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Why Image Small Animals?Why Image Small Animals?

Determine safety and efficacy before humans - “preclinical”

Many rodent models of human systems and disorders 
available - “translational”

Fewer subjects needed - “longitudinal”

Cost-effective

More cooperative

small animals = lab rats and mice
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Small Animal PET 
Instrumentation Projects

Small Animal PET 
Instrumentation Projects

Awake animal imaging:
• RatCAP

Higher spatial resolution:
• LSO/APD Anger Detector
• CZT

Related projects:
• Simultaneous PET/MRI
• Wrist detector
• Motion tracking of awake animals
• Beta probe

Harderian gland   (at eye 
position)

microPET images
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Requirements of
Small-Animal PET
Requirements of

Small-Animal PET

High spatial resolution
• Mainly crystal size
• Radius/DOI
• “fundamental” limits
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Requirements of
Small-Animal PET
Requirements of

Small-Animal PET
High sensitivity
• dose limited by

– tracer principle
– randoms
– radiation damage

• Solid angle
• Detector efficiency

commercial microPET 
(R4 rodent model)

UCLA microPET 
prototype

RatCAP
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Randoms, Scatter, AttenuationRandoms, Scatter, Attenuation

Random (accidental) coincidence Scatter and Attenuation

x1

x2

e-mx1e-mx2 = e-m(x1+x2)
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Requirements of
Small-Animal PET
Requirements of

Small-Animal PET
Time resolution
• Randoms rejection
• R = 2τS2

• frandoms ∝ dose

Energy resolution
• Compton scatter

– object: 170 - 511 keV
– detector: 0 - 340 keV
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RatCAP: Rat Conscious Animal PETRatCAP: Rat Conscious Animal PET

mockup on rat head

• Awake animal imaging
• anesthesia disturbs neuro 
systems
• prevents behavioral studies

• High performance PET scanner 
w/ additional challenges:

• compact! 
• low power ~ 1 W
• minimize cabling
• lightweight ~150 g
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Scintillator and PhotosensorScintillator and Photosensor

• LSO
• 2.2 x 2.2 x 5 mm crystals
• 4 x 8 array

• matching Hamamatsu S8550 APD array
• gain ~50 at 370 V bias
• capacitance ~10 pF

• ~5000 p-e/MeV

>> 1:1 coupling

CTI cut block

Proteus unbonded
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System GeometrySystem Geometry

• 12 blocks

• 4 cm dia. x 2 cm axial 
FOV

• front-end electronics 
on detector, compact 
readout

• protective shield

Readout chip

APD

LSO

Socket
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Support SystemSupport System

Gimbal ring 
allows head 
movement 

Weight is 
completely 

counterbalanced
(animal only 
feels inertia)
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Front-end ElectronicsFront-end Electronics

Requirements
• Good time and energy resolution
• Low power
• Minimal cabling
• Rates ~ 100 kcps w/ low deadtime

Solution: ASIC
• 1 per block: 32 x preamp, shaper, ZCD
• programmable threshold
• serial encoder to single data line

– only 12 lines total
• interconnected by rigid flex PCB
• 0.18 um CMOS
• 125 mW power budget
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Front-end ElectronicsFront-end Electronics

No ADCs?
• not necessary w/ 1:1 coupling!

Compact data stream for all 32 
crystals
• Asynchronous timing edge
• 5 bit crystal address w/ 100 MHz clock
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Front-end ElectronicsFront-end Electronics

First fully functional version:
• Noise

– 1000 rms e-

• Encoder tested

• Time resolution
– 6.2 ns FWHM measured vs. BaF2
– >> ~9 ns in coincidence >> 20 ns window

• Energy resolution
– 20% FWHM @ 511 keV

Next version
• DACs for LLD
• Analog multiplexer
• ESD protection
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Data AcquisitionData Acquisition

COM module
• FPGA time stamps and packages singles 

event into 64 bits
• 1.3 ns bit resolution

VME data acquisition
• VxWorks running PDAQ
• Up to 40 MB/s to linux box

Online monitoring
• Singles & coincidence rates

Offline processing
• Time and energy calibrations
• Coincidence sorting
• Randoms estimation
• Efficiency normalization
• Sinogram sorting FPGA

S.Junnarkar
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Image ReconstructionImage Reconstruction
Maximum Likelihood Expectation Maximization (MLEM) method

• proper statistical weighting of data
• accurate modeling of detection process

y = A x

System
Matrix (A)

Sinogram
Data (y)

Image 
Voxels (x)

Aij is just the probability that a decay in image voxel xj produces a count in projection yi

system matrix can include many physical effects in the detector and object:
• scatter
• attenuation

• detector geometry 
• detector efficiency

• positron range
• electronics noise

Shepp & Vardi, IEEE Trans. Med. Imaging (1982) 113-122
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Image ReconstructionImage Reconstruction

Full system matrix A
• typically huge (TB’s)
• sparse
• approximations needed

RatCAP
• Small FOV
• 384 crystals
• A = 2 GB
• Simulate entire A, voxel by voxel

– Include scatter and attenuation
– Use PHENIX computing capacity to 

reduce to days

Input image Reconstructed image

8 mm
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RatCAP Summary

1  2   3    4  5
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LSO/APD Anger PET Detector
• Goal: ~1 mm FWHM spatial resolution but maintain high sensitivity
• Concept: a blend of old and new technologies

• Anger camera
• LSO and avalanche photodiodes (APDs)
• New twists - photosensor on both sides for DOI, no lightguide necessary

• Advantages over current small-crystal designs
• Higher sensitivity - no gaps
• Scalable to higher resolution - thickness determines resolution
• Stackable to increase sensitivity
• Less expensive

• large slab vs. many individual crystals
• fewer electronics channels
• DOI means smaller radius possible

vs.APD

LSO slab

γ γ
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LSO/APD Anger PET Detector
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LSO/APD Anger PET Detector
• Simulations

• 5000 rms electrons noise

• Spatial resolution data from full prototype soon

• Electronics improvement in next funding phase
• Reduce noise = better spatial, energy, time resolution!
• Fully digital or sample-and-hold?
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CZT for PET
• New LDRD with Aleksey Bolotnikov, 

Gabriella Carini, Giuseppe Camarda, J-F 
Pratte, Avraham Dilmanian

• Advantages of CZT
• High spatial resolution using block with pixel 

anodes:  ~1 mm or less
• High energy resolution:   <3% at 511 keV
• Compact

• Challenges
• Timing
• Stopping power
• Sensitivity even with stacking

• Measurements
• 15 x 15 x 7.5 mm CPG timing: 21 ns FWHM 

worst case
• Next: 1 cm3 block w/ 4 x 4 anodes on 2.5 mm 

pitch from eV
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Measured Attenuation CorrectionMeasured Attenuation Correction
blank scantransmission scan
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Positron AnnihilationPositron Annihilation

The positron 
collides with an 
atomic electron 
(anti-particle), 
giving back-to-
back 511 keV 
gamma rays

Positron range and 
noncollinearity 
(±0.25o) are 
ultimate limits on 
PET resolution

eff. positron ranges:
0.55 mm (18F)
1.0 mm (11C)  
1.4 mm (13N)
2.4 mm (15O)

“line of response”
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Effects of AnesthesiaEffects of Anesthesia
Current small animal PET imaging instruments for rats are limited 

by the need to use anesthesia which can profoundly depress brain
function.

The 9th International Conference: Peace 
through Mind/Brain Science

The effect of different 
anesthetics on the 
uptake of β-CFT on the 
dopamine transporter of 
the monkey brain.
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RatCAP
Depth of Interaction Studies

RatCAP
Depth of Interaction Studies

In the small ring, parallax degrades the resolution

This is a concern due to the fact that the rat brain 
occupies most of the ring diameter

One layer of 10 mm Crystals Two layers of 5 mm Crystals

Sepideh Shokouhi
Paul Vaska
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RatCAP: Why image awake animals?RatCAP: Why image awake animals?

• Anesthesia can depress brain functions and affect the 
neurochemistry that one is trying to study
• Cannot study animal behavior while under anesthesia 

• To understand human function and 
disease, animal models are increasingly 
used
• PET is especially suited to measure brain 
function in humans and animal models
• To eliminate image blurring from motion, 
animals are anesthetized during PET 
imaging, BUT
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Design RequirementsDesign Requirements

• High spatial resolution and sensitivity for quantitative brain 
studies

• Size and weight small enough to allow reasonable freedom 
of movement
• Light weight detectors (~ 150 g total weight)

• Light weight electronics with low power consumption
⇒ New custom electronics chip 

• High count rate capability to handle large background
• Rugged to withstand activity of the rat
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Image Processing ProjectsImage Processing Projects
• Sinogram Corrections: Development & Validation

• scatter
• attenuation
• normalization
• LSO radioactivity analysis

• Image Reconstruction Algorithms:
Comparisons & Optimization

• FBP
• OSEM
• MAP
• post-smoothed ML-EM

• Image Coregistration
• provides anatomical identification of regions

• Partial Volume Correction
• for ultimate quantitation in small regions

OSEM

MAP

FBP
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RatCAP
The Parallax Problem

RatCAP
The Parallax Problem

Human Size PET MicroPET RatCAP
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Light Sensor MiniaturizationLight Sensor Miniaturization

The light sensor can be  
a photomultiplier tube 
Or it can be a Avalanche 
Photodiode Array (APD) 
which matches the 
crystal array

Craig Woody
Sean Stoll
Paul Vaska
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RatCAP 
Electronics Challenge

RatCAP 
Electronics Challenge

Two arrays of 4x8 APDs and 
crystals
• Need to get 6 times these 
electronics on the head of the rat

LSO and APD’s
Positioning platform

Preamplifier

Craig Woody’s lab in Physics
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RatCAP
Electronic Development

RatCAP
Electronic Development

Simple electronics
All the voltages, clock 
signal come in  and 
data comes out on a 
single tether
All the coincidence 
processing is done on 
the side of the cage
Power consumption is 
low enough that we 
don’t need additional 
cooling

1.5 watts power 3-10 watts power

Block 1

Block 2

Block 3

Block 4

Block 0

LV  HV
Clock

Time 
Stamp

Address
Encoder

On the Rat On the Cage


