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BNL Collaborators for SR Detector 
Development

� Silicon detectors:
� Zheng Li , Pavel Rehak, Wei Chen, Rolf Beuttenmuller, detector 

elements (Inst. Div.).
� Paul O'Connor, Gianluigi De Geronimo, ASIC design (Inst. Div).
� Peter Siddons, Tony Kuczewski, computer and user interface 

(NSLS).
� Gas detectors:

� Tony Kuczewski, readout electronics and user interface (NSLS).
� Graham Smith, Bo Yu, gas detector design (Inst. Div.).

� CZT detectors
� Edson Kakuno (Univ. Fed. Parana, Brazil)
� Giuseppe Camarda (NSLS)

� Technical help
� John Triolo, Gene Von Achen (Inst.) , Denis Poshka (NSLS)
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Outline

� SR motherhood
� Silicon spectroscopy detector
� Curved high-speed proportional PSD
� CZT-based arrays
� Avalanche photodiode package
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What’s the problem?

� SR sources have increased their brightness 
by 10^n, but our detector systems haven’t 
changed.

� Physical limits of samples are beginning to 
become apparent, so inefficient experiments 
cannot be compensated for by building 
bigger sources.

� Experiment designs need to become more 
sophisticated, particularly in photon 
utilization.
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A new phenomenon: big little 
science
� There are two ‘camps’ of experimental science

� Big
� Large teams of scientists working collaboratively to 

perform an experiment which needs massive resources, 
and typically uses a large machine (SLAC, CERN, 
FERMILAB, RHIC etc.)

� Little
� Typically one or two scientists, performing experiments in 

a single room with table-top equipment, usually at a 
University or College.

� Usually the two never interact
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Until Synchrotron Radiation

� Uses a large particle accelerator to produce light

� ‘light’ means more than just the stuff you can 
see.
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So that’s the ‘big-little’ thing.

� SR has forced “little” scientists to learn how to 
work in a “big science” environment.

� SR is produced by a large accelerator which 
operates with an antisocial schedule

� Building and running a beamline is more than 
one person can handle alone, so collaborations 
get bigger

� Altogether a different sociology to University or 
College life.
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Different sociology

� Different culture to HEP:
� Physically small-scale experiments.
� Small experiment teams
� Low-budget (follows from first two points)
� Wide range of science studied
� Often, SR experiments are only part of a larger 

program.
� Instrumentation development typically not 

rewarded by science funding agencies.
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So why bother?

� SR is a fantastic source of radiation, in many 
regions of the spectrum it is irreplaceable.
� It extends from IR to ‘gamma rays’
� It is naturally highly collimated
� It has a well-defined polarization
� It is extremely intense
� It is extremely bright
� It is pulsed
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So what can we do?

� Work with instrumentation experts to design 
better experiments.

� Press for funding to be made available for 
such developments.



Brookhaven Science Associates
U.S. Department of Energy

Advanced Detectors for 
Synchrotron Radiation
� Most detector systems in use at SR facilities are 

general-purpose simple devices, quite inadequate 
and inefficient.

� For many experiments, further increasing the 
source power to make up for the detector 
inefficiencies is no longer viable: radiation 
damage is becoming significant.

� We need a national effort to develop advanced 
detectors which make optimal use of modern 
technology to allow full utilization of the current 
sources.
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Low velocity electron  ( v << c) . . 
.   

¾Electron experiences centripetal acceleration
¾Emitted radiation has dipole pattern
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High velocity electron  (v ~ c) . . .   
¾ Relativistic effects take hold . . . 
¾ Emitted power dramatically increased
¾ Spectrum shifts to significantly higher energies
¾ Pattern strongly forward directed

g-1
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Spectrum from NSLS beamlines
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Growth in SR brightness with 
time

• Essentially no growth in 
conventional x-ray 
machines.

• Growth is faster than 
Moore’s law!
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The problem

� Spectroscopy:
� High rates
� S/N
� Coverage

� Diffraction:
� Resolution
� Speed
� Coverage
� High energies
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Typical fluorescence EXAFS spectroscopy geometry

Sample

SensorDetector
• Resolution :  > 200  S/N

< 300  eV FWHM

• Rate :            > 10   MHz/cm2

> 100  kHz/pixel

• Spectroscopy (energy windows)

Electronics
• front-end
• processing
• readout

2 – 20 keV
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Optimum pixellation

20 mm

• charge sharing (≈20µm/side) and trapping (gap/side) : empirical
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Optimum pixellation
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direct wire
bondingbump bonding

integrated 
metal lines

strips

Interconnecting pixel to front-end electronics

ASIC

sensor

+ interconnect parasitic
+ bond length
- fringe capacitance
- charge sharing and trapping

ASIC

sensor

+ interconnect parasitic
- constraint on ASIC area and layout
- fluorescence from Pb (Sn/Pb/Ag)
- illumination from segmented side

ASIC

sensor

+ dielectric losses
± interconnect parasitic
- bond length

+ bond length
- interconnect parasitic
- dielectric losses

ASIC

sensor

6mm×10µm, Si3N4 (εr=6.5,tan(δ)≈1m), 3µm, 
δCi≈1.2pF
δFWHMloss= 8.5/q·√(2kTCitan(δ))≈180eV
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One quadrant with ASICS

� 96 pads wire-bonded to 3 
ASICS.

� The long bonds are rather 
fragile, but this approach 
provided least parasitic 
capacitance.

� Each ASIC provides 32 
channels of low-noise
analog/digital processing.
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Beam through

sample

sensor
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High-rate multi-element detector for 
fluorescence measurements

� 398-element 
silicon pad array 
for absorption 
spectroscopy 
and/or x-ray 
microprobes.

� Central hole for 
incident pump 
beam to allow 
close approach to 
sample.

� Uses 12 custom 
ASICS designed 
by BNL 
Instrumentation.
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quadrant
(8×12=96 
pixels)

96-channel front-end
(3 × 32 channel 
ASICs)

Peltier

20mm

Si n-type high resistivity wafer 250µm thick,
N = 384  p+ ≈1mm×1mm pixels, Cp ≈ 700-1000fF

gaps  10µm, 30µm, 50µm
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ASIC channel overview

≈ 5 mW≈ 3 mW
ASIC

continuous reset

INPUT p-MOSFET
•optimized for operating region
•NIM A480, p.713

CONTINUOUS RESET
•feedback MOSFET
•self adaptive 1pA - 100pA
•low noise < 3.5e- rms @ 1µs
•highly linear < 0.2% FS
•US patent 5,793,254
•NIM A421, p.322
•TNS 47, p.1458

counters

discriminators

DACS

DISCRIMINATORS
•five comparators
•1 threshold + 2 windows
•four 6-bit DACs (1.6mV step)
•dispersion (adj) < 2.5e- rms

COUNTERS
•three (one per discriminator)
•24-bit each

baseline 
stabilizer

HIGH ORDER SHAPER
•amplifier with passive feedback
•5th order complex semigaussian
•2.6x better resolution vs 2nd order
•TNS 47, p.1857

BASELINE STABILIZER (BLH)
•low-frequency feedback, BGR
•slew-rate limited follower
•DC and high-rate stabilization
•dispersion < 3mV rms
•stability <2mV rms @ rt×tp<0.1
•TNS 47, p.818

high-order
shaper
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55Fe spectrum
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FWHM (Mn-Kα) 205eV
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� self adaptive continuous reset
� high order shaper
� band-gap referenced output baseline
� output baseline stabilizer (BLH)
� test capacitors
� analog out and pixel leakage monitors 
� plug & play (fully self biasing)
� serial interface

� counters readout
� gain / peaking-time setting
� monitors & test enable
� channel masking
� DACs setting

�token or chip-select mode

ASIC overview

≈ 2.5 electrons rmsthreshold dispersion (adj)

750, 1500 mV/fCGain  (settable)
0.5, 1, 2, 4 µsPeaking time (settable)

≈ 14 + 12/pF electrons rmsENC @ 1µs

≈ 11 + 6/pF electrons rmsENC @ 4µs

32# Channels

≈ 8 mWpower / channel
three / channel (1 thr., 2 win.)# Discriminators
four 6-bit DACs (1.6mV step)threshold adjustment

three / channel# Counters
24bits per counter

≈ 180,000# MOSFETs
≈ 3.6 × 6.3 mm2Size

CMOS 0.35µm 3.3V 2P4MTechnology
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charge preamplifier shaper with BLH discriminators and DACs counters

32 channels, 3.6 × 6.3 mm2

ASIC photo
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Readout
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BNL detector software
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Automatic threshold equalization

before correction σ ≈ 170e- rms after correction σ ≈ 2.5e- rms
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Correction map
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head - preamplifiers

rack – shapers …≈ 100 channels, > 350 eV, < 1 MHz

Current EXAFS detector
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New EXAFS detector
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Problems with first ASIC run (and solutions)

� Significant # of channels don’t work (~30%)
� Due to process problem. MOSIS solved.

� Switching any control bit causes whole chip to be disabled for ~3 sec.
� SPI chain was unbuffered on chip, so all channels were disabled then re-enabled. 

Re-enable needs 3 sec. Buffering added
� BLH fails for negative pulses.

� Any undershoot (e.g. during overload recovery) causes baseline shift for a 
significant time. Due to asymmetric behavior of BLH. Added symmetry 
components. Simulations shows problem and suggests fix will be successful.

� Second run just arrived. All bugs seem to be fixed ☺
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Drift-Detector Array

Drift-detectors give large 
area while keeping low 
capacitance by ‘drifting’
charge through bulk of 
silicon to a small collector 
electrode.

Wafer has 96- and 384-
element arrays.
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Non-spectroscopic applications
� 0.1mm strip-shaped 

pixels form a 1-D 
position sensing 
detector with energy 
resolution.

� Useful for diffraction 
and scattering 
experiments.
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Curved proportional counter 
for rapid powder diffraction.

� Gas proportional position 
sensitive detectors are thick, 
and hence prone to parallax 
smearing of position 
resolution.

� Radial geometry solves this 
problem, but curved wire-
based detectors are difficult 
to manufacture.

� We developed a blade 
detector which can operate in 
the proportional regime, and 
a highly parallel readout 
scheme capable of acquiring 
position events at several 
MHz.
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Proportional counters

� Uses controlled avalanche 
multiplication of electrons 
in a gas

� Avalanche occurs in high-
filed region near center thin 
wire

� Edge of blade acts like 
wire, but can be curved

� Signals read out from 
segmented cathodes
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Segmented cathode readout

� Charge 
induced on 
cathodes is 
measured for 
each segment

� Charge pattern 
is interpolated 
to find event 
position
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Pad readout schematic
� Each cathode pad 

has individual 
preamp, shaper 
and ADC

� Inputs are 
digitized 
continuously at 
20MHz

� FPGA takes all 
digital data and 
detects ‘events’.

� DSP takes 
‘events’ and 
computes a 
position.
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Readout electronics
� The heart of the readout 

system is a large FPGA 
implementing event triggers 
and peak identification at 
high speed.

� Qualifying events are 
passed as 3 8-bit numbers to 
a DSP for interpolation to 
identify the peak centroid.

� FIFO's de-randomize the 
events, allowing each DSP 
to handle about 1.5M 
events/sec.
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Readout Electronics

� This PCB carries 16 
20MHz 10-bit 
ADC's, an FPGA 
and a DSP system.

� Three such boards 
form a complete 
detector.
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Example diffraction pattern

� Test pattern. 
LaB6 0.3mm 
capillary. X14B 
beamline, 
17keV

� 1 second 
acquisition, 
total counts in 
pattern ~800k

� Xe-Co2, 2 atm.
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High-Z arrays
� Trend in condensed matter diffraction is to higher energy 
photons
� Silicon becomes transparent at ~12keV.
� Need to have similar capability in some higher-Z material 

� Custom shaped arrays
� Integrated readout system

� LDRD funding 
� Able to fabricate small CZT arrays using a lithographic 

process 
� The performance of our individual elements is as good  as 

that of commercial single detectors in this material.
� BNL's Instrumentation Division has developed suitable 
readout IC's for CZT-based detectors.



Brookhaven Science Associates
U.S. Department of Energy

CZT detector fabrication

� The as-received wafer is 
polycrystalline with large, 
clearly visible grains. 

� Single-grain regions are 
selected from the slice for 
detector fabrication.

� The surface of the selected 
piece is lapped, polished and 
etched.

� Gold patterns are formed 
using a selective chemical 
deposition process.

� Wires are bonded from the 
detector to the test fixture.



Brookhaven Science Associates
U.S. Department of Energy

Fabrication Process

CZT sample

Photoresist

Bright-field mask

Sample UV-exposed & developed

Sample with electroless gold contacts

Mounted Detector 
Onto Ceramic board

(a)

(b)

(c
)

(d)
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1mm x 1mm pad performance

� This level is typical for 
detectors of similar 
construction reported in the 
literature.

� We still need to develop a 
wire bonding technique 
which will allow us to 
connect to smaller devices 
such as 0.1mm pitch strips.
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x
y

Synchrotron Radiation

xy-Slit

10µm x10µm beam

xy translation stage

CZT detector & ASIC

Micron-scale detector mapping

To PC w/ MCA
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2D Contour Map
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IR transmission Microscopy

0.1mm

IR Microscope Yinnel Tech wafer IR Microscopy Image

IR microscopy used to:

• Detect non uniformities
- Grain boundaries
- Te precipitates approximate dimensions: 10 µm

• Align the CZT pixellated detector to the 
print circuit board

0.1mm
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IR Transmission Microscopy

Sample B, top surface
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Counts distribution sample B, V = -200V

Micron-scale detector mapping
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Avalanche photodiode detector for 
high dynamic range point counting.

� Many experiments still use NaI-
phototube detectors for point-
counting situations. These have a 
count-rate limit of around 100KHz. 

� It is therefore frequently necessary 
to attenuate beams in order to bring 
the count rate into the linear range 
of such a detector.

� Integrating detectors have 
significant disadvantages and a 
serious noise penalty at low rates.

� Avalanche photodiodes have 
become quite reliable, and have 
capabilities above 10^7 Hz, with 
similar energy discrimination to
NaI.

� We have adapted an existing 
design to make it user-proof.
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Avalanche photodiodes for x-ray 
detection

� Use special doping 
profile to create high-
field region in a 
reverse-biased 
silicon diode.

� Energetic collisions 
of photo-generated 
carriers produces 
carrier multiplication.

� Device is intrinsically 
unstable!
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APD detector head
APD Detector Head Specifications:

•Pulse height resolution ~30% up to 10 MHz 
(measured at 9 KeV)

•Efficiency ~ 50% (measured at 10 KeV compared to 
NaI)

•Maximum rate - ~10 MHz unipolar, ~100 MHz 
bipolar (with external circuitry)

•Rise time (10 – 90%) tr ~ 1.8 nSec.

•Fall time ~ 5.5 nSec.

•Width (FWHM) ~ 3.8 nSec.

•Output ~ -430 mV for 9 keV X-rays with 370 V bias

•Maximum output -2.5 V into 50 W

•Diode gain @ 370 V ~ 200, amplifier gain at 100 
MHz ~ 60 dB

Averaged one photon output signal from APD 
detector head 

With 9 KeV X-rays.
Horizontal = 2 nSec/Div., Vertical = 100 

mV/Div.
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NIM service module

NIM Module Specifications: 
� SCA / CFD

� Input impedance 50 W 
� Timing resolution: ~ 60 pSec. 

(FWHM)
� Input thresholds lower and upper 

level: 0 – -2.5 V 
� Fixed input delay: td = 2 nSec., td > 2/3 

* tr for true constant fraction
� TTL output into 50 W

� § Rise time – 2.2 nSec.
� § Fall time – 3.5 nSec.
� § Width (FWHM)– 6.2 nSec.
� § Maximum rate ~ 100 MHz

� HV APD bias output 0 – 400 V
� HV trip point 0 – 30 mA
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Reflectivity of Mo/Si multilayer

� These data were 
collected without 
any attenuators.

� Maximum rate is 
limited by NSLS 
50MHz bunch 
rate.
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Summary

� We are able to leverage our small in-house team 
by working collaboratively with BNL’s 
Instrumentation Division.

� Our role is to define the detector need, to steer 
the design specifications so that we arrive at a 
practical design, and to generate user interfaces 
(both software and hardware) which allow 
scientists to use our detectors productively.

� We have begun an effort to bring CZT 
technology into BNL’s toolkit. 


