Capacitive matching for MOSFET Charge-Sensitive Preamplifiers with Constant Current

\[ENC^2 = \frac{1}{2} e_n^2 C_{in}^2 \Im_1 \] \hspace{1cm} (1)

where

\[C_{in} = C_{det} + C_{ox} WL \] is the total input capacitance;

\[e_n^2 = \frac{4kT}{g_m} \] is the input voltage spectral noise density with \(a_n \approx 2/3 \) for FET;

\[g_m = \sqrt{2\mu C_{ox}(W/L)I_d} \] MOSFET in strong inversion;
\[= qI_d/nkT \] weak inversion;

\[\Im_1 = \int_{-\infty}^{\infty} \left[h'(t) \right]^2 dt \] is the series noise integral; \(h(t) \) is the impulse response.

with the current \(I_d \), length \(L \), and impulse response \(h(t) \) held constant, the optimum size for a device in strong inversion is found from:

\[
\frac{d}{dW}(ENC^2) = \frac{2kT a_n}{\sqrt{2\mu C_{ox} I_d}} \Im_1 \left\{ \frac{1}{2} \left(C_{det} + C_{ox} WL \right)^2 W^{3/2} + \frac{2(C_{det} + C_{ox} WL)C_{ox} L}{W^{1/2}} \right\} \\
= 0
\]

\[C_{det} + C_{ox} WL = 4C_{ox} WL \]

We find

\[C_{ox} WL = \frac{1}{3} C_{det} \] \hspace{1cm} (3)

or

\[W_{opt} = \frac{C_{det}}{3C_{ox} L} \]

Large \(W/I_d \) ratio eventually leads to weak inversion operation. Then \(g_m \) is independent of \(W \) so any increase of \(W \) degrades the ENC. Taking this into account:

\[W_{opt} = \min\left(\frac{C_{det}}{3C_{ox} L}, W_{wi} \right) \] where

\[W_{wi} = \frac{2L I_d}{(3kT/q)^2 \mu C_{ox}} \] defines the boundary of weak inversion.
MOS I-V Characteristics

Linear region \(V_{DS} < V_{GS} - V_T \):

\[
I_D = \mu C_{ox} \frac{W}{L} \left((V_{GS} - V_T)V_{DS} - \frac{V_{DS}^2}{2} \right)
\]

(1)

Saturation region \(V_{DS} > V_{GS} - V_T \):

1. **Strong inversion** \(V_{GS} - V_T > \frac{3kT}{q} \):

\[
I_D = \frac{\mu C_{ox}(W/L)}{2n} (V_{GS} - V_T)^2
\]

\[
g_m \frac{I_D}{I_D} = \sqrt{\frac{\mu C_{ox}(W/L)}{2nI_D}}
\]

(2)

2. **Weak inversion** \(V_{GS} - V_T < \frac{3kT}{q} \):

\[
I_D = I_{D0} \frac{W}{L} e^{\left(\frac{qV_{GS}}{nkT} \right)}
\]

\[
g_m \frac{I_D}{I_D} = \frac{q}{nkT}
\]

- best \(g_m/I_D \)
- poor \(f_T \)

(3)

Note: \(n \) is ratio of bottom (JFET)/top (MOS) gate control:

\[
n = 1 + \frac{C_{BC}}{C_{GC}} = 1 + \frac{\sqrt{2\varepsilon qN_{SUB}}}{2C_{ox}/2(\phi_F - V_{BS})}; \text{ typically } n \sim 1.2 - 1.5
\]
Regions of operation

- weak inversion best for gain
- strong inversion best for high frequency operation

Cutoff frequency

Noise

Drain current thermal noise: \(i_n^2 = \frac{8n kT g_m}{3} \)
Flicker noise: \(v_n^2 = 4kT \frac{\rho}{W L f} \)
Input-referred noise voltage: \(4kTR_n = v_n^2 + \frac{i_n^2}{g_m^2} \)
Equiv. input noise resistance: \(R_n = \frac{\rho}{W L f} + \frac{2}{3g_m} \)
MOS Transistor

NMOS device

Cross-section of n-well CMOS process

Charge in inversion layer controlled by gate-channel voltage
5PF CAPACITOR

5K RESISTOR

100 x 100 µm

2 µm line/space
Resistors and Capacitors in CMOS Technology

N+ DIFFUSION

POLY

WELL

"PINCHED" WELL = JFET

MOS

DOUBLE POLY
Resistors

<table>
<thead>
<tr>
<th>Component</th>
<th>Range of Values</th>
<th>Absolute Accuracy</th>
<th>Matching Accuracy</th>
<th>Temperature Coefficient</th>
<th>Voltage Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Composition</td>
<td>1 - 1G</td>
<td>5 - 10</td>
<td>5 - 10</td>
<td>1500-5000 ppm/°C</td>
<td>-</td>
</tr>
<tr>
<td>Metal Film</td>
<td>1 - 1G</td>
<td>0.1 - 1</td>
<td>0.1 - 1</td>
<td>25 - 100</td>
<td>5 ppm/V</td>
</tr>
<tr>
<td>Precision Metal Film</td>
<td>1 - 1G</td>
<td>.025 - 1</td>
<td>0.025 - 1</td>
<td>5 - 25</td>
<td>0.1</td>
</tr>
<tr>
<td>Thick Film</td>
<td>1 - 100M</td>
<td>can be trimmed</td>
<td>0.1</td>
<td>> 100</td>
<td>0</td>
</tr>
<tr>
<td>Diffused</td>
<td>10-100</td>
<td>35</td>
<td>2</td>
<td>1500</td>
<td>200</td>
</tr>
<tr>
<td>Poly</td>
<td>30-200</td>
<td>30</td>
<td>2</td>
<td>1500</td>
<td>100</td>
</tr>
<tr>
<td>Ion-implanted</td>
<td>0.5 - 2K</td>
<td>5</td>
<td>1</td>
<td>400</td>
<td>800</td>
</tr>
<tr>
<td>Well</td>
<td>1 - 10K</td>
<td>40</td>
<td>2</td>
<td>8000</td>
<td>10,000</td>
</tr>
<tr>
<td>Units</td>
<td>Ω, Ω/sq</td>
<td>%</td>
<td>%</td>
<td>ppm/°C</td>
<td>ppm/V</td>
</tr>
</tbody>
</table>

Capacitors

<table>
<thead>
<tr>
<th>Component</th>
<th>Range of Values</th>
<th>Absolute Accuracy</th>
<th>Matching Accuracy</th>
<th>Temperature Coefficient</th>
<th>Voltage Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ceramic</td>
<td>1 - 10⁶</td>
<td>5</td>
<td>5</td>
<td>0 - 30</td>
<td>-</td>
</tr>
<tr>
<td>Poly/poly</td>
<td>0.3 - 0.4</td>
<td>20</td>
<td>0.06</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>MOS</td>
<td>0.35 - 0.5</td>
<td>10</td>
<td>0.06</td>
<td>25</td>
<td>20</td>
</tr>
<tr>
<td>Units</td>
<td>pf, fF/μm²</td>
<td>%</td>
<td>%</td>
<td>ppm/°C</td>
<td>ppm/V</td>
</tr>
</tbody>
</table>