Profilometry of X-ray Optics: Current Progress

Peter Z. Takacs
Shinan Qian

Forensic Metrology Laboratory
Instrumentation Division
Brookhaven National Laboratory

10 April 2002
Long Trace Profiler

LTP II Optical Head

Intensity Fringes on Detector
LTP II - Optical Model

- Manufactured by Continental Optical Corp. 1991-1999 under license from BNL
- $F = 1250$ mm, Surface Angular Range = ±5 mrad
Brief History of the LTP

- 1985 - Begin original design
- 11/87 - LTP I with GPIB detector and stepping motor, **HP BASIC**
- 12/91 - LTP II for LBL from Continental Optical
 - ISA bus PI detector and brushless DC servo motor, **C and LabWindows CVI, DOS**
- 4/94 - 2/98 - CRADA, SBIR with Continental Optical for NASA VSLTP
 - C++ version
- 9/97 - In Situ LTP at Advanced Photon Source
 - 8 bit camera (**DOS**)
- 1/00 - LTP I changed to **HT BASIC on WinNT PC**
- 1/01 - LTP I changed to **LabVIEW**, Dalsa camera&frame grabber
- 6/01 - CRADA with Ocean Optics
 - ELID machine project at RIKEN, Tokyo: OOI detector, **C++ software**
- 11/01 - Portable LTP at SPring8: Cronin camera, motor on parallel port
- 12/01 - Ocean Optics CRADA, Opt head for BESSY
What’s New?

- Switch from Continental Optical to Ocean Optics
 - C++ unified software
 - USB interface for detector and motor
 - Eliminate air bearing - use linear motor stage, lightweight, compact
- Special optical head for BESSY
- RIKEN ELID grinding machine optical head
- In situ measurement with PTLTP at SPring8 and Taiwan
- XEUS mirror metrology proposal
- LTP II upgrades
- Develop standards for long radius measurement
- Investigate systematic error sources that prevent <1.0 µrad accuracy
LTP Installations Worldwide

<table>
<thead>
<tr>
<th>Location</th>
<th>LTP Version</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brookhaven National Laboratory Upton, NY USA</td>
<td>4</td>
<td>LTP I, LTP III, ISLTP, PTLTP</td>
</tr>
<tr>
<td>Lawrence Berkeley Laboratory Berkeley, CA USA</td>
<td>1</td>
<td>LTP II</td>
</tr>
<tr>
<td>NASA Marshall Space Flight Center Huntsville, AL USA</td>
<td>2</td>
<td>LTP II, VSLTP</td>
</tr>
<tr>
<td>Argonne National Laboratory Argonne, IL USA</td>
<td>1</td>
<td>LTP II</td>
</tr>
<tr>
<td>University of Chicago Chicago, IL USA</td>
<td>1</td>
<td>LTP II</td>
</tr>
<tr>
<td>InSynch, Inc Albuquerque, NM USA</td>
<td>1</td>
<td>LTP II</td>
</tr>
<tr>
<td>Ocean Optics, Inc. Winter Park, FL USA</td>
<td>1</td>
<td>LTP IV</td>
</tr>
<tr>
<td>Sincrotrone Trieste Trieste, Italy</td>
<td>2</td>
<td>PTLTP, ISLTP</td>
</tr>
<tr>
<td>European Synchrotron Radiation Facility Grenoble, France</td>
<td>1</td>
<td>LTP II modified</td>
</tr>
<tr>
<td>BESSY II Berlin, Germany</td>
<td>2</td>
<td>LTP II, LTP III</td>
</tr>
<tr>
<td>Synchrotron Radiation Research Center Hsinchu, Taiwan</td>
<td>1</td>
<td>LTP II</td>
</tr>
<tr>
<td>SPring-8, Japan Synchrotron Radiation Research Institute, Hyogo, Japan</td>
<td>1</td>
<td>LTP II</td>
</tr>
<tr>
<td>RIKEN Institute Tokyo, Japan</td>
<td>1</td>
<td>LTP III</td>
</tr>
<tr>
<td>Osservatorio Astronomico di Brera Merate, Italy</td>
<td>1</td>
<td>LTP II</td>
</tr>
<tr>
<td>Pohang Accelerator Laboratory Pohang, Korea</td>
<td>1</td>
<td>LTP II</td>
</tr>
<tr>
<td>Crystal Scientific Alnwick, England</td>
<td>1</td>
<td>LTP II *</td>
</tr>
</tbody>
</table>
VSLTP at NASA MSFC

- X-ray telescope cylinders and mandrels to 1 m diameter
- SBIR with Continental Optical, design by T. Oversluizen
RIKEN ELID Optical Head

- **ELID** ultra precision grinding machine
 - “electrolytic in-process dressing” of cutting tool
 - produces ready-to-polish cylindrical optics in glass, Si, SiC
- Need for on-machine metrology for final fabrication stages
- Collaboration with BNL (design, optics board) and Ocean Optics (fabrication, detector, software)
- Interface ContOpt software with ELID motion control system
 - field installation by OOI software engineer
- Added 3D surface map capability with beam-steering mirror
- Problem with cylinder lens installation - rework system
ELID Ultra Precision Grinding Machine

Sketch with LTP optical head installed
ELID LTP Optical Head

• Uses existing optics board
• Off-the-shelf parts for lens bench
• Incorporates OOI detector

Kinematic mount for installation on machine
ELID LTP Data
Analysis code based on VSLTP 3D surface analysis

CYL11.raw - fix W parameter to compute correct angle. Now scan up full width of cyl.
HGT from D1 slp
Portable LTP - PTLTP

- Compact optical head design
- Uses monolithic SBS beamsplitter for exceptional stability
- Basis for current Ocean Optics standard unit
- Use for *in situ* measurements of mirrors under actual operating conditions
- Designed for “before-after” measurements, not for absolute accuracy
- Collaboration with SPring8 - distortion of cooled grating in soft x-ray beam line
- Adaptable to different translation stages
BESSY Optical Head

- For German NOK project (Nanometer Optikkomponenten)
 - Optical head for ultra-precision metrology of optics for x-ray lithography
- Requirement for 10nm absolute accuracy over 1.2 meter length.
- Need <30nrad slope error accuracy
 - Stringent performance on lens design
 - Low distortion F-θ lens
- Model various configurations with ZEMAX and OptiCAD
 - Moving optical head -> better lens performance
 - Fixed optical head, penta prism scan -> less mechanical error
BESSY Optical Head Design

- Scanning penta prism, fixed optical head
 - difficult lens problem
- 3 SUT ranges: 1750mm, 1150mm, 550mm
- Max surface angle: ±6.6mrad
- Minimize distortion over all ranges and angles
OptiCAD Raytrace of BESSY LTP

• Fixed optical head, moving penta prism
• 3 element lens design gives 100nrad performance
• Fixed head requires larger size optics -> more errors
• Moving head design - can get <2nrad distortion

Max slope error	Allowed distortion limit
1 μrad | 0.0167 %
100 nrad | 0.0017 %
30 nrad | 0.0005 %
BESSY LTP
Uses Microbench parts
XEUS X-ray Telescope Metrology

- Collaboration with O. Citterio at Osservatorio Astromonica di Brera, Milano, Eimeldingen, OOI
- Measure Wolter telescope segments: 1.2 to 10 meters in diameter
- Nested thin foil segments, 1m x 1m square, vertical orientation
- Scan up from table top, not down from bridge structure
 - more compact system
- Scan close to surface or along symmetry axis???
- Require 100 nm accuracy with 3D full-surface map
- Difficulty is azimuthal scan accuracy
 - requires including mechanical tolerances in measurement loop.
- Proposal due later in 2002
$r = g(z_0)$

Conicoid symmetry axis

Vertical Scan Axis

Φ_0

Z_{pn}

Z_{0n}

$D(z)$

$\theta_0 = n \delta \theta$

$R(z)$

$R-D$

x_0

y

x

y

z

z

5

4

3

2

1

0

5040

5020

5000

4980

4960

4940

-66

-65

-64

-63
3 axis stage by Eimeldingen
Can be used in near or far configuration
LTP III

- Replaced original LTP I in Metrology Lab
- Dalsa camera, frame grabber, Nikon lenses, same GPIB motor controller
- LabVIEW control and analysis program
- Versatile, custom configuration for any mirror geometry
 - Face up, face down, sideways
- Thermal sensitivity
 - Replace NBS with SBS or phase plate
- Systematic errors at the microradian level
X12B - SESO cylinder mirror, face down
X26C Mirror bender calibration

R from D1 on slopes relative to 9e @ 0 half-steps

X26C bender R vs. motor steps
Stability vs. Beam-splitting Optics

Produce phase shift of $\lambda/2$ between beams

NBS w/Porro prisms (separate pieces)

SBS (monolithic)

Phase Plate

Standard LTP

Compact LTP
Qian patent pending

Z. Li, et al
Tsinghua University
LTP III Stability Scan - 7 hours

BNL LTP III optical head with $\Delta T=0.2^\circ C$

Very sensitive to temperature and humidity fluctuations.
Improve BNL LTP III Stability

Using SBS monolithic beamsplitter

Using phase plate
Systematic error effects

- Difficult to achieve accuracy below 1 µrad in LTP III
- Lack of repeatability in long-radius measurements
- Suspect glass inhomogeneity problems in lenses and PBS
- Modify LTP III structure to “open architecture” system -
 \[\Rightarrow \text{LTPIIIa}\]
 - Use of Microbench parts
 - Allows for rapid reconfiguration

- Use external laser source for LTPIIIa tests
LTP IIIa
“Open” architecture
LTPIIIa w/External Laser - Single Direct Beam

- Remove all glass between laser and detector.
- Scan carriage at 0.2 mm steps.
- Shift absolute position by ~10mm between scans.
- 2nd order polynomial fit to peak of Gaussian beam.

2 sets of scans, average of 16 scans in each set.

Shift second scan by 0.6mm to align starting points.
External laser test - results

- See microradian-level errors in residuals between adjacent points.
- Independent of measurement location of carriage
 - Not caused by encoder position error or lead screw error
- Must be internal to Dalsa detector chip?
- Multiple reflections in cover glass?
- Investigate effect of smaller beam size.
- Possible solutions-
 - Lookup table for position correction
 - Replace Dalsa camera with OOI USB detector.
 - Requires major software change to C++ code.
 - Change motor controller
LTP II upgrades

- Original Princeton Instruments detector obsolete - dual array no longer made by Reticon
- ISA bus interfaces for detector and motor controller obsolete
- USB interface with OOI detector, motor controller
- Increase surface slope range from 10 mrad to 30 or 60 mrad
- Requires decrease in focal length and change in folding mirror board

Design criteria
- Keep detector in current location
- Keep current PBS aperture - 30mm
- Single lens and single folding mirror

- What range of acceptance angles are possible with current geometry?
Original LTP II
EFL = 1250 mm
Aperture angle = 20 mrad
EFL = 415 mm
θ = 60 mrad
EFL = 285 mm
θ = 87.6 mrad
EFL = 165.3 mm
θ = 150 mrad
LTP II Upgrade

ZEMAX lens design distortion results

<table>
<thead>
<tr>
<th>Design acceptance</th>
<th>F-θ max distortion</th>
<th>Absolute surface distortion</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>D = 100mm</td>
<td>D = 80mm</td>
</tr>
<tr>
<td>60 mrad</td>
<td><0.0001%</td>
<td>0.002%</td>
</tr>
<tr>
<td>87.6 mrad</td>
<td>0.076%</td>
<td>0.059%</td>
</tr>
<tr>
<td>150 mrad</td>
<td>3.25%</td>
<td>2.80%</td>
</tr>
<tr>
<td>150 mrad 2-lens</td>
<td>0.27%</td>
<td>0.246%</td>
</tr>
<tr>
<td>150 mrad 3-lens</td>
<td>0.0224%</td>
<td>1.12%</td>
</tr>
</tbody>
</table>
Acknowledgments

• Photo credits-
 – Dieter Schneider and Toshi Karasawa, AVANCE

• Phase plate fabrication
 – John Warren and Don Elliott

• Shop work
 – Richard Ryder and Bill King
Design projects
 RIKEN ELID head
 BESSY NOK project head
 VLTP for Citterio
 LTP II upgrades
 Portable LTP - OOI detector
 Compact Optical Head
 SPring8 In Situ LTP project

LTP Improvements
 Super Stable Beamsplitter
 Phase Plate beamsplitter
 OOI commercial version - no air bearing

LTP I upgrade
 LTP III w/Nikon lenses, Dalsa camera, LabView control and analysis software
 LTP IIIa - open architecture

Investigations
 Absolute accuracy in long R measurement
 Systematic errors at <1 microradian