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Daniel Muenstermann

with many plots and drawings from ATLAS collaborators

Novel CMOS-based sensors 
for the ATLAS Inner Tracker upgrade 
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for the ATLAS Inner Tracker ?pgrade 
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ATLAS: A multi-purpose particle detector at LHC
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The current ATLAS Inner Tracker...
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The current ATLAS Inner Tracker...

 The ATLAS inner tracker consists of TRT, SCT and Pixel
 TRT: straw tube (gas) detector
 SCT: silicon strips
 80 µm pitch

 Pixel: silicon pixels
 50 µm pitch

 Tasks
 pT-measurement
 pile-up disentangling
 b-tagging
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And how does it perform?

 Working smoothly, even at 
pile-ups not anticipated 
(50ns BC scheme)

 Impact parameter 
resolution down to ~10 
µm for high-pT tracks!

 Nice: dE/dx shows several 
particle favours → 
particle ID/discrimination

π

K

p
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Works great, ok – and now? New physics?
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Works great, ok – and now? New physics?

 July 4th, 2012, saw the most eagerly awaited particle discovery of all 
times – a new boson compatible with the standard model Higgs
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Stop now? Or continue? How?

 So all is good. Is it? What did we see? What do we know? Let's have 
a look at the data:
 γγ:

 not too bad, signal clearly visible on background
 but how did it look with less statistics?

~11 fb-1
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Stop now? Or continue? How?

 So all is good. Is it? What did we see? What do we know? Let's have 
a look at the data:
 γγ:

 lesson to learn: statistics helps
 how much is necessary?

 What high-statistics channels and why?
 Vector Boson Scattering
 really a SM Higgs? Resonances?

 Higgs self-coupling
 unique measurement, hard and rare

~11 fb-1

~5 fb-1

~5 fb-1



C
M

O
S

-b
as

ed
 s

en
so

rs
C

M
O

S
-b

as
ed

 s
en

so
rs

Daniel MuenstermannDaniel Muenstermann
Stop now? Or continue? How?

More demanding Higgs channels:
 ttH → γγ
 really difficult
 enables to directly measure 

the top's Yukawa coupling
 possible with 3000fb-1

 (inclusive) H → µµ
 very rare, large background
 “immune” to high pile-up

  ttH → µµ
 extremely rare
 better S/N
 ~30 events after 3000fb-1 (!)

Many reasons to aim for a luminosity upgrade
 LHC: some 100 fb-1, HL-LHC: ~3000 fb-1



C
M

O
S

-b
as

ed
 s

en
so

rs
C

M
O

S
-b

as
ed

 s
en

so
rs

Daniel MuenstermannDaniel Muenstermann
Several upgrades: LHC draft plan

5
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for the   ATLAS Inner Tracker upgrade ?
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Several upgrades: ATLAS draft plan

nSQP, IBL

Calo, Muon,
new Pixel??

full Tracker 
replacement

5
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Phase 2: What to upgrade? How to upgrade?

 Main challenges:
 occupancy
 radiation damage
 data rate/trigger rate

 Components needing upgrades:
 TRT
 occupancy-limited beyond about            

2 . 1034 cm-2 s-1 (40% occ.@ inner radii)
→ replace by all-silicon inner tracker

 SCT
 radiation damage limited (p-in-n sensors collect holes → n-in-p to collect e-)
 occupancy limited (long strips → replace inner layers by short strips)
 self-seeded track trigger?

 Pixel
 radiation damage limited (?) for innermost layers → sensor R&D
 data rate limited (inefficiency expected in b-layer above 3 . 1034 cm-2 s-1)
→ replace with new readout chip
 better resolution for pile-up rejection
 very forward tracking to recover FCAL performance?
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Occupancy

Occupancy will rise: depending on scenario and luminosity levelling
 100 – 200 (– 400 for 50 ns scenarios) pile-up events
 up to 14000 tracks per BC (!)
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Radiation Damage: Fluences at HL-LHC

17

 integrated luminosity: 3000 fb-1 
 including a safety factor of 2 to 

account for all uncertainties this 
yields for ATLAS:
 at 5 cm radius:

 ~2•1016 neq cm-2 

 ~1500 MRad
 at 25 cm radius

 up to 1015 neq cm-2 

 ~100 MRad
 several m2 of silicon

 strip region
 many 1014 neq cm-2

 up to 60 MRad
 up to ~200 m2 of silicon

 new ID sensors need to be more rad-
hard and cheaper at the same time 
(more area to cover)

Fluences for 3000 fb-1

Dose for 3000 fb-1

I. Dawson, P. Miyagawa

I. Dawson, P. Miyagawa
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How to build? Layouts...

 Existing layout: Letter of Intent
 ~200 m2 of silicon strips (short and long), ~10 m2 of pixels

 several other layouts under discussion: conical, alpine, 5th pixel layer...

T. Todorov
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One step back: How do silicon detectors work?

 Interaction of charged particles with matter
 main effect used in trackers: ionisation, 

generation of electron-hole-pairs in silicon bulk

 one side is patterned, many 
strip/pixel electrodes

 apply electric field across bulk, limit Ileak

 charges drift and induce signal on electrodes
 small signal, needs amplification
 dedicated readout ASICs
 connection with sensors via wirebonds 

(strips) or bump-bonding (pixels) → modules



C
M

O
S

-b
as

ed
 s

en
so

rs
C

M
O

S
-b

as
ed

 s
en

so
rs

Daniel MuenstermannDaniel Muenstermann
Silicon sensors and radiation damage

 Very brief introduction: The silicon crystal gets damaged by radiation 
– lattice atoms get moved around...

 There are 3 different effects all caused by radiation-induced damage 
to the crystal lattice:
 charge-carrier trapping
 localised trapping centers
 thermal de-trapping timescale much longer than  

charge collection time
 loss of induced charge → reduction of signal

 leakage current
 thermal generation of charge carriers → more noise         
→ more cooling required

 change of Neff/Vdep

 the material usually behaves effectively more        
“p-type” which leads to increasing full depletion 
voltages → higher bias voltages

 The usual unit for radiation damage is the particle 
fuence normalised to 1-MeV-equivalent neutrons

 Sometimes also dose is relevant (oxide charges, electronics)
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Pixel radii@HL-LHC: Different regimes

 Inner layers
 Up to 2-3 . 1016 neq/cm2

 Trapping becoming the dominant effect
 charge amplification?
 data obtained with strip sensors indicate still significant 

collected charge after HL-LHC fuences
è valid also for planar pixel sensors?
è different technologies better-suited?

 Outer layers
 Rad-hardness up to 2 . 1015 neq/cm2 at 600V bias voltage was 

already established for current ATLAS Pixel Detector
è sufficient rad-hardness likely
 But: Costs? 1.8 m2 → ~10+ m2
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Innermost layers: highest fluences

TU Dortmund

3% inefficiency
250 µm

250 µm

 Main issue: trapping → 
reduce drift time
 Increase field: up to 

2kV works stable!
 less than 3% 

inefficiency 
achievable

 Thin silicon 
demonstrated down 
to 50-75 µm
 on handling wafers
 100-150 µm with 

standard production
 Possible, but life is 

hard – better 
alternatives? 

MPI Munich
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U Manchester/3D

Innermost layers: highest fluences
 Main issue: trapping → reduce drift length
 3D silicon – IBL production successful
 future: charge amplification on purpose?
 but: non-standard process, low-volume, ...

IBL-like design

C. Da Via
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Larger pixel radii: cost-efficiency

 pixel sensors offer improved spatial resolution and reduced occupancy
 thus there are ideas to have 5 pixel layers and only 2 short strip layers

 since ATLAS production, large advances in cost efficiency:

 current cost estimate may still decrease significantly
 possible sensor production on 8” wafers using CMOS foundry processes
 readout chip production might be with cheaper vendor
 industrial bump-bonding (C4NP) might become available for 50 µm pitch

 best option might be to get rid of bump-bonding anyway
 glueing → capacitive coupling, no leakage current, but small signal
 trials ongoing with planar sensors
 valid option for HV-CMOS

Item ATLAS Production Costing goal 2008 Current best estimate for 
large volumes

Sensor ~ 55 CHF/cm2 ~ 50 CHF/cm2 < 30 CHF/cm2

Readout chip ~ 150 CHF/cm2 < 50 CHF/cm2 < 30 CHF/cm2

Bump-bonding ~ 190 CHF/cm2 < 50 CHF/cm2 < 30 CHF/cm2

Sum ~ 400 CHF/cm2 < 150 CHF/cm2 < 90 CHF/cm2



C
M

O
S

-b
as

ed
 s

en
so

rs
C

M
O

S
-b

as
ed

 s
en

so
rs

Daniel MuenstermannDaniel Muenstermann

P. Allport

Large strip radii: Collected charge with n-in-p strips
 collected charge > 14000 e- at 1015 neq cm-2 and 900V bias voltage → perfect
 sensor self heating due to leakage current → sufficient operation temperature
 production on 6” wafers → less costly than before, but still (too?) expensive
 trials with production on 8” wafers using modified CMOS foundry processes 

ongoing
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Novel CMOS-based sensors 
for the ATLAS Inner Tracker upgrade 
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Recap: rad-hard sensors

 Large efforts to assess and demonstrate rad-hardness using refined 
hybrid detectors
 go to electron collection (n-in-n or n-in-p)
 reduce drift distance (3D, thin silicon)
 reduce/eliminate leakage current (CO2 cooling, diamond)
 use deep-submicron rad-hard readout chips (130nm, 65nm)

➔ in short: Hybrid detectors are rad-hard enough. Lots of experience 
with them. Could be used. The end?

 Main drawback: Price
 hybridisation expensive, small pitches require special processes
 sensor processes non-standard and on small wafers, hence more costly
 new trackers require ~200m2 of silicon, price is important for the financial 

feasibility of the upgrade
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How to stay rad-hard, but get cheaper?

 Ways to reduce cost: use
 industrialised processes
 large wafer sizes
 cheap interconnection technologies

 Idea: explore industry standard CMOS processes as sensors
 commercially available by variety of foundries
 large volumes, more than one vendor possible
 but: application of drift field required for sufficient rad-hardness 

➔ requires careful choice of process and design
 8” to 12” wafers
 low cost per area: “as cheap as chips” for large volumes
 wafer thinning quite standard

 usually p-type Cz silicon
 thin active layer, helpful to disentangle tracks in boosted jets and at high eta
 requires low capacitance → small pixel

 Basic requirement: Deep n-well (→ allows high(er) substrate bias)
 existing in many processes, e.g. even 65nm (!)
 usually deepest in HV-CMOS → highest possible bias
 also existing in specialised imaging processes → HR-CMOS
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AMS H18 HV-CMOS

 Project initiated by Ivan Peric (U Heidelberg)
 Austria Micro Systems offers HV-CMOS 

processes with 180 nm feature size in 
cooperation with IBM
 biasing of substrate to ~60-100V possible

 substrate resistivity ~10 Ohm*cm → Neff > 1014/cm3

 radiation induced Neff insignificant even for innermost layers

 depletion depth theoretically in the order of 10 µm → drift signal ~1 ke-

 on-sensor amplification possible - and necessary for good S/N
 key: small pixel sizes → low capacitance → low noise

 additional circuits possible, e.g. discriminator
 beware of 'digital' crosstalk → avoid clocked circuits

 full-sized radiation hard drift-based MAPS feasible, but challenging
 “digital” area at the expense of significant inactive edge/balcony
 aim for 'active sensors' in conjunction with rad-hard readout electronics first
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A HV-CMOS sensor...

 essentially a standard n-in-p sensor
 depletion zone ~10 µm: signal in the order of 1-2ke- 

 challenging for hybrid pixel readout electronics
 new ATLAS ROC FE-I4 might be able to reach this region – but no margin

HV deep N-well

Depleted

P-substrate

Pixel i Pixel i+1

14 µm @ 100V

Not depleted

The depleted high-voltage diode used as sensor (n-well in p-substrate diode)

~1000 e

~1000e



C
M

O
S

-b
as

ed
 s

en
so

rs
C

M
O

S
-b

as
ed

 s
en

so
rs

Daniel MuenstermannDaniel Muenstermann
...including active circuits: smart diode array (SDA)

 implementation of 
 first amplifier stages
 additional cuircuits: discriminators, impedance converters, logic, …

 deep sub-micron technology intrinsically rad-hard, but watch out...

HV deep N-well

P-Well

PMOSNMOS

Depleted

P-substrate

Pixel i Pixel i+1

Not depleted

CMOS electronics placed inside the diode (inside the n-well)

14 µm @ 100V

~1000 e

~1000e



C
M

O
S

-b
as

ed
 s

en
so

rs
C

M
O

S
-b

as
ed

 s
en

so
rs

Daniel MuenstermannDaniel Muenstermann
Proof of concept prototypes

 Several test-chips already existing (many in AMS 350 nm HV-CMOS 
process), see backup slides for more detailed results

RO chip

Binary information

Analog information

Analog information

SDA with sparse readout
(“intelligent” CMOS pixels)

HV2/MuPixel chip

SDA with frame readout
(simple PMOS pixels)

HVM chip

SDA with capacitive readout
(“intelligent” pixels)

Capacitive coupled pixel 
detectors

CCPD1 and CCPD2 detectors

→ baseline for µ3e experiment at PSI
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Prototype summaries First chip – CMOS pixels

Hit detection in pixels
Binary RO

Pixel size 55x55μm
Noise: 60e

MIP seed pixel signal 1800 e
Time resolution 200ns 

CCPD1 Chip
Bumpless hybrid detector

Based on capacitive chip to chip
signal transfer

Pixel size 78x60μm
RO type: capacitive

Noise: 80e
MIP signal 1800e

CCPD2 Chip
Edgeless CCPD

Pixel size 50x50μm
Noise: 30-40e

Time resolution 300ns
SNR 45-60

PM1 Chip
Pixel size 21x21μm

Frame mode readout
4 PMOS pixel electronics

128 on chip ADCs
Noise: 90e

Test-beam: MIP signal 2200e/1300e
Efficiency > 85% (timing problem)

Spatial resolution 7μm
Uniform detection

PM2 Chip
Noise: 21e (lab) - 44e (test beam)

Test beam: Detection efficiency 98%
Seed Pixel SNR ~ 27

Cluster Signal/Seed Pixel Noise ~ 47
Spatial resolution ~ 3.8 µm

Irradiations of test pixels
60MRad – SNR 22 at 10C (CCPD1)

1015n
eq

/cm2 – SNR 50 at 10C (CCPD2)

Frame readout - monolithicBumpless hybrid detector

I. Peric
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From MAPS to active sensors

 Existing prototypes were not suitable for HL-LHC, mainly because
 readout too slow
 time resolution not compatible with 40 MHz operation
 high-speed digital circuits might affect noise performance

 Idea: use HV-CMOS as sensor in combination with existing readout 
technology
 fully transparent, can be easily compared to other sensors
 can be combined with several readout chips
 makes use of highly optimised readout circuits
 can be seen as first step towards a sensor being integrated into a 3D-

stacked readout chip (not only analogue circuits but also charge 
collection)

 Basic building blocks: small pixels (low capacitance, low noise)
 can be connected in any conceivable way to match existing readout 

granularity, e.g.
 (larger) pixels
 strips ROCPixels
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Pixels: sizes and combinations

 Possible/sensible pixel sizes: 20x20 to 50x125 µm
 50x250 µm (current ATLAS FE-I4 chip) too large
 combine several sensor “sub-pixels” to one ROC-pixel
 sub-Pixels encode their address/position into the signal as pulse-height-

information instead of signal proportional to collected charge
 routing on chip is well 

possible, also non-neigh-      
bour sub-pixels could         
be combined and more      
than one combination is 
possible
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Pixels: bonding?

 Only reason not to use AC coupling with pixel sensors up to now 
was small coupling capacitance in association with low signal
 amplification possible, hence AC transmission not a problem at all
 variations in glue thickness can be handled by tuning procedures and 

offine corrections if necessary
 avoids costly bump-bonding
 no thermal bowing during refow
 glue layer thicknesses <10 µm    

were achieved across 2x2cm
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Strips

 Easiest idea would be 
to simply sum all pixels 
within a virtual strip

 Hit position along the 
strip can be again 
encoded by pulse 
height for analogue 
readout chips (e.g. 
Beetle)

Comparator or ADC

Readout ASIC (such as ABCN) Strip sensor

StripCSA

Wire-bonds

Comparator or ADC

Readout ASIC (such as ABCN) CMOS sensorPixels

CSA

Wire-bonds



C
M

O
S

-b
as

ed
 s

en
so

rs
C

M
O

S
-b

as
ed

 s
en

so
rs

Daniel MuenstermannDaniel Muenstermann
Strips

 Signals are digital so 
multiple connections 
are possible, e.g.
 “crossed strips”
 strips with double 

length but only half 
the pitch in r-phi

 Multiple 
combinations to 
resolve ambiguities 
– pixel precision 
with only ~4N 
channels instead of 
N2

Comparator or ADC

Readout ASIC (such as ABCN) CMOS sensorPixels

CSA

Wire-bonds

 Drawbacks:
 number of wirebonds is still high
 hit efficiency is lower than the ORed 

combination of two full sensor layers
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Strips: Possible Improvements
 increase signal-to-threshold, e.g. by going to high-resistive substrates
 use a digital encoding scheme to “concentrate”/zero-suppress data 

already on the “sensor”:
 each pixels CSA has a dedicated line to the periphery
 low-time-walk comparators implemented at periphery (less crosstalk)
 digital encoder block reduces number of wirebonds by a large factor (LVDS 

communication with 160 to 320 MBit/s should be possible)
 Digital readout ASIC mainly responsible for trigger handling and data storage

➔ less power, less material than “true” pixels, but with pixel-resolution

Digital Readout ASIC („ACDC“) CMOS sensorPixels

Comparator

Comparator

Comparator

Comparator

Comparator

Comparator

Comparator

Comparator

D
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Reticule size/stitching

 Sensor size is currently limited by reticule size of ~2x2 cm
 however, the yield should be good (very simple circuit, very few 

“central” parts) so it might be interesting to cut large arrays of sensors 
from a wafer and connect individual reticules by 
 wire-bonding
 post-processing (one metal layer, large feature size)

 There are HV-CMOS processes/foundries which allow for stitching
 Very slim dicing streets
 Gaps between 1-chip 

modules could be   
rather narrow
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HV2FEI4

 A combined active strip/pixel sensor was designed and produced
 strips compatible with ATLAS ABCN and LHCb/Alibava Beetle
 pixels match new ATLAS FE-I4 readout chip
 capacitive coupling
 bump-bonding possible

 Structure
 6 sub-pixels form basic element
 each 33 x 125 µm
 connect to 2 FE-I4 pads
 form a 100 µm pitch strip

 small fill factor – future 
options:
 more circuits possible
 smaller sub-pixels

Comparator

Amplifier

Tune DAC

33 µm
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HV2FEI4

 Chip size: 2.2mm x 4.4mm
 Pixel matrix: 60x24 (sub-)pixels of 33 µm x 125 µm
 21 IO pads at the lower side for CCPD operation
 40 strip-readout pads (100 µm pitch) at the lower 

side and 22 IO pads at the upper side for (virtual) 
strip operation

 On chip bias DACs

 Pixels contain charge sensitive amplifier, comparator 
and tune DAC

 Configuration via FPGA or µC: 4 CMOS lines (1.8V)

3 possible operation modes

 standalone on test PCB
 strip-like operation 
 pixel (FE-I4) readout

Strip pads

IO pads for CCPD operation

IO pads for strip operation

Pixel matrix

4.
4m

m
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HV2FEI4: characterisation

 standalone, using monitor output
 MPW for 90Sr at 60V: ~1900 e-

 would mean more than 20µm active 
depth? Diffusion? Unexpected field?
→ try eTCT

 corresponds to 900mV injection

Fe-55 peak corresponds to 6 us

1660e

Sr-90 MPW corresponds to 7  us

1900 e

Sr-90 MPW corresponds to ~ 900mV injection amplitude

800mV corresponds to 6 us

Testpulse vs. ToT

I. Peric
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HV2FEI4: irradiation

 Irradiations at CERN/PS, with reactor neutrons and with x-rays
 on special PCB allowing for remote operation, HV2FEI4 powered and read-

out during irradiation

CCPD9 irradiated at 80 MRadun-irradiated device

Fe-55  spectrum

Sr-90 spectrum

Sr-90 spectrum

~1660e

ToT two times smaller

clear decrease of the ToT amplitude

1e15 n
eq

/cm2 n-irradiated 
sample; 60V bias, +5˚C, 
MPV at ~1200 e-

I. Peric

S. Feigl
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HV2FEI4: irradiation

 First irradiations conducted at CERN/PS and with an x-ray tube 
 on special PCB allowing for remote operation, HV2FEI4 powered and read-

out during irradiation

 clear radiation effects seen after proton and x-ray irradiation
 drop in amplitude/amplification
 also seen with test pulser input → electronics effect, rad-soft design

CPPM Marseille
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Rad-hardness: consequences

 deliberately chose “standard” design to see how far it would get
 not far enough... → “harden” design by guard rings, circular transistors, …

 HV2FEI4_v2 contains “fully” rad-hard design at the cost of higher noise

A

D

CCPD bus

Strip bus

4-bit DAC

(CR filter)

Programmable currentG

G

In<0:3>
RW

SFOut

Cap. Injection

Amplifier

Filter

Comparator Output stage

CCPD electrode

BL

Th

Circular devices
Circular devices

Ampli output

Monitor output

CLKC

SRin

SrOut

Sr-90 event CPPM Marseille
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HV2FEI4_v2

 Circuits generally optimised for 
rad-hardness, but 2 different 
designs tested:
 “normal pixels”: mainly added 

guard rings around transistors
 “rad-hard pixels”: all relevant 

transistors circular 
→ more capacitance, lower 
gain at identical settings

 More measurements:
 Sr-90 at 30V now at ~1400e

Sr90@30V:
1400 e

Fe55:
1660 e

CPPM Marseille
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HV2FEI4_v2

 Noise inferred from threshold scan, now 
around 75e 

 Threshold tuning implemented, threshold 
dispersion sigma ~25e

 Fundamentally, the treshold is required to be 
lower than low energy end of the MIP landau
 usually MPW/2 is specified
 looks promising (achieved thresholds of around 

400-500 e-), but still work to do

Noise distribution

Threshold dispersion
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I. Peric
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HV2FEI4_v2: rad-hardness

 Radiation effects due to dose, could be reproduced by x-ray irradiation
 CERN PS currently down, but x-ray tube available
 very fast irradiation, requires annealing to be mimic realistic dose rate

 Signal amplitude clearly much more stable
 irradiated up to 862 Mrad (!), drop visible after ~500 MRad
 dose rate effect, annealing brings signal back to ~100%

➔ rad-hardness significantly improved, hadron irradiations to follow

CCPD1 irradiated with x-rays
Amplifier gain loss

CCPD2 irradiated with x-rays
Amplifier gain loss
Rad hard pixels

862 Mrad

862 Mrad

862 Mrad
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Annealing steps: 
2h 70C

10 days 
annealing

CPPM Marseille
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HV2FEI4: strip readout

 Beetle/Alibava readout had issues 
with noise/common mode pickup

 configuration worked, “strips” could 
be switched on/off

 however, position-encoding works:
 monitor output on scope
 same principle on strip readout pads

 Supply PCB design changed
 threshold now at reasonable values

Row 0 Row 12 Row 23
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HV2FEI4_v2: strip performance

 First measurements again using an 
oscilloscope

 Fe-55 source illuminating a wire
 shadow ~visible in pulse heights
 can be decoded to give a pixel hitmap 

using only strip information
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I. Peric
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HV2FEI4: Pixel readout

 Several HV2FEI4s glued to FE-I4A and FE-I4B
 HV2FEI4 wirebonds done through hole in PCB
 could be bumps or TSVs later
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HV2FEI4: Pixel readout

 First measurements:
 FE-I4A (w/ bumps) sees HV2FEI4 being glued to it
 Physics (22Na source) is seen by FE-I4B (w/o bumps)
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HV2FEI4: Pixel readout

 ToT encoding:
 3 sub-pixels clearly distinguishable
→ sub-pixel encoding works!

 to do: dynamic range matching, array tuning

Sub-Pixel 1

Sub-Pixel 2

Sub-Pixel 3

All on

ToT ToT ToT

ToT
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HV2FEI4: Pixel readout in testbeam

 First data taken at 2013 DESY testbeams
 unirradiated and reactor neutron (JSI) 

irradiated devices: 1e15 neq/cm2
 complex geometry complicates alignment
 non-optimal tunings lead to less efficiency
 tuning procedures quite fresh at time of 

testbeam
 unintentional “skewed” tuning: ~700-1000 e-
 resulting efficiency unirradiated: ~95-80%
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HV2FEI4: Pixel readout in testbeam

 First data taken at 2013 DESY testbeams
 time-walk depending on threshold – low 

threshold → better timing

 irradiated sample shows strong HV-
dependence of efficiency, timing similar

unirradiated

1e15 neq/cm2 
n-irradiated
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Irradiated behaviour: 1e16 neq/cm2

 measurements with scintillator trigger
 makes sure we select MIP-like electrons
 avoids “noise” triggers
 rate rises with HV as expected, but (rate) 

saturation not yet seen → go higher in HV, cool 

 next steps: calibration, cooled operation

 

LVL1 bin
preliminary

preliminary

preliminary

HV

Events/minute

S. Feigl
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Future plans

 Submissions:
 H18_v3
 shared with CLIC, contains Amplifier-only 25x25µm pixels 

and some ATLAS test pixels
 first measurements indicate good noise behaviour in 

particular of CLIC-pixels
 dedicated passive eTCT-diode and test structures, 

measurements being prepared
 H18_v4
 focused on ATLAS-pixel readout, several noise 

improvements, segmented pixels, analogue pixels 
(25x250µm), pulse-width encoding of sub-pixel address 
promising better ToT encoding

 H35_v1
 analogue 40 x 400 µm pixels with traces to the periphery
 discriminator block contains also “constant fraction 

disciminator”-like circuits aiming for improved time-walk
 digital encoding, followed by 320 MBit/s LVDS readout, 

two concurrent hits can be read out 
 several test structures for rad-hardness testing
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Future plans

 More pixel assemblies being put together
 some unirradiated for technology development
 some n-irradiated HV2FEI4_v2 assemblies for testbeam study
 some HV2FEI4_v3 to have a first look at analogue pixels with FE-I4

 USBPix is being modified to enable configuration only with 
USBPix/STControl
 makes implementation of scans much easier
 will probably enable sub-pixel disentanglement for the whole matrix without 

the need for pixel-by-pixel analysis

 further submissions are being discussed
 higher resistivity wafers
 full-size submissions for strips and pixels
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HR-CMOS

 As mentioned, main requirement for drift-based MAPS is a deep n-well
 Higher substrate resistivity would allow for full depletion
 certainly larger initial signal, reduction of depletion depth to be studied
 charge sharing possible again allowing for higher resolution at low fuences

 Several CMOS imager processes available from different foundries
 back-side illumination requires full depletion and thin sensors
 high-resistivity FZ base material available in an industrialised process

 HR-CMOS efforts started at University of Bonn
 several foundries and processes
 some first preliminary results available

Hybrid HV-CMOSHybrid HR-CMOS
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HR-CMOS

 Many different designs possible:
 HV-CMOS like (deep n-well, no triple-well)
 triple-well
 Alice-like

 First prototypes back from ESPROS, see physics
 characterisation, irradiations to follow

T. Hemperek
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L. Gonella, 
T. Obermann
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Case study: Very forward tracking

 Limitation to pseudorapidity of eta = 2.5 inappropriate wrt VBF/VBS
 Design studies ongoing for an extension to eta~4 (phase 2 upgrade)
 physics: Higgs self-coupling, vector boson scattering
 layout: acceptable area increase 
 sensor challenges: mass production, rad-hardness at small radii, square 

pixels/small eta pitch preferred → HV-CMOS?

LoI design extension
Alpine stave design 
extension

pile-up rejection feasible

T. Todorov
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Conclusions

 HV/HR-CMOS processes might yield radiation-hard, low-cost, 
improved-resolution, low-bias-voltage, low-mass sensors

 Process can be used for
 'active' n-in-p sensors (with capacitive coupling)
 drift-based close-to-MAPS chips (digitally encoded strips)

 First prototypes being explored within ATLAS
 First HR-CMOS measurements encouraging 
 results with capacitively coupled HV-CMOS pixel sensors look promising
 “virtual” strip sensors –  

z-position encoding works

 Drift-based CMOS very promising candidate for rad-hard detectors

Row 0 Row 12 Row 23

1e15 n
eq

/cm2 n-
irradiated sample; 
60V bias, +5˚C, MPV 
at ~1200 e-
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Backup slides
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Test beam results: monolithic 

 excellent resolution
 very good S/N ratio
 efficiency limited by readout artifacts:
 column-based readout
 row not active during readout
 data analysis did not correct for this
 very small chip → low statistics

The type 1 chip HVPixelM: 
Simple (4T) integrating pixels 
with pulsed reset and
rolling shutter RO
21x21 µm pixel size

Seed pixel SNR 27, seed 
signal 1200e, cluster 2000e

Spatial resolution: 
sigma=3.8µm, 
telescope resolution of 
2.3 µm not subtracted

Efficiency vs. the in-pixel position of the fitted hit.
Efficiency at TB: ~98% (probably due to a rolling 
shutter effect) I. Peric
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CPPD prototype results

 excellent noise behaviour: stable 
threshold at ~330 electrons

 good performance also after irradiation

CAPPIX/CAPSENSE edgeless CCPD
50x50 µm pixel size Signals and noise of a CAPSENSE 

pixel after 1015n
eq

/cm2

0 500 1000 1500 2000
0.0

0.2

0.4

0.6

0.8

1.0

E
ff
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ie

n
cy

Signal [e]

 Efficiency - window 800ns

Detection efficiency vs. amplitude
Detection of signals above 330e 
possible with >99% efficiency.

I. Peric
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CPPD prototype results

 Irradiation with 23 MeV protons: 1e15 neq/cm2, 150MRad
 FE-55 performance recovers after slight cooling

I. Peric
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