nV/°C <8 mV Zout ~ 150 W




Counts
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