
Paul O’Connor

BNL

- Technology
- Scaling
- Pitfalls
- Monolithic active pixel sensor
Custom Monolithics – technology options

- **Bipolar**
 - Workhorse of “old” analog
 - Available from a handful of vendors
 - Speed/power advantage over CMOS (diminishing)
 - Low integration density
- **Standard CMOS**
 - Suitable for most analog designs
 - Best for combining analog and digital
 - Highest integration density
 - Widely available
 - Short life cycle (3 years/generation)
- **BiCMOS**
 - Complex process, viability uncertain
- **Silicon on insulator (SOI)**
 - Modest speed advantage for digital
 - Drawbacks for analog
- **SiGe**
 - Exotic
 - Interesting for high frequency work
- **GaAs**
 - Unsuitable for wideband analog
Access to custom CMOS is easy

• Design tools available at low cost to universities

• Multiproject services (MOSIS, Europractice, ...) provide low cost access to foundries for prototyping
CMOS Economics

Each ASIC may need

- 1.5 engineer-years $300K
- 2 prototype runs 30K
- 1 minimum production run 150K

TOTAL $480K

Incremental cost per chip ~ $10 – 20 / cm²
CMOS Scaling

• Driven by digital VLSI circuit needs
• Goals: in each generation:
 2X increase in density
 1.5X increase in speed
 Control short-channel effects, threshold fluctuation
 < 1 failure in 10⁷ hours
<table>
<thead>
<tr>
<th>Year</th>
<th>85</th>
<th>88</th>
<th>91</th>
<th>94</th>
<th>97</th>
<th>00</th>
<th>02</th>
<th>04</th>
<th>07</th>
<th>10</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Min. feature size [µm]</td>
<td>2</td>
<td>1.5</td>
<td>1.0</td>
<td>0.7</td>
<td>0.5</td>
<td>0.35</td>
<td>0.25</td>
<td>0.18</td>
<td>0.13</td>
<td>0.10</td>
<td>0.07</td>
</tr>
<tr>
<td>Gate oxide [nm]</td>
<td>44</td>
<td>33</td>
<td>22</td>
<td>16</td>
<td>11</td>
<td>7.7</td>
<td>5.5</td>
<td>4.0</td>
<td>2.9</td>
<td>2.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Power supply [V]</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5/3.3</td>
<td>3.3</td>
<td>2.5</td>
<td>1.8</td>
<td>1.2</td>
<td>1</td>
<td>.7</td>
</tr>
<tr>
<td>Threshold voltage [V]</td>
<td>1.0</td>
<td>0.9</td>
<td>0.8</td>
<td>0.7</td>
<td>0.6</td>
<td>0.5</td>
<td>0.45</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
</tbody>
</table>
IBM Cu-11 Process (Blue Logic)

- $L_{eff} = 0.08\ \mu m$, $L_{cham} = 0.11\ \mu m$
- Up to 40 million wireable gates
- Trench capacitor embedded DRAM with up to 16 Mb per macro
- Dense high-performance, comparable SRAMs
- Power supply: 1.2 V with 1.5 V option
- I/O power supply: 3.3 V (dual oxide option)/ 2.5 V (dual oxide option)/ 1.8 V/1.5 V
- Power dissipation of 0.009 μW/MHz/gate
- Gate delays of 27 picoseconds (2-input NAND gate)
- Seven levels of copper for global routing
- Low-k dielectric for high performance and reduced power and noise
- HyperBGA (flip chip): 2577 total leads
CMOS scaling and charge amplifier performance

- Fundamental noise mechanisms
 - so far, no dramatic changes with scaling
- Noise
 - slight improvement with scaling
 - higher device f_T reduces series thermal noise
- Weak- and moderate inversion operation more common
 - need different matching to detector capacitance.
- Reduced supply voltage
 - difficult to get high dynamic range
- Many difficulties with “end of the roadmap” devices

P. O’Connor, G. DeGeronimo, “Charge amplifiers in scaled CMOS”, NIM-A accepted for publication
Charge preamplifier noise vs. scaling

<table>
<thead>
<tr>
<th>System</th>
<th>C_{ext}</th>
<th>t_s</th>
<th>P</th>
<th>I_{fmax}</th>
<th>Detector</th>
<th>Typical Application</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>30</td>
<td>75</td>
<td>10</td>
<td>.001</td>
<td>Wire Chamber</td>
<td>Tracking, Imaging</td>
</tr>
<tr>
<td>b</td>
<td>15</td>
<td>25</td>
<td>0.2</td>
<td>10</td>
<td>Si Strip</td>
<td>Tracking</td>
</tr>
<tr>
<td>c</td>
<td>0.3</td>
<td>25</td>
<td>0.02</td>
<td>1</td>
<td>Si Pixel</td>
<td>Tracking</td>
</tr>
<tr>
<td>d</td>
<td>3</td>
<td>2500 – 500a</td>
<td>10</td>
<td>0.01</td>
<td>Semiconductor</td>
<td>Spectroscopy</td>
</tr>
</tbody>
</table>

UNITS: pF ns mW nA

a For this system, the shaping time was varied at each L_{min} to optimize the overall noise (i.e., to make the white series noise and parallel noise equal).
Charge amplifier power vs. scaling

\[P_{\text{diss}} (\mu W) \]

\[L_{\text{min}} (\text{um}) \]

\[C_d = 0.3 \text{ pF} \]

\[t_s = 100 \text{ ns} \]

\[\text{ENC} = 100 \text{ e}^- \]
Commercial microelectronic components, what’s changed since 1991?

- Renewed development of analog catalog parts
 - Data converters
 - Computer components -- disk drive readout, phone/network interface, displays
 - Wireless communication
 - Handheld and consumer devices

- CMOS supplanting bipolar as the technology of choice for analog applications

- Advances in packaging, PCB, assembly technology
 - Thin- and fine-pitch leadeed SMT components; BGAs; chip-scale packages; packages with low thermal resistance
 - Flip-chip and chip-on-board assembly
 - Microvias, thin-core laminates, flex for high density integration (HDI)
 - Passive component miniaturization, arrays
Cellular telephone handset trends

- **1991 cell phone**
 - ¾ pound
 - 12V battery
 - 700 components
 - 8 hrs assembly time
 - $600

- **2001 cell phone**
 - 2 oz.
 - 3V battery
 - 4–5 modular components + passives integrated in substrate
 - 15 minute assembly time
 - < $150 or free

Figure 4 - Capacitors Ranging from 1206, 0805, 0603, 0402 and 0201

This is the world's first WRIST CAMERA. It features 1 MB of memory to hold up to 100 images.
Standard packages of 2001

National microSMD
1.41 x 1.67 x 0.85mm body size (8L)
“Silicon Dust”

Amkor thin BGA
Stacked Chip Scale Package

Double-decker
(in production now)

Triple
Monolithic front ends – what can go wrong

• Frequently overlooked problems in design
 – Good electrical model of detector
 – Statistical nature of signals
 – Unusual signal conditions:
 – turn-on
 – calibration
 – response to background events
 – Detector-preamp interface
 – Board-level issues:
 – power conditioning,
 – bias decoupling,
 – calibration,
 – input protection,
 – interface components,
 – cooling
Monolithic amplifier design: practical considerations

- Preamplifier reset
- High order filters
- Programmable pulse parameters
- Self-biasing
- Low-swing, differential I/O
- Circuits tolerant to variations in
 - temperature
 - process
 - power supply
 - DC leakage current
 - input & output loading

<table>
<thead>
<tr>
<th>Base</th>
<th>< 0.1 mV</th>
<th>< 30 mV</th>
<th>< 0.04°C</th>
<th>< 8 mA</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>< 0.1 mV</td>
<td>< 300 mV</td>
<td>< 0.04°C</td>
<td>< 8 mA</td>
<td>< 0.04°C</td>
<td>-</td>
</tr>
<tr>
<td>C2</td>
<td>< 0.1 mV</td>
<td>< 300 mV</td>
<td>< 0.04°C</td>
<td>< 8 mA</td>
<td>< 0.04°C</td>
<td>-</td>
</tr>
</tbody>
</table>

Pulse vs. Temperature

Gain variation

Pulse vs. I_leak

Loading

Programmable Dual Stage N=24x6
- $C_n = 1.5\text{pF}$
- $Q_n = 12\text{fC}$
- Gain = 200mV/fC
- $T = -30\degree\text{C}$ to $+50\degree\text{C}$

Programmable Dual Stage N=24x6
- $C_n = 1.5\text{pF}$, $Q_n = 12\text{fC}$
- Gain = 200mV/fC
- $I_{leak} = 250\text{pA} \div 70\text{nA}$
Monolithic front ends – what can go wrong

• Management issues
 – Isolation of chip designer, board designer, detector specialist
 – Managers not knowledgeable of chip design process:
 • CAD tools
 • Foundry capabilities
 • Documentation and review procedures
 • Timelines, iterations
 – Progress episodic rather than incremental
 • Harder to track progress
Commonly heard phrases

- “We prototyped all the functional blocks, now all we have to do is put them together on the same chip and wire them up.”

- “All the chips work let’s go to production”

- “The chip works fine in simulation”

- “We already have a chip that does that, all we have to do is…”
CMS silicon strip readout

Prototype of layer 3 in the Inner Tracker

1 of the 128 channels

230 m2 Si
12 million strips
92,000 APV-25 chips
APV-25: 0.25 um CMOS
128 chan X 192 bucket P/S, SCA, mux
246 + 36.3 e/pf, 2.3mW/chan, 2% nonlinearity to 5 MIP
7.2 X 6.5 mm, 85% yield
Si pixel readout

- Binary readout

Pixel needs to tell whether particle passed or not in a 25 ns time slot. It does NOT need to tell how much charge was collected over a certain time.
CMOS APS for particle detection/tracking

- Monolithic – special assembly technology not required
- Low cost
- Low multiple scattering
- Good spatial resolution (few μm)
- Random access
- Integration of control and DSP
- Radiation tolerance (?)

- Special process
- Collection time scales with pixel size
- Circuit architecture embryonic
Simple monolithic active pixel

- n+ pixel circuitry
- p-well
- p- well
- n- well
- p- epitaxial layer
- charged particle
- p++ substrate

- VDD
- RE_SEL
- ROW_SEL
- COLUMN LINE

“photo” diode

diffusion isochron
Comparison of bump-bonded and active pixel sensors for tracking

<table>
<thead>
<tr>
<th></th>
<th>Bump-bonded sensor</th>
<th>Active pixel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technology</td>
<td>hybrid</td>
<td>monolithic</td>
</tr>
<tr>
<td>MIP signal charge</td>
<td>< 24000</td>
<td>800</td>
</tr>
<tr>
<td>ENC noise charge</td>
<td>100 – 300</td>
<td>20 – 50</td>
</tr>
<tr>
<td>Pixel area</td>
<td>20,000 µm²</td>
<td>< 400 µm²</td>
</tr>
<tr>
<td>Sensor capacitance</td>
<td>200</td>
<td>< 10 fF</td>
</tr>
<tr>
<td>Detector bias</td>
<td>100</td>
<td>1 V</td>
</tr>
<tr>
<td>Charge collection time</td>
<td>< 20</td>
<td>depends on pixel area</td>
</tr>
</tbody>
</table>
Summary

- PHENIX upgrade program can take advantage of a decade of progress in microelectronics.
- A study of the monolithic active pixel sensor as a vertex detector is warranted.
- By avoiding known pitfalls in the ASIC development process, cost and performance goals should be met.
BASIC APS READOUT WITH CORRELATED DOUBLE SAMPLING.

\[\text{VCDS} = \frac{C_1}{C_2} \frac{V_{SIG} + (1 + C_1/C_2) (V_{OFF}/(1+A))}{1} \]
APS Readout with Zero Suppression

- Readout of each row followed by threshold discrimination and zero suppression in columns.
- No additional logic in pixels.
- Minimal periphery in one dimension allows close abutting.
- Achieves substantial reduction in readout time compared to non-sparse readout, but with much less overhead than full pixel-level zero suppression.

S. Kleinfelder
Video chip

Stuart Kleinfeld, SukHwan Lim, Xinqiao Liu, Abbas El Gamal

Figure 3: Pixel schematic.

10,000 fps, every 4th frame displayed propeller speed ~ 2000 rpm
Active Pixel Sensor (APS)

- 20 μm square pixels
- 5 chips per slat
- 90 million pixels
- 40 μm thick chips
Example: Hybrid Pixel Detectors
(CERN RD-19 E. Heijne et al.)

Pixel Ladders
(6 chips)

Half plane ~ 50 000 sensing elements

LHC1: 2000 CMOS readout channels

WA97 NA57 Experiment
1.2 M channels

153 Tracks!
- Sensor and FE-chips are directly connected with bumpbonds
- Signals are routed in a (flex-) capton layer on the sensor
- MCC and passive components are mounted on the flex
- Wirebonds connect FE-chips and MCC with the flex