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0-enhanced LC filter with automatic tuning

* Introduction: @-enhanced LC filter

* Nonlinear effects of Q-enhanced LC resonator
« Automatic tuning

* Implementations and measurements

Sampling receiver

* Introduction: sub-sampling vs. RF sampling

» Passive mixer: voltage mode vs. current mode
* Review of decimation filtering techniques

* Implementation and measurements



Motivation

* RF filter is necessary for band selection (and/or image rejection),
while most commercial products use off-chip RF filters—bulky and
expensive; sometimes introducing matching problems.

« GHz operation facilitates on-chip inductor with reasonable silicon
area.

 To integrate RF filters on chip:

-- Active filters (eg. Gm-C): limited DR and high power consumption at
GHz.

-- Passive LC filter: poor selectivity, due to limited @ of on-chip spiral
inductor.

= low-power, DR-improved, high-O: @-enhanced LC filter

= Challenge:

-- intolerable PV T-induced variation from on-chip passives
=> Automatic tuning is essential to maintain desired filter selectivity.



On-chip spiral inductor
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O-enhanced LC filter

Issue: inductor loss does not scale with inductance
=> use same size inductors => coupled-resonator filter

Example: a 4t-order Q-enahcned LC filter
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0-enhanced LC resonators

* Need automatic tuning to control both the resonant
frequency and the quality of each resonator

« Problem: tilting passband, due to in-phase coupling of the
inductors => needs coupling neutralization



Coupling neutralization
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Nonlinear effect in 0-enhanced LC resonator
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Implementation with NMOS transistors
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Comparison to measurements on 112 kHz breadboard

implementation
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CMOS implementation
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B Sl VYV SR conductance (k;) and bias current (/,),
the active current in the CMOS

I iImplementation is more linear than in
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Automatic tuning

Indirect tuning (master-slave):
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Conventional VCO Q-tuning using magnitude-locked loop:

Reference LC resonator (VCO) Veer §
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= Q of the resonator in the master (VCO) is tuned to infinity;

= But, is QO of the resonator in the slave (filter being tuned) infinite?
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Is the tuned O of the resonators in the filter infinite?

Filter requires good linearity

=> filter resonators work with much smaller amplitude than the
VCO resonators:

=> (& zkl

Nﬁlter

Refer to the VCO resonator Eq. Vz(GL +k, + %k3V2j =0
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= The nonlinear part makes the filter resonator different
from the VCO resonator

= Finite Q of fitler resonator, varying with PVT;
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Comparison to simulation on a 4.8 GHz NMOS
implementation e Analytical
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VCO ¢-tuning using conductance reference [S. Li_05RFIC]
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Implementation (0.18um CMOS)

Reference resonator (VCO)
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Measured filter frequency response w/ VCO Q0 tuning
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VCF QO-tuning scheme [S.LI_TCASII06]

Reference circuitry
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Nonidealities
Mismatches, offset of loop integrator, accuracy of envelope
detector, interference with frequency tuning, etc.
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VCF Q-tuning circuitry:
envelope detector, comparator and integrator
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Simulated and measured filter frequency response

w/ VCF QO tuning
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Test Chip (UMC 0.18 um CMQOS)
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Filter Performance summary

Supply voltage 1.5V
Current 29 mA
Center frequency 6 GHz
Passband ripple +2.5dB
Bandwidth 100 MHz
1-dB compression -27.5 dBm
point

Noise floor -70.5 dBm
1-dB compression 43 dB
point DR

Die area 1.5 x 2 mm?
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Conclusions:

« A straightforward analytical solution to the amplitude control of the Q-
enhanced LC resonator. Nonlinearity of the active devices is the key
to effective amplitude control.

« With conventional VCO Q-tuning, the tuned filter resonator |Q| is high,
but finite, and its value depends on process and configuration the
negative conductor.

« A1.5V, 6 GHz O-enhanced LC filter with two types (VCO and VCF)
of tuning schemes was implemented using UMC 0.18um standard
CMQOS process.

« Two effective quality factor tuning schemes, VCO- and VCF-based, of
the filter over power supply and process tolerance.

* Problem of coupling neutralization due to the inaccurate magnetic
coupling simulation.

* Frequency tuning out of range due to excess on-chip inductor loss.



Sampling receiver

* Introduction: sub-sampling vs. RF sampling

» Passive mixer: voltage mode vs. current mode
» Review of decimation filtering techniques

* Implementation and measurements



Motivation

» Single-chip solution: RF+ABB+DBB
» Reconfigurable multi-standard mobile products => programmability
* Problems and drawbacks found in TI's sampling receiver solution

 Recent innovations on discrete-time decimation filter

* Architecture:

Mixers/samplers

ADCs

Digital

. Filters
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Sub-sampling/band-pass sampling:
* Found in many reported sampling receivers

* Poor noise performance due to noise-folding = solution: RF
sampling (higher sampling rate = less noise)

In
-

RF sampling c1£ cIfE
[Lmkoplng Univ.] % sunt o sym|
* input: 2.4 GHz * f;*jr“

« sampling rate: ~ 3GHz

» output sampling rate: ~ 150 MHz

* Rx front-end NF: ~ 10 dB

* noise too high for GSM/EDGE applications
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TI's BT/GSM: RF Sampling? — NO!

* Double-balanced switches were not fully
shown in TI's publications, but were found in the
real circuit.

 C,, is charged and discharged in continuous-
time fashion; there are no sampling and holding
phases.

* It is a current-mode double-balanced
passive mixer.




Passive mixers:
+ low flicker noise than active mixers
+ free of noise-folding compared to sampling mixers

current mode voltage mode
Z.in I;{) iout X
Vin :@: LOZ Z10ap Vin LOZ ZLOAD vout
_ iin /i) iout ) T /EE i
+ not sensitive to LO jitter _ sensitive to LO jitter
+ output indep. of SW on-resistance - output depends on SW on-resistance
- do not need large SW > need large SW
- SW do not introduce thermal noise > SW introduce thermal noise
+ can use low impedance load - high voltage swing at D/S of SW
~ low voltage swing at D/S of SW > low linearity and high LO radiation
- high linearity and low LO radiation + no transconductance amplifier
- need transconductance amplifier - low conversion gain (< 0dB)

+ high conversion gain as active mixers

So, we consider the current-mode passive mixer the best solution.

Direct capacitor loading (TI's solution) is not desirable: low impedance loading = low conversion
gain and large capacitors

—> Solution: active loading (opamp with R & C in the feedback path) which also serves as the first
stage of IF filter.



Recent innovations on discrete-time decimation filters

* Decimation sampling [Lindfors_ TACSII'03]
sum of N samples - N-tap FIR (low-pass): H(Z):ﬁzl—f

» Charge sampling - built-in anti-aliasing [Yuan_ICCMMT’00]
current-mode S&H - charge sampling and integration
—> sinc response with zero at fs, 2fs, ...

 Embedded FIR functions: real & complex bandpass [Karvonen_Thesis’06]

» Cascading and synthesis [Abidi_JSSC’07]
-- cascaded decimation filter stages to meet system spec.
-- very simple circuit implementation of the cascaded stages

» Gain boosting [Yoshizawa_ ISSCC’08]
-- apply discrete-time MOSFET parametric amp.
-- filter gain boosted by 20 dB.



Test Chip

« fabricated in 90nm standard digital CMOS
 dual-band LNA

 current-mode passive mixer vs. Gilbert mixer
 one stage of decimation filter

« digitally-controlled osc.
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Performance summary

Current-mode Voltage-mode
This This
work work Sacchi Valla_ Zhou_
passive | Gilbert | cicco3 | JSSCOS JSSCO05
mixer nmixer
RF ﬁfﬂfg‘;‘” 0.8 and 1.6 22 5 5
COIP\EEI(?]IBOJH gain 7 24 79 6 29
DeBnopsfigire | gy 5.1 3.9 3.5 5.3
11 s | 0k SM 70k | 200k | 45k
11P3 ., - A R
(dBm) = - -1 i 21
]
(B 30 43 35 24 13
be ( (%%hg ;ﬁzn)mse @1 MHz N/A @1MHz N/A
' i / offset offset
5“1-’13‘1%;}30““5%‘3 12 1.8 12 18
- - T
Lt‘lﬁi‘ 12 16 8.3 30 75
A e 126 | 12 | 46 | 18 | 0§
{.ufg’g‘“‘h‘fﬁig) 0.09 0.18 0.13 0.18

Without synthesizer.

= With synthesizer.




Conclusions

* Direct capacitor loading to the mixer which requires low load
Impedance results in low conversion gain and large chip area — better to
apply active loading with opamp and feedback serving as a first stage of
IF filter.

» Capacitor load is not necessary for continuous-time passive mixer since
there is no hold phase; in current-mode operation, a capacitor load
makes the conversion gain varying with frequency — not desirable.

» Charge-sharing between the mixer and the decimation filter results in 20
dB loss — not desirable.

* Pnoise simulation is not suitable for switch-cap circuits; transient noise
simulation in Verilog-AMS predicted noise closer to measurements.
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VCO frequency-tuning loop:
3rd-order charge-pump PLL

LC Resonator
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VCF freg-tuning circuitry: frequency divider (six divide-
by-2 stages, with scaled sizes)

A divide-by-2 stage: Master Slave
vDD
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VCF freg-tuning circuitry: phase-frequency detector
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VCF freg-tuning circuitry: charge pump
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