PHENIX TEC

LOCATION:

- between RICH and EMCAL (4.05m < R < 4.85 m)

GOAL:

- Electron/pion separation by fine sampling energy loss (dE/dx)
- Upgradable to TRD

ELECTRONICS CHAIN:

Anode wires -- PS -- FADC -- DMU

(octal)-(single)-(quad)

30,000 3750 30000 7500

- TRD capability already designed in to electronics.
TEC Preamp Shaper ASIC (TEC PS)

Design and Test:

P. O’Connor, A. Kandasamy, BNL

Function:

Preamplify and shape charge on anode wires
Provide separate outputs for dE/dx and TR signals

Core Circuit:

Transimpedance Preamplifier (75K)
Unipolar, 70 nsec, CR-RC⁴ shaper with Ion Tail Cancellation
Active Baseline Restoration
Split gain stage: 1X, 5X

System Interface Features:

Digitally Selectable Gain, Peaking Time, Tail Cancellation
Individual Channel Injection Capacitor & Switch
Individual Channel Disable
Chainable, 3-Wire Serial Interface

Other:

Die Size: 3.5x5mm
Power Dissipation: 350 mW
Package: 64 PQFP (proposed)
TEC PS Development Plan

1st Prototype:
- Delivered 4Q '95
- Verify preamp and shaper stage design only

2nd Prototype:
- Delivered 4Q '95
- 8 channel chip with full system interface
- Extensive bench testing (162 channels)
- Beam test April '96 (32 channels)

3rd Prototype:
- Delivered Nov. '96
- Minor design modifications to Prototype 2
- PQFP package trial
- To be used in chain tests Dec. '96 - Feb. '97
- 400 channels available
- Option to purchase 400 additional channels for 1/4 price

Development complete
- (pending results of Spring '97 chain test)
1st Lot ChipTest Results:
18/25 chips tested.
Each is 9-channel preamp/shaper with 2 outputs (X1, X5 gain.)
- 321/324 outputs OK
- Bad outputs attributed to wirebond failures
- All other channels completely functional and in spec:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Mean</th>
<th>St. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gain</td>
<td>21.3 mV/fC</td>
<td>2.2%</td>
</tr>
<tr>
<td>Peaking Time</td>
<td>74.3 nsec</td>
<td>2.2%</td>
</tr>
<tr>
<td>Offset</td>
<td>-66 µV</td>
<td>1.4 mV</td>
</tr>
<tr>
<td>Noise @ 18 pF</td>
<td>1260 e⁻</td>
<td>--</td>
</tr>
</tbody>
</table>
TEC PS Test Strategy

- classify failures in prototype runs
- look for DC signatures which correlate

Plan for manufacturing test:

- Wafer probe DC only: FOUNDRY
- Package: FOUNDRY OR PACKAGER
- Chip test AC + DC: COLLAB.
- Burn-in (?)
- Assemble PCB: CONTRACT ASSEMBLER
- Board Test: COLLAB.

Test Sequence:

1. Apply power, monitor DC currents, DC bias voltages, output + input DC levels
2. Test serial interface
3. Functional test all channels
4. Loop over channels
 - Loop over configurations (gain, pk. time, tail cancellation)
 - Download configuration
 - Pulse 100X
 - Measure gain, pk. time, noise (?)
 - Next configuration
 - Next channel
5. Write record to database
6. Barcode

Estimated total time: 2 - 3 minutes

Total time to test 3750 chips @ 70% yield + 10% spares: 25 8-hour days

Status:

- Wafer test vendor not yet selected; quotations requested
- Test hardware: 80% exists, some development needed
- Code fragments (VB) exist for multichannel gain, pk. time, noise measurement
- Manpower needed for software development

ASICs for PHENIX Tracking
TEC PS Manufacturing Plan

FOUNDRY:

• HP (AMOSI, CMOS34) = 1.2 micron nwell CMOS, linear capacitor, double metal, single poly

“Preproduction” Order 5/97:

• for 11/97 sector test - approx. 500 chips needed

Logistics of preproduction:

MPW PRODUCTION
$420/mm²/lot of 25 chips Chips/6” wafer ~ 500
$320/mm²/extra lot of 25 Min. order 3 wafers ($64K)
($420 + $320 x 19 lots) x 17.5mm² = $114K

• Retain tooling, spares for full production starting 11/97 (pending successful sector test)

• Full production requires 12 wafers (18 wafers for 6-plane) assuming 70% yield and 10% spares

NOTE: Process to be phased out 3/98 TEC PS

Remaining effort:

* Verify final design in chain and beam tests
* PQFP package
* Complete test H/W, S/W
* Finalize procurement
TEC FLASH ADC ASIC (TEC FADC)

Design and Test:
Joe Harder, BNL

Function:
Digitize pulse height from dE/dx and TR channels of TEC PS
Encode into 5-bit word at 40 MSa/s

TEC FADC Development Plan

• Prototype History:
 3 Prototypes delivered in ’94 (2.0 micron CMOS)
 First 1.2 micron prototype early ’95
 Second ’95 prototype added TR channel, has linear dE/dx range
• Final design produced Summer ‘96 with nonlinear dE/dx
• Bench tested
• Final package chosen and prototyped
• Crude preamp/shaper - driver - receiver - FADC demonstration
• 8 devices available now + 40 older devices (linear dE/dx levels)
• Chain test/beam test Jan. ‘96 with TEC PS
• 150-300 nonlinear devices will be ordered for April ‘97 Chain Test. ($100/chip)
DNL < 0.1 LSB
TEC FADC Test Strategy

- No wafer test -
- Package
- Chip test AC + DC
 - First 1000 to be tested in-house
 - Remainder to be contract tested
- Cheap plastic pkg, small die => minimal impact of omitting wafer test

Status:

- Test hardware exists
- Labview software in development
- Contract test vendor not yet identified
TEC FADC Manufacturing Plan

FOUNDRY:
- Orbit 1.2 micron nwell CMOS, double poly, double metal

PACKAGE:
- 24 SSOP, Azimuth (Taiwan) or Emmanuel (Calif.)

“Preproduction” Order 5/97:
- for 11/97 sector test
- approx. 4000 chips needed
- Logistics of preproduction:
 - 25 wafers/boat; Min. order 10 wafers (5 good guaranteed)
 - 1800 die sites/wafer, assume 60% yield => Need 4 wafers for sector test
 - Retain tooling, spares for full production starting 11/97 (pending successful sector test)

Full production
- Need additional 50 wafers (fixed lot size)
- Expect 40 good
- 84K die produced from 40 wafers
- Should satisfy all PHENIX needs if yield > 50%
- Total fab cost: $84K
- Assume $0.75 to package and test a die => $63K for 84K packaged chips
- Total cost: $181K, cost per channel $3.59
TEC Digital Memory Unit ASIC (TEC DMU)

Design:
J. Gannon, Sy Rankowitz, BNL; R. Sundblad, SICON

Purpose:
Buffers data out of FADC for Level 1 latency
Contains 5 event FIFO memories
4 channels/chip
Programmable delay/event length
Test data input

Specs:

<table>
<thead>
<tr>
<th>Specification</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum clock period</td>
<td>25 ns</td>
</tr>
<tr>
<td>Power Consumption</td>
<td>50mW (data collection)</td>
</tr>
<tr>
<td></td>
<td>0.75W (readout)</td>
</tr>
<tr>
<td>Memory Delay Length</td>
<td>1 to 190</td>
</tr>
<tr>
<td>Event Length</td>
<td>2 to 80</td>
</tr>
</tbody>
</table>
TEC DMU Development Plan

SiCon chips in PGA completed fabrication Summer ‘96
5 chips tested at SiCon and delivered to BNL
100 additional chips in PQFP awaiting test
To be bench tested in motherboard at BNL Dec. ‘96
Chain test April ‘97

TEC DMU Test Plan

All chip testing to be done by SiCon

TEC DMU Manufacturing Plan

Production Order: 5/97
Foundry: AMS
Need 8000 die + yield
Packaged die delivered 12 weeks after fabrication start
Total cost: $350K including full production
$200K from Swedish government