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Overview
Diamond as a secondary emission “amplifier”
Amplifier results using electrons
Diamond x-ray detectors
High-flux detector results at x28c



Diamond Amplifier Concept

Advantages

Secondary current can be >300x primary
current

Lower laser power
Higher average currents
Diamond acts as vacuum barrier

Protects cathode from cavity vacuum
and ion bombardment

Protects cavity from cathode
(prevents Cs migration)

Should improve cathode lifetime
e” thermalize to near conduction-band
minimum
Minimize thermal emittance
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Diamond Amplifier Concept

Patterned Thin Metal
Diamond Layer
(10-30 nm)
Transparent Secondary
Conductor Primary Electrons
Electrons

3-10 kV |‘|| I

Electron saturation velocity in Diamond is ~.2 um/ps
Takes 150 ps to go 30 um =40 degrees of RF

Electrons must exit diamond in time to escape injector
Irregularity of surface will cause bunch spreading

Thin (<30 um) for
electron transmission

Hydrogen terminated for
electron emission
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Responsivity and “Gain”

In the detector business, the term gain is generally reserved for
amplification mechanisms which add energy to the signal in the
conversion mechanism (avalanche in a gas detector, for example)

For the electron “amplifier”, this is not the case — the incident
electron is losing it’s energy, and this energy is converted into
carriers, much like an ionization mode gas detector.

Similarly, in a photodetector, the energetic electron produced via
absorption of an x-ray photon will produce many carriers

The “responsivity” of a photodetector (in A/W) is given by:

S — i e_twindow/ ﬂ'window (1 . e_l—active / Zactive )

W

W: mean ionization energy — energy required to create an e-h pair



Transmission Mode Measurement

Metal coating
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Transmission Mode Gain

Field in diamond [MV/m]
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Emission test diagram

Diamond — :
H.V. negative - \ |
pulste_s on metal Electric AN,
coating — focusing ¥
— screen
J Multiple hole CCD

U H U anode (grounded) camera



First observed beam from diamond amplified
cathode

Without focusing With focusing and reduced
primary current

[Pri=300nA. HV: 3kV (1.7MV/m in diamond).
Freq. = 1kHz, Duty cycle = 0.001

Gain of 40 was measured in our current test conditions.



Why use X-rays?

Penetration depth is a strong function of energy ->
Can differentiate between surface and bulk effects

Electron energy from photoabsorption is well
defined — can accurately measure mean ionization
energy W

Absorption edges allow differentiation of attenuation
from metal vs loss of carriers to diffusion into surface

Distinguish between electron and hole effects
Shorter pulses and higher flux available
Calibrated diagnostic beamlines available at NSLS



Photon Absorption Length
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Metal-Diamond Interface

 We will consider two types of contacts:

— Contacts which allow charge carriers to pass with sufficient
ease to require the diamond to remain charge neutral on
average. These contacts allow photoconductive gain, and we’ll
call them injecting.

— Contacts which restrict the flow of charge to an extent
sufficient to allow the diamond to charge. We’'ll call these
contacts blocking.

 For diamond with oxygen surface termination, all metal contacts
tested (Ti/Pt, Pt, Al, Cu, Nb, & Mo) have been blocking

e Oxygen can be removed by thermal annealing, causing contacts
to become injecting (remember this — it will come up later)

 For Moly, thermal annealing has been used to create injecting
Mo,C contacts



Lithographic Pattering of Contacts




Diamond as a Detector

Initial oxygen termination achieved
by acid etch or ozone exposure

Diamond metalized on both surfaces
with 3mm diameter electrodes | |

Two detector geometries

X-rays generate carriers (stand in for

the energetic e in the amplifier) Q

—_— e
Soft x-rays generate carriers near X-rays ,
o o Diamond
incident surface (similar to e case), Metalized both sides
allowing electron and hole motion to
be separated by biasing —_ >

X-rays

Harder x-rays go all the way through,
creating a column of charge

Leakage is <1 pA for oxygen
terminated diamonds, even for 1kV
bias



Trapping and Pulsed Bias

e Initially, DC bias was used on detector

— For soft x-rays, hole response was much lower than
expected, and non-linear with flux

e By pulsing the bias on the detector (using an amplified square
wave for bias)

— Hole response matched the model prediction for bias field
greater than 0.1 MV/m -> nearly all charge collected

— Works for wide range of frequencies (1 Hz to >10kHz) and
duty cycles (up to 99%)

— During off cycle, x-ray illumination generates carriers
which drift toward and neutralize trapped charge



008 |} L) | | I ) ) L]
[F Ti/Pt,Cu Contacts (HID 16) ""'E—; """" b
0.07 | applied field: 2x10 ° V/m (holes) = L -
L duty cycle: 10-99% .
006 k frequency: 100 Hz i _
—~ 005 | i % _
2 004 |
= o
o) t tr; t tacti
o 0_03 . 1 Pt Ti C _ Lactive |
W .
E _ S[V] _ (W )(e ipt[V]e iT.[V]e ﬁc[V])(l_e ﬂc[V])_
C
0.02 - C  measured responsivity =
L -e= 5= 1/W=0.0756 A/W i
0.01 —W =13.24 eV, 26 nm Ti, 15 nm Pt,
' 67 nm dead C, 490 um active C
OOU L 1 i | 1 1 1
200 400 600 8001000 2000 4000 6000 8000

Photon Energy (eV)
J. Keister & J. Smedley, NIM, accepted



0.1

(A/W)
o
=

Responsivity

=)
Q
S
—

0.0001

Hole Response (1 keV)

20

40 60 80 100

120

140

_’

_’_

1¢

Hole collection saturated for 0.3 mm thickness

Voltage




What about electrons?

 Electron response depends strongly on type of
electrical contacts

e For blocking contacts, electrons exhibit significantly
more trapping than holes
— Lower duty cycle of pulsed bias to avoid signal loss
— Never collect all electrons

* For injecting contacts, photoconductive gain is
observed

— Trapped electrons act as effective “doping” of material
— Holes are injected from opposite electrode



hv

Photoconductive Gain

Photons produce initial carriers
Electrons drift through diamond
Some electrons are trapped in material
Act as effective p-type doping as long they are trapped

On average, one hole is injected into diamond for each
trapped electron, keeping material charge neutral

Holes drift through diamond
New holes enter, each time adding current

Process continues until the hole is trapped in the material
or the trapped electron is neutralized

] T Hole lifetime
Gal n= holes

t

holes Hole transit time
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Responslvity (A/W)

Electron Response, injecting
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Responsivity (A/W)

Electron and hole response, blocking
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Responsivity Conclusions

Holes have larger CCD than electrons in these
synthetic diamonds (due to ultra low N content)

Charge collection for holes is limited only by diffusion
of carriers if field is low — for E>0.1 MV/m, all holes
collected

Simple model of Responsivity yields a pair creation
energy of 13.3 +/- .25 eV

Electron trapping occurs in bulk diamond; cannot
collect all electrons — leads to PC gain w/ injecting
contacts

Can sweep trapped charge by irradiating diamond
w/o bias



White Beam Test
Diamond detector used on beam at X28C, with 17W of X-

ray power, ranging from 6 keV to 15 keV
Intercepted ~3% of beam

lon chamber used for low power calibration, copper
calorimeter for higher power

Generated 40 mA of current in a 2mm? area
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X28c Setup

X-ray port

Beam defining aperture
Diamond Detector

lon Chamber
Calorimeter




Diamond Current (A)
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Radiation Hard?

The diamond was not obviously harmed by absorption of 108
rads of x-rays

However, continuously driving 16+ mA of current at up to 1 kV
bias (16 W of electrical power) caused significant heating of
device

This lead to a change in the nature of the response
— Initially, diamond was a diode, with blocking contacts

— During high flux measurement, photoconduction was observed for
negative bias

— This change in the contact was permanent — loss of oxygen?

Subsequent response maps showed that photoconductive
region is tiny (~200 microns across), and that a region of PC
gain for opposite polarity is present in the unirritated area
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HID14 in X15
(80%, 100V, 1kHz, 19keV)

HID18 in X6B
(80% ,-100V, 1kHz, 19keV)
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Localized charge trapping causing localized gain
Related to defects/inclusions?




Conclusions & Thoughts

Diamond detector response is linear from 100pW — 1W
incident x-ray power, and predictable for photon
energies from 0.2-28 keV

For soft x-rays, pulsed bias allows clearing of trapped
charge to achieve (nearly) full charge collection

Above 4keV, DC bias is adequate, even at high flux
— Pulsed bias is still useful to prevent PC gain, and limit current

Temporal response of detector is consistent with
carrier velocity and thickness

Up to 40 mA (2 A/cm?) passed through diamond
For amplifier, demonstrated emission “gain” of 40

Due to it’s mechanical and thermal properties,
diamond is already a candidate to replace beryllium for
X-ray windows for some NSLS || beamlines — can we
instrument these windows?



Thank you for your attention!

Thanks to Jen Bohon, Wei Chen, Elaine DiMasi, Jim Distel, Bin
Dong, Dan Fischer, Joe Harder, Abdel Isakovic, Cherno Jaye,
Jeff Keister, Zhenxian Liu, Erik Muller, Balaji Raghothamachar,
Triveni Rao, Bill Smith, Jean Jordan-Sweet, John Walsh

Special thanks to Pavel & Veljko for helping me understand
photoconduction!

C-AD Diamond Team: llan Ben-Zvi, Andrew Burrill, Xiangyun
Chang, David Pate, Erdong Wang, Qiong Wu

Simulations: Richard Busby, Dimitre Dimitrov

Beamlines: U2A, U2B, U3C, U7A, X3B, X6B, X8A, X16C, X19C,
X20A&C, X28C



Why Diamond?

Electron Amplifier
Radiation hard
Fast (high mobility)
High thermal conductivity
Robust ohmic contacts

Negative electron affinity
— Easy (Hydrogen)

— Robust (Covalent Bond)

— Controllable?

Detector
Radiation hard
Fast
High thermal conductivity
Robust ohmic contacts
Solar blind
Low leakage
Low absorption

— Transmission devices (beam
monitors)



Responsivity at 1 keV Photon Energy (A/W)
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Interface Layer Recombination

Carbon edge feature in responsivity is largely due to short
absorption length (<100 nm)

Carriers produced near electrode may diffuse into metal and
recombine, leading to loss of charge

This process is field dependent, leading to a charge collection
efficiency which depends on the field

Electron trapping in the diamond can reduce the field dear
the electrode, leading to increased recombination

For photon energies below 2 keV, when biasing for holes, the
field required to saturate the collection reduces as photon
energy increases, due to increased penetration depth

For photon energies above 4keV, the photons are being
absorbed in the bulk of the diamond, making it impossible to
differentiate electron motion from hole motion
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