What is an Electron Ion Collider... and Why?

The eRHIC Design: an EIC at Brookhaven

Detector Requirements... the Golden Measurements
 • A Model Detector

EIC Generic Detector R&D Program
 • Enabling new/improved technology
 • Building Collaborations

ePHENIX and eSTAR Letters of Intent

A Possible Timeline
Unexpected richness of the natural world described by QCD

The substructure of the nucleon is not a simple system of 3 quarks.

How does this complex dynamical system of quarks and gluons result in the nucleon spin-1/2?

At extreme values of temperature and density, nuclear matter reveals directly the quark and gluon degrees of freedom...

The formation and evolution of this QCD matter is dominated by the properties of gluons at high density.
At high energies, gluons dominate the structure of nucleons and nuclei. Gluons carry color charge, and interact with each other, unlike photons.

Unitarity (Froissart bound) predicts a saturated state at very small x.

Conjectured “Color Glass Condensate” may have universal properties, and form the initial state for the Quark Gluon Plasma produced in heavy ion collisions at RHIC and LHC.

From HERA data
Electron Ion Collider: The Next Frontier in QCD Research

Explore the structure of QCD matter with the precision of electromagnetic probes:

- High energy collisions => Access the gluon dominated regime
e-nucleon cm energy (\sqrt{s}) up to ~150 GeV

- High luminosity => Unprecedented statistical precision
e-nucleon luminosity $\sim 10^{33}-10^{34}$ cm$^{-2}$sec$^{-1}$
Sample sizes ~ 10-100 fb$^{-1}$

- Polarized beams => Complete picture of the spin structure of the nucleon
Highly polarized electrons, protons, 3He

- Ion beams up to the heaviest nuclei – Au, Pb, U

- Multiple interaction regions

The 2013 NSAC Subcommittee on Future Facilitiesidentified the physics program of an Electron Ion Collider as absolutely central to the nuclear science program of the next decade.
A Suite of Golden Measurements

High density phase of gluon matter (CGC) amplified in e-nucleus collisions

Microscopic processes: parton propagation in bulk nuclear matter.

Precision measurements of proton structure
Two Visions for an EIC

Jefferson Lab: Medium Energy Ion Collider (MEIC)

Ring-Ring design:
Add polarized proton/ion accelerator complex to existing CEBAF electron accelerator.

- 3-12 GeV e^-/e^+
- 25-100 GeV protons
- 12-40 GeV/u ions

BNL: eRHIC

Linac-Ring design:
Add polarized electron Linac to existing RHIC complex.

- 16-20 GeV e^-
- 50-250 GeV protons
- 10-100 GeV/u ions
The eRHIC Design

Cost effective, technologically advanced accelerator concept. Builds on $2 billion RHIC infrastructure.

- Electron beam accelerated with 1.33 GeV Energy Recovery Linac (ERL) via two FFAG transport rings inside RHIC tunnel collides with existing proton and ion beams:
 - 12 passes: 15.9 GeV, full luminosity
 - 16 passes: 21.2 GeV, reduced luminosity
- Single collision of each electron bunch allows for large disruption, giving high luminosity ($\sim 10^{33} \text{cm}^{-2}\text{sec}^{-1}$) and full electron polarization.
- Bunch collision frequency (~ 9 MHz) is same as for RHIC.

50 mA polarized electron gun (Gatling gun)
eRHIC Interaction Region Layout

- 10 mrad beam crossing angle
- No magnetic bending of electron beam: minimize synchrotron radiation background
- Crab Crossing cavities required for high luminosity
- \pm 4.5 m free space for detector

Magnet apertures allow tagging forward neutrons (ZDC), forward scattered protons (\pm10 mrad)
Detector Requirements for eRHIC

\[Q^2 = -(k - k')^2 \]

Squared momentum transfer to the scattered electron.
Large \(Q^2 > 1 \text{ GeV}^2 \) \(\iff \) “hard scattering”: resolve quarks and gluons.

Bjorken x variable: \(x = Q^2 / (2 \mathbf{p} \cdot \mathbf{q}) \)

Momentum fraction of parton on which the photon scatters. For a given \(Q^2 \), small \(x \) implies large collision energy.

Detecting the scattered electron is critical: defines parton kinematics through \(x \) and \(Q^2 \).
Kinematic Landscape for EIC Physics

Polarized e-\(p\) Collisions

Electrons on Heavy Ions
Semi-Inclusive/ Exclusive DIS: Measure one or more hadrons. Scattered electron is still the key.

- Hadron ID: $K/\pi/p$ separation up to ~ 60 GeV/c
- Good electron/hadron separation required over wide angular range.
- For exclusive channels in e-p collisions, need to detect the outgoing proton \rightarrow Roman pots.

Q2 vs. pseudorapidity for the scattered electron: 3 collision energies

Pseudorapidity vs. momentum for produced pions: 3 collision energies

For more info see: https://wiki.bnl.gov/eic/index.php/DIS:_What_is_important
Diffractive Scattering: Scattered proton or nucleus remains intact.

- A diffractive scattering:
 - **Coherent:** nucleus remains intact
 - **Incoherent:** nucleus breaks up, but nucleons remain intact
 - Use Zero Degree Calorimeter to distinguish.

Diffractive vector meson production in e^{-}–Au collisions is a clean exptl. signature of gluon saturation.
Fourier decomposition gives spatial gluon distrib.

Diffractive ϕ production in e-Au collisions at eRHIC
A Resulting Detector Concept

Compact, high resolution tracking, particle ID, EM calorimetry over full solid angle: $-5 < \eta < 5$

Low material density: low-momentum scattered electron

Downstream detectors for forward scattered electrons, protons, and break-up neutrons: $\sim \pm 10$ mrad
Electron Ion Collider Generic Detector R&D

Peer-Reviewed program established in 2011 to enable EIC experiments

Funded by DOE; managed by BNL: ~1M$-1.5M$/year

Focused on EIC “Golden Measurements” in the collider environment.

Coordinated efforts among CEBAF, RHIC, FAIR and HEP communities.

Initiating consortia of Universities and National Labs as a first step toward building scientific collaborations to successfully mount EIC experiments.

Standing Advisory Committee meets twice per year:

- Marcel Demarteau (Argonne)
- Carl Haber (LBNL)
- Robert Klanner (Hamburg)
- Ian Shipsey (Purdue)
- Rick Van Berg (Penn)
- Jerry Va’ vra (SLAC)
- Howard Wieman (LBNL, retired)
- Glenn Young (Jlab) Chair

Proposals, Presentations, Committee reports at:
An Activist Committee

- Early focus on simulation work to establish quantitative detector requirements:
 - Key physics measurements
 - Specific machine designs

- Match technologies to the specific EIC environment:

- Encourage collaborations between universities and national labs:
 - Carry design concepts through prototyping to full-scale tests

- Strong communication with world-wide developments (e.g. SiPMs, GEM development, etc.)
EIC Detector R&D: funded projects through January 2014

<table>
<thead>
<tr>
<th>Prop. No.</th>
<th>Title</th>
<th>Contact</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>RD 2012-5</td>
<td>Physics simulations</td>
<td>T. Ullrich</td>
<td>BNL</td>
</tr>
<tr>
<td>RD 2011-1</td>
<td>Tungsten fiber calorimeters</td>
<td>Huang/ C. Woody</td>
<td>UCLA, TAMU, Penn St., BNL, USTC</td>
</tr>
<tr>
<td>RD 2012-13</td>
<td>Forward EM pre-shower</td>
<td>W. Brooks</td>
<td>UTFSM (Valparaiso, Chile)</td>
</tr>
<tr>
<td>RD 2011-5</td>
<td>Radiation resistant Si PM</td>
<td>C. Zorn</td>
<td>JLab</td>
</tr>
<tr>
<td>RD 2012-3</td>
<td>Tracking: GEM & Micromegas</td>
<td>B. Surrow, F. Sabatie</td>
<td>CEA Saclay, MIT, Temple Univ.</td>
</tr>
<tr>
<td>RD 2011-3</td>
<td>DIRC -based PID</td>
<td>P. Nadel-Turonski</td>
<td>Catholic Univ. of America, Old Dominion Univ.,Univ. of South Carolina, JLab, GSI Darmstadt</td>
</tr>
<tr>
<td>RD 2012-12</td>
<td>Forward RICH detector</td>
<td>V. Kubarovsky</td>
<td>JLab, INFN Frascati, INFN Ferrara, ChristopherNewport Coll., UTFSM (Valparaiso, Chile)</td>
</tr>
<tr>
<td>RD 2012-15</td>
<td>Gem based TRD</td>
<td>Z. Xu, M. Shao</td>
<td>ANL, BNL, Indiana Univ., USTC (China), VECC (India)</td>
</tr>
<tr>
<td>RD 2012-11</td>
<td>Spin-light polarimeter</td>
<td>D. Dutta</td>
<td>Mississippi State Univ., Coll. Of William & Mary, Stony Brook Univ., Gutenberg Univ. (Mainz), UVCharlottesville, ANL, JLab</td>
</tr>
<tr>
<td>RD 2013-6</td>
<td>Polaritymetry & luminosity monitor</td>
<td>E. Aschenauer</td>
<td>BNL, Byelorussian State Univ., Cracow Univ. Technology</td>
</tr>
<tr>
<td>RD 2013-2</td>
<td>Magnetic field cloaking device</td>
<td>A. Deshpande</td>
<td>Stony Brook Univ., RIKEN, BNL</td>
</tr>
</tbody>
</table>

Simulation tools
- Compact, Fine Grain Calorimetry and Photon Detection
- Simulations; Micropattern Tracking; Central & Forward Particle ID

Forward e-Tagging
- e-Beam Polarimetry; Lumi monitor

Detector/Beam Interface
Early Emphasis on Simulation Tools

Simulation studies to understand the specific technical requirements for EIC experiments:
Maximize acceptance and efficiency for each golden measurement while minimizing machine backgrounds, and backgrounds from other physics processes.

Software packages include Monte Carlo generators specially developed for e-p and e-A collisions at EIC energies.

Detector simulation packages: impact of detector responses on physics observables...
- EICRoot framework, based on FairRoot
- Fast smearing generator

Long-term support and maintenance of these programs, essential for the design and implementation of EIC detectors, requires a sustained effort. Plans are in progress.
Compact EM Calorimeters
RD2011-1 Consortium: UCLA, BNL, Indiana U., Penn State, TAMU, USTC (China)

UCLA et al. W powder/scint. Fiber modules– Si PM readout

BNL et al. W plates and fibers– Si PM readout

Close Coordination with STAR and PHENIX upgrade development
DIRC-based PID

RD2011-3: Jlab, GSI, Catholic Univ. of America, Old Dominion Univ., Univ. South Carolina

BaBar principle with compact readout:
Hi index lens and compact expansion volume inside the magnetic field region?

Si PM sensors
Aim for 3σ K/π separation at 6 GeV/c

Close collaboration with PANDA development
Compact Tracking and PID with GEM Detector Technique

Considerable progress in recent years in developing manufacturing techniques, precision characterization, quality control, large area foils, reliable commercial sources, practical implementation of large systems.

Basic structure is thin, self-supporting mesh realized by photolithographic techniques.

Mini-Drift GEM Chamber: RD2011-6 Collaboration

Considerable progress in recent years in developing manufacturing techniques, precision characterization, quality control, large area foils, reliable commercial sources, practical implementation of large systems.
RD2011-6 Tracking and PID Collaboration
Stony Brook Univ., BNL, Florida Inst. Tech., Univ. Virginia, Yale Univ.

RICH with CsI-coated 5-GEM readout, UV reflecting mirror

Prototype for compact TPC with GEM readout

Large-area, “Compass-type” GEM sector with 2-D readout
Cylindrical MicroMegas Barrel layers draw on CLAS12 development at Saclay.
RD2012-3: GEM Development Lab setup at Temple University

New Science Education & Research Center

500 ft² clean room
1000 ft² lab

Present clean room at Temple

Precision optical scanner for GEM foil characterization
Forward Electron Tagging

RD2012-15 BNL, USTC (China) GEM-based End Cap TRD

- TRD
- TOF / Absorber
- Inner Tracking
- Iron Endcap

- TPC
- IP

RD2012-13 UTFSM (Chile) Crystal-based pre-shower detector for forward EM calorimeters

- 625 LYSO crystals in 10 x 10 cm array
EIC Detector R&D at JLab, SLAC, Fermilab test beams
ePHENIX Concept

Proposed sPHENIX as starting point:
Utilizes 1.5 Tesla former BaBar Magnet.
Full EM calorimeter coverage over $-4 < \eta < 4$

- High precision crystal calorimeter in e-direction
- Compact GEM and TPC tracking detectors
- Hadron PID via barrel DIRC, forward gas and Aerogel RICH
- Forward HCal coverage to $\eta = 5$ (diffractive production)
eSTAR Concept

Build on existing mid-rapidity tracking and PID with a suite of forward upgrades:

- EndCap TOF walls covering $\eta = 1$-2 on each side
- GEM-based TRD and Crystal EM Calorimeter on electron-going side
- Forward GEM trackers and Calorimeters on hadron-going side
STAR Heavy Flavor Tracker

First large-scale use of MAPS technology

Innermost Pixel Layers use 400 Monolithic Active Pixel Sensors (MAPS): \(3.6 \times 10^8\) pixels, \(20.7 \, \mu m/pixel\).

Alignment with cosmic rays

14.6 GeV Au-Au event
A Possible Timeline for transition from RHIC to eRHIC

Assumes NP Long Range Plan and DOE “CD-0” approval in 2015-2016

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fiscal year</td>
<td></td>
</tr>
<tr>
<td>12 GeV Upgrade</td>
<td></td>
</tr>
<tr>
<td>FRIB</td>
<td></td>
</tr>
<tr>
<td>RHIC/eRHIC ops</td>
<td></td>
</tr>
<tr>
<td>RHIC I/H operations</td>
<td></td>
</tr>
<tr>
<td>RHIC with LE cooling</td>
<td></td>
</tr>
<tr>
<td>RHIC with sPHENIX</td>
<td></td>
</tr>
<tr>
<td>eRHIC</td>
<td></td>
</tr>
<tr>
<td>Low energy cooling</td>
<td></td>
</tr>
<tr>
<td>sPHENIX</td>
<td></td>
</tr>
<tr>
<td>ePHENIX</td>
<td></td>
</tr>
<tr>
<td>sPHENIX - ePHENIX</td>
<td></td>
</tr>
<tr>
<td>Low energy cooling</td>
<td></td>
</tr>
<tr>
<td>eSTAR</td>
<td></td>
</tr>
<tr>
<td>Enhanced eRHIC detector</td>
<td></td>
</tr>
<tr>
<td>R&D/PED/Design (CD0-CD3)</td>
<td></td>
</tr>
<tr>
<td>Projects/Construction (CD3-CD4)</td>
<td></td>
</tr>
<tr>
<td>Operations/physics</td>
<td></td>
</tr>
</tbody>
</table>