Gas detectors for X-rays

(
Overall good energy resolution (<8% @ 5.9keV)
Low cost
Easy to operate (room temperature)
Large detection areas
| Good radiation resistance

-

Gas detectors are based on the conversion of incident radiation in
electric charge which is then converted into an electrical pulse.

Signal amplitude is proportional to the number of electrons produced.
Our attention at GIAN (Nuclear and Atomic Instrumentation Group)

has been mainly drawn to Gas Proportional Scintillation Counters and
Gas Proportional Ionization Counters.



Gas proportional scintillation counter
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Amplification stage: scintillation produced in the deexcitation of electron
impact excited atoms of the medium




Recent investigation in gas detectors

window @ > Bmm - energy resolution degradation

Events off axis (with low solid angle)

exclude these events or compensate intensities.

1) Curved grid (@5,9 keV & = 25mm R from 10,5 to 8%)
2) Mask at photossensor window (@5,9keV @ = 38mm R from 18 to 10%)
3) Digital signal processing (R improves 1% for E,. < 10 keV)



Curved 6Grid Gas Proporcional Scintillation
Counter (compensate intensities)
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Photosensor deposited mask
(compensate intensities)
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Digital signal processing (excluding events)

Signals from a 19°Cd source and corresponding spectrum with
absorption events

a) in the scintillation region

b) in the scintillation/drift region with rise time discrimination
c) in the scintillation/drift region with long rise times (>4us)

P.C.P.S.Simoes, J.M.F.dos Santos, C.A.N.Conde, Nucl.Intr,&Meth.A 422(1999)341



Digital signal processing (excluding events)

Al K-lines
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Recent investigation in gas detectors

Monte Carlo simulation study

1) Energy non-linearity at absorption edges
2) Fano factor and w-value discontinuities at absorption edges



Break in energy linearity in Xe filled detectors:
Monte Carlo simulated and experimental results
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Break in energy linearity in Xe filled detectors:
Monte Carlo simulated and experimental results
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Recent investigation in gas detectors

Pulse height distortion caused by electron loss to the entrance
window

low photon absorption depth at specific photon energies

Lighter absorption media - e.g. Xe-Ne mixtures to increase
absorption depth

Monte Carlo simulation study of Xe-Ne mixtures



Photon mean free path in Xe, Ne and Xe-Ne
mixtures at atmospheric pressure
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GPSC experimental and Monte Carlo results
with Xe-Ne mixtures
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GPSC experimental and Monte Carlo results
with Xe-Ne mixtures

Si0; excited with alpha particles
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GPSC experimental results
with Xe-Ne mixtures

Andalusite (Al;SiOs)

— excited with 2**Cm source
—— excited with °°Fe source
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o Xrays, E
o Nner Ny in mixture

X-ray absorption
flowchart in Xe-Ne
oo mixtures
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GPSC experimental and Monte Carlo study
of Xe-Ne mixtures
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GPSC experimental and Monte Carlo study
of Xe-Ne mixtures
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On-going investigation in GPSC

The PMT makes the GPSC bulky, somewhat fragile and more
expensive

Find an alternative to the PMT

CsI covered microstructures in different gas atmospheres (Monte
Carlo simulation and experimental studies)
Photo-photomultiplier (simulation and experimental work)



Gas proportional ionization counter

cathode

Amplification stage : charge multiplication close to the anode



Recent investigation in gas detectors

improve energy resolution

- Use of Penning mixtures to increase the number of ion pairs
- Precise definition of the multiplication volume



experimental results for Xe-Ne

mixtures
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Precise definition of the multiplication volume:
the gridded GPIC
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Experimental results with gridded GPIC
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Other on-going fields of research at GIAN

Effect of the polarization of absorbed X-rays on the final profile
of the electron cloud

Study of Astrophysical polarized y-rays with pixelated CZT
detectors (with ESA & Italian group in a consortium)

Study of solar x-ray physics in satellite-born detectors (with China)

Exotic atoms (muonic hydrogen Lamb shift measurements) (with PSI
CH)

Experimental measurements and Monte Carlo calculation of
transport parameters of noble gas ions (Ar+, Ar++, ... in Ar)
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Monte Carlo calculated effect of the polarization
of X-rays on the final profile of the electron cloud

XY plane, 50 keV. Unpol. X—rays




Transmission of photoelectrons emitted from a CsI
photocathode into pure and mixed noble gases
[Xe, Ar, Ne] and their mixtures with CF4 or CH4
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F,(&,1) is the photon emission from a continuous VUV Hg(Ar) lamp.
The 6,(¢,) describes the initial energies of the photoe- emitted from
CsI when irradiated with F,(£,,) photons.



Irradiation of CsI with continuous VUV Hg(Ar) lamp
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Radiation interaction and electron transport

photoelectric effect elastic collision
Photon interaction  Compton effect Electron interaction{ excitation
Rayleigh scattering ionization
Photoelectric effect Radiative decay Auger/Coster-Kronig

(Excited ion) effect



Electron production - primary electron cloud
formation

Through a sequence of the processes referred above the energy of the incident
photon is converted intfoa number of electrons whose energies are below the
ionization porencial of the abosrbing medium => the primary electron cloud

The number N of electron produced per incident X-ray photon varies.

external (associated electronics, drifts)
Causes

| internal (statistical fluctuations due to the discrete nature of the signal)

Internal or intrinsic causes set a limit to the detector performance

This limit is know as intrinsic energy resolution.



Energy Resolution

Best achieved value for 5.9 keV - ~8%

RGPIC _2 355 (F;f)w Best achieved value for 5.9 keV - 13%
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Effect of the polarization of X-rays
on the angular distribution of photoelectrons

Angular differential photoionization cross-section
for the emission of s-photoelectrons (3=2)
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GPIC experimental and Monte Carlo results
for Xe-Ne mixtures
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Digital signal processing (excluding events)

109Cd source 22.1keV events

a) absorbed in the drift region

b) whose “"components” arrive at the
scintillation region in separate times

c) absorbed near the detector walls.
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