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Part I: TDC Applications
http://www.hybrid-pet-mr.eu/uploads/pics/ToF_principle_and_effective_sensitivity_gain.jpg
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Applications
Architectures
• Tapped delay line (TDL)
• Vernier delay line (VDL)
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• Two ring oscillator based self calibrating TDC
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TDC Architectures. Tapped Delay 
Line



Vernier Delay Line



Cyclic TDC



Two Ring Oscillator Topology



Self Calibration Scheme 
Two Ring  Oscillator Topology
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TDC Characteristics
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Non-ideal weighting of the mth bit where εm
is the error of the mth bit

Causes:

Cell to Cell Delay 
Variations

Routing Delay Variations

Clock Jitter



TDC Characteristics, Analytical 
expressions
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Effect of noise on ring oscillator

Ali Hajimiri et.al, IEEE journal of 
solid-state circuits, vol. 34, no. 6, june
1999



Analytical expression for phase 
noise/clock jitter in ring oscillators

Ali Hajimiri et.al, IEEE journal of solid-state circuits, vol. 34, 
no. 6, June 1999
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Why TDC implementation in FPGAs? 
Commercially available, cost effective
Versatile with high speed digital logic and high 
density of programmable Logic Array Blocks 
(LAB)
Low voltage differential signaling (LVDS) I/O 
provides high speed comparators for 
unconventional  analog processing usage
Ubiquitous in data acquisition chain for digital 
signal processing
Faster turn around times from concept to 
design



FPGA based TDC and Signal Processing 
Module (TSPM)

4.5”

4.5”



TSPM Specifications
Serves upto 24 TDC/ADC channels and 
expandable
2 Gigabit/sec transmitter links
1 Gigabit/sec receiver link
24 Time to digital converters, with a very wide 
input dynamic range (limited only by the number 
of bits in a counter) 
Suitable for Time of Flight, Coincidence 
spectroscopy applications
Virtually deadtime less with more than 1 
Millions/sec singles rate with less than 1% 
deadtime
Based on Altera Stratix II devices



TDC Characterization
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TDL-TDC Characterization Using 
Pulser. Reported resolution=625 ps



TDL based TDC in use in RatCAP: 
Coincidence timing spectrum for 1 
RatCAP pair
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Calibration results

Tslarge = 1 us
• T1 = 1.160 ns ± 0.1%

Tssmall= 3 ns
• T2  = 1.119 ns ± 0.1%

Tr = T1-T2 = 41 ps



TDC output code histogram



TDC Transfer Function
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Clock transition nonlinearity 
corrected TDC output versus event 
number



Differential Nonlinearity Error in TDC
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Integral Nonlinearity Error in TDC
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Temperature Dependence of Ring 
oscillator Periods

1.1

1.2

1.3

1.4

1.5

1.6

1.7

38 40 42 44 46 48 50 52 54
Temperature in deg C

T1
 a

nd
 T

2 
in

 n
s

T2
T1



Temperature Dependence of TDC 
resolution 
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Conclusion

TDC resolutions of 625 ps and 40 ps are achieved 
using Altera Stratix II FPGAs
INL < 1 LSB and DNL < 0.5 LSB is observed for 
both TDL and two ring oscillator technique
Excellent linearity over wide dynamic range
Vernier techniques achieve sub 100 ps resolution, 
and hits a limit at around 20-40 ps
Sub 10 ps resolution regime should be explored in 
ASICs unless better control over FPGA design tools 
is available in near future
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ADC Block Diagram



Moore’s Law



Technology Scaling Impact on 
Analog Design

Gate oxide thickness ↓=>Gate 
tunneling current ↑
Early Voltage (VA) Reduction↓
Dynamic Range↓



S/H Circuit
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ζ is the S/H damping factor 
ωn is the S/H natural frequency

GOL= gm1(ro2|| ro4)* (-gm7(ro7|| ro8))

ro α 1/λ
ro α VA

Operational Amplifier
NIELSEN, H.,J.,et al., 2005 



Technology Dependence of Droop Rate

For 90 nm Technology, 1 V Dynamic Range, 13 Bit, 10 MSPS 
ADC, LSB = 0.12 mV
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[Gupta, M., et al., Sept 2004] 



Bandgap Reference

HÄNSLER, K., et al.,2003 
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Predominant ADC Architectures



Conv
ersio
n 

FLASH
N bits - 2^N -1 
Comparators, 
Resistors, Caps 
increase by a 
factor of 2 for 
each bit.

SAR
Binary search 
algorithm, internal 
circuitry runs 
higher speed.

ΣΔ
Oversampling ADC, 
Digital Decimation 
Filter

Enco
ding

Thermometer 
Code Encoding

Successive 
Approximation

Over-Sampling 
Modulator, Digital 
Decimation Filter
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Bubble codes / 
metastability, 
high power 
consumption, 
large size

May require anti-
aliasing filter. Slow 
conversion

Higher order (4th 
order or higher) -
multibit ADC and 
multibit feedback DAC. 
Strict stability 
requirements. OTA in 
integrator stages and 
S/H

Comparison



Conver
sion 
Time

FLASH
High speed. Not 
dependant on N

SAR
Increases linearly 
with increased 
resolution. Can be 
offset by using high 
speed clock in deep 
submicron

ΣΔ
Tradeoff between data 
output rate and noise 
free resolution

Resolu
tion

Limited to 8 bit 
maximum due to 
resistor 
matching, area 
and power 
concern. High 
N=> High 
cap=>Slow 
speed

Passive 
components 
matching better in 
deep submicron. 
Matching 
requirement double 
with every bit 
increase in N

Component matching 
requirements double 
with every bit increase 
in N

Size

2^N-1 
comparators, 
power increases 
exponentially 
with N

Die increases 
linearly with 
increase in 
resolution.

Core die size will not 
change with increase 
in N



SAR: Choice for deep Sub Micron
Ease of implementation
Low power 
Reliance on passive component matching
No OTA needed. S/H OTA can be combined in Charge 
Redistribution type DAC
High clock speed can offset for N+1 cycle conversion 
time
Stable BGR needed



ADC State of the art (F=1/Figure of 
Merit) Best case 

F=5.5x1012

BIN, L., et al., Nov. 2005, Analog To Digital Converters, A Review Of Past, Present And Future, IEEE Signal 
Processing Magazine, pages 69-77
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TDC based ADC Topology



Nonlinearities: DNL and INL. SNR
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Altera Cyclone family LVDS 
Comparator AC response



Quantizer (Comparator) performance
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pi is the probability that the 
comparator will yield ambiguous 
output.
VL=Threshold for the digital gate at 
the comparator output=0.6
A0=Open loop comparator gain≈32
q=Quantization step≈2.5/215

t=Comparison time≈10 ns
τ=1/2πf3dB
f3dB= 3dB bandwidth of the 
comparator≈100 MHz

Example case 
of Altera 
Cyclone device 
LVDS 
comparator

pi= 1.02x10-6

* WOODWARD, C., et al., DEC 1975, A Monolithic Voltage-Comparator Array for A/D Converters,
IEEE JOURNAL OF SOLID-STATE CIRCUITS,VOL. SC-10,NO. 6, pages 392-399 
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Battery operated, signal chain for PMT Pulse 
Processing using FPGA based TDC and ADC 
(MARIACHI experiment)



PMT Output and corresponding ToT
comparator response



Simulated PMT output charge vs 
LVDS comparator output

y = 0.9698x - 0.2538
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ADC resolution vs input charge, 
Simulated
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VTC based ADC power dissipation
TDCVTCHSADC PPPP ++= /

Where PVTC and PTDC can be calculated from inverter 
power dissipation formula and number of inverter 
stages. For VTC, n=1 and for TDC n=2N where 
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Example case TDC based ADC Figure 
of Merit

Example case of proposed ADC 

ENOB≈15, fs=1 MHz (using 20 ns TDC deadtime, 
multiple VTH), 

CL=10 fF, VDD=1.8 V

FOM ≈ 0.048 pJ

1/FOM ≈ 21 x 1012J-1

f
PFOM ENOB

ADC
ADC .2

=



Conclusion

TDC based ADC architecture is a way of the future 
ADC architectures as technology feature size shrinks 
FPGA based ADC architecture promises a resolution 
close to 15 bits using ToT method
FOM for such ADC surpasses state of the art by an 
order of magnitude
Future work involves detailed hardware 
implementation of ADC
Real-time ToT PMT Pulse processing algorithms 
need to be developed for the architecture to be 
meaningful in practice
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