A Smart Memory Design

Concurrent-Processing Memory (CP memory)
By ChengPu Wang, Independent Researcher, USA

Abstract: A novel memory with

» simple processing power at each memory element;

* internal connectivity between memory elements.
 eliminates most streaming activities for data processing
purpose on the data bus;

 general-purposed,;

e easy to use, pin compatible with conventional memory;
» practical for implementation.

Application to Parallel Operations:

» Universal: matching, thresholding, insertion, deletion. ~ 1.
 Local (size M): filtering ~ M, template matching ~ M*2,
modeling ~ single cell exchange count.

» Global (size N): sort, sum. ~ sqrt[N] or Log3[N].

Conventional bus-sharing CPU/Memory Architecture

Advantages of the conventional bus-sharing CPU/Memory Architecture:
. Common and mature.

. Fit our Human logic well.

. Good for serial operations.

Not good for parallel operations, due to bus bottle-neck problems. For
an example, 2D neighborhood averaging:

1. All pixels are streamed into CPU from the memory, multiple times.

2. The neighbors are added inside the CPU serially.

3. The results are streamed back to memory.

. Step 1 and 3 are necessary only due to serial implementation.

. Step 2 may not be the most efficient algorithm.

Desire for parallel operations to be carried out:

. Locally in a smart memory, which is pin-compatible with a conventional

memory.
. Concurrently.

Concurrent Processing Memory

Data Bus

a1 UIr 4

{ Y registerg Prcs§ Y registerg Prcsé)

T

Element Coagotenit

|

Address Bus
s Fﬁiﬂé%lJ\ﬂﬂ@bl@Iél@métrh@&mgm@@@ﬁa@ndwm@ﬂw@ﬂ{adwm@@@ f#s

thedir r’l i _g f; o{i#ﬂegfg’! Fad Ny liy

ERR s . ,
H ;Li-nafﬁ @ SO RSE, f'.' o !

J,J,A f‘“f""jﬁf'w' X T ¥ % H§M9Wé§ﬁg
thes] ?y" Q]éu I%'i? éH{?;' .%{ngarﬁe%%gafé}sﬁnxﬁtg Ite daRdus.

indicati

CP Memory System Architecture

exclusive write bus

concurrent read bus

—

it e

Ll

teadicommand wnie
neighbor alement neighbor
wiite address enahle

|l

teadicommand wrte

neighbor aelament neighbor :}
write address enahle

Y by vy by

[FUYVSSveY!

res enable frorm elements to elements |
WO conuron PR ehcodericounter general decoder
addressicount
wlte tead command | comman iddress
data bus address bus

Element control unit: Encoder/Counter + General Decoder
Enabled: by assigned high address
Pin Compatible: LSB or MSB of the address bus as the CMD pin
Internal cache: kernel (CP memory as co-processor)

Address Logic in the General Decoder

V' N V' N V' N V' N V' N V' N V' N

.0 1 |2 3 |4 |5 6 |7 |8 9 |10 |11 12 |13 |14 15 |16 |17 18 | >
ULl iliiiild

o Carry-pattern Generator: inputs a carry number, activates
corresponding (incremented) outputs, e.g. carry number is 3.

o Parallel Shifter: shift the carry pattern by an input address, e.g. 4.

 All-line Decoder: all lines below an end address are also activated,
e.g. 16

* The two sets of outputs are AND-combined together to activate the
corresponding elements.

Rule 9: All the outputs of a general decoder are activated if they
correspond to the increment of the carry number starting at the input
address and if they are equal to or less than the end address.

Element Instruction Set

Addressing Reqisters: 0th (connected), 1st (operational), etc,

Minimal Instruction Set: a MUX and a comparator in each element

Conditionally execution in respect to the values of its Oth and 1st registers.
Write address.

Copy to its 1st register from any one of: its own registers, the data bus, and
its neighbor’s Oth registers.

Copy its 1st register to any of its own registers, or the data bus.
Reset its 1st register to O or 1.

Enhanced Instruction Set: + an accumulator in each element

Negate its 1st register.

Add to or subtract from its 1st register any one of: its own registers, its
neighbor’s Oth registers, and the data bus.

Perform bit-shift operations to its 1st register using the value of any one of: its
own registers, its neighbor’s Oth registers, and the data bus.

Internal Scaling: only code change is required:;

Combine a number of elements to hold one array item, using carry number;
Divide one element by a number of array items, to save hardware.
Interleave one element by a number of arrays, to save hardware.

Use of Minimal Instruction Set

Insertion, Deletion: ~ 1D
 Buffer is always dynamic
« CP memory can be always closely packed

O O O O O O O O

Matching: u
« to count match: ~1 c o o o o o o O
e to find 1st match: ~1 f

 to enumerate all matches: ~ match count
* to construct histogram ~M, and to estimate/calculate sum.

Find Limit: two binary searches (for upper limit, and then for the maximum).

Sorting: e.g. into small to large 5 4 3 2 2 2 6 1
« direct comparison with neighbors 4 XS \a‘x‘s 2l 2l 1X6
* to end sorting immediately;

* ~1 to sort all once;

» ~ N for simplest algorithm

» ~ sgrt[N] for an improved algorithm.

Use of Enhanced Instruction Set

um: <

2

e parallel sum: ~ M O O
e serial sum: ~N /M

o total: ~ sqrt[N]
CPU-bus:

Template matching: size M

O

v

« ~M read, to all sections: |

=

 ~M sum of diff, for all sections;
<

» ~1 shift to new position;

* ~M repeat for all positions. |
e 1D ~ M2, 2D ~ Mx"2 My"2

=

< |
O O O
@
| >
< |
—

<

O

O

<

Filtering: size M ~ M, e.g. Gaussian (1, 2, 4, 2, 1) = original + (1,1, 1) x 2

Line Detection: no floating math
 concurrent neighborhood counting;

» direct counting at O[deg] and 90[deq];
« atan[My / Mx]. messenger;

» angle resolution ® {(Mx, My)} set;

e concurrent messengers;

1

=

.
=

16

15

14

12

17

Fl

3

i

18

]

a

—

10

13

B

7

(]

=

20

pa

22

23

24

2-step messangers

Connectivity

Use Long range connectivity, to reduce instruction cycle count for global
operations further, e.g. sum:

L og3[N] connection: ~ log3[N]

Connect M-dimension lattice into (M+1)-dimension lattice, e.g. line
detection:
e Concurrent direct neighborhood counting in each plane, e.g. 0-7 and 0-2;

e SIMD pipeline;
; Dnguﬂaldata-+rﬂergedresuh
RIS D S

I l .

0 5 - '
| : 0" filter
0 W

HEHHMQ; :

457 filter

Plw = 4

Parallel Counter

Tx9inputs
P WA S WA S WA S WA S
TI3 Parallel 7r3 Parallel 713 Parallel TI3 Parallel 7r3 Parallel 713 Parallel TI3 Parallel 7r3 Parallel 713 Parallel
Counter Counter Counter Counter Counter Counter Counter Counter Counter
b b b b b b b
. AA ARG A0 AY RO G666 &
Tra Parallel 713 Parallel TI3 Parallel Tra Parallel
C_I:nunt C_Dunter C_nunter C_I:lunter
Na oS | Yy b [ek \adad YL
Tra Parallel TI3 Parallel TI3 Parallel Tra Parallel TI3 Parallel
C_I:lunter C_nunter C_nunter C_I:lunter C_nunter
' v v ¥ |
63/6 Parallel Counter Ci; ; 01/3 CECTS

Carry-pattern Generator

DO=1

D1=1C2!C1CO

D2=1C2C1!CO0+D1=!C2(Cl1l+CO0)(!C1+!CO0)
D3=1C2C1C0+D1=1C2CO0
D4=C2!C1!CO+D2+D1=(C2+C1+CO0)(IC2+!C1)(!C1+!CO0)(IC2+!C0)
D5=C2IC1C0+D1=IC1CO0

D6=C2C1!C0+D3+D2+D1=(C2+!C0) (C1+CO0)
D7=C2C1C0+D1=(1C2+C1)(C2+!C1) CO

0

1

WY

2

Bt

O o—0 -
o

07

Parallel Shifter

R

[=
...-

51

A

53¢

07

DG

D4

4

03

02

O

|

All-line Decoder

F7/=E2E1EO = E2 (E1 EO)
F6=F/+E2E1'EO=E2E1 =E2 (E1)
FS5=F6+E2'E1EO0O =E2E1+E2EO0 =E2(E1+ EO)
F4=F5+E2 |E1 'EQ = E2 = E2 (1)
F3=F4+'E2E1EO=E2+E1EO =E2+ (E1 EOQ)
F2=F3+!E2E1!E0O=E2 +E1 = E2 + (E1)
F1=F2+!'E2'E1EO0O=E2+E1 +EO = E2 + (E1 + EO)
FO=F1+!E2!E1'E0O=1 =E2 + (1)

E0c

E1 o= T { %

Ezo—1=

F7

Discussion:

Other Applications:
 Video driver for animation.
e FFT, Matrix Math.

Instant division:
Using Parallel Counter, All-line Decoder, and Carry-pattern Generator

divident, fram an
all-line decoder value
divigor, from a \L \L \L \L \L N |
carn-pattern generator
0 A

gquotient; count of activated carry outputs remainder; value difference

from a parallel counter from a normal encoder
Acknowledgement:
« Zhen Wang:

* Yingxia Wang:
Contact: cpyx.wang@verizon.net

Summary

:'; Data bus {
registers
+
I e f1‘-| _
hD element control unit
| TTL
:'; Address bus {

Rule 1. Addressable.

Rule 2. Exclusively read and write.

Rule 3. Concurrent activation.

Rule 4. Concurrent read.

Rule 5. Concurrent address write.

Rule 6. Multiple registers.

Rule 7. Neighboring connectivity.

Rule 8. Limited processing power: 5 instructions + 3 instructions.
Rule 9. (input address + n * carry number) < end address.

7.
8.

Improved Sort Algorithm ~ sqrt[N]

Determine the best sorting order: the items to be sorted count
should be less than N / 2.

Use the 1st algorithm until the items to be sorted is less than M in
~ N / M instruction cycles: (2, 5, 4, 2, 2, 3, 1, 6).

Find the 1st position to be sort from left whose left is not larger
than right: (2, 5, 4, 2, 2, 3, 1, 6).

Move the item to the correct position: (1, 2, 5, 4, 2, 2, 3, 6)
Repeat Step 3 and 4.

Find the 1st position to be sort from right whose left is larger than
right: (1, 2, 5, 4, 2, 2, 3, 6).

Insert the left item to the correct position: (1, 2, 5, 2, 2, 3, 4, 6).
Repeat Step6and 7: (1, 2, 2,2, 3,4,5, 6).

Step 2 to 8 takes ~M instruction cycles.
The total instruction cycles count is ~ sqgrt[N].

