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Solar neutrinos over full (pp) spectrum
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* |In particular, a precision, real-time measurement of the pp neutrino
spectrum down to the keV range

* Precision measurements of oscillation effect matter/vacuum dominated
regimes

« SSM uncertainty on the pp flux ~ 1% — aim for “1%” measurement

* Insights into the inner working of the Sun. Comparison of the neutrino
luminosity to the photon luminosity should be =1.



Physics Motivation cont'd

E, is the visible track energy

E, = 10-30 MeV,; isolated and “upward-going” electrons; presumably
from supernovae. Little background, a single event, with v direction
measured to ~1 degree, is meaningful

E,<40 KeV nuclear recoil from WIMP (Dark Matter), range very

different from electron and spectrum depends on WIMP mass —
similar technique used in the DRIFT experiment



Detection via elastic scattering
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Elastic scattering: measure energy and angle of recoil electrons to
determine incident neutrino energy

Most of scattered electrons are < 100 keV; flavor dependence < 50 keV

A few hundred scatters per ton per year — O(25) ton-year exposure
needed

Cross-sections for v, and v, scattering down by a factor of ~ 4

Higher energy neutrinos “for free”



Detector requirements

~ O(10) tons fiducial mass
“Condensed” phase target medium to give reasonable volume for this mass

Excellent (sub-mm) spatial resolution for low energy tracks — range, electron
ID, plus pointing, at least for higher energy recoils

To maintain this resolution if drifting over long distances, need very low
diffusion

Good energy resolution
Very high purity — long drifts, and low background from medium

Goal of reaching keV level implies need for some gain, presumably in gas
phase

(Self-) shielding
Excellent background rejection, in particular of y’s via Compton cluster ID

|deally, a slow drift to ease readout of large number of volumes — feasible in
principle in low-background environment underground



Detection medium: helium/neon

In liquid phase, these low-Z materials offer good compromise between
volume-to-mass consideration and desire to minimize multiple scattering

Very low boiling points — excellent purity, since impurities freeze out

In the case of thermal charge carriers, diffusion is proportional to VT, so
low temperature is very advantageous

In liquid phase and in dense, cold gas, electrons are localized in nano-
scale electron bubbles

« Bubble size leads to low mobilities, of order 10-3 -102 cm2sec'V-1,
and slow drifts

» Electron bubbles remain thermal for E fields up to ~ 40 kV/cm, and
field-ionize around 400 kV/cm

* |In two-phase system, bubbles are trapped at the liquid-vapor
interface, before tunneling out on a timescale dependent on T and E



Experimental approach: an electron
bubble TPC

For a homogeneous medium, one dimension must use a drift — Time
Projection technique

Slow drift (e.g. 10 cm/sec) of electron bubbles in these fluids allows high
resolution in drift direction with moderate data rate

Signals “stored” in detector volume, and read out one plane at a time in
drift direction, at a rate of 10’s-100’s Hz

Zero suppression in low-rate, low-background environment gives further
large reduction in data rate

Depth measurement from diffusion broadening of track width

Need gain if we are to access keV energies — we have chosen Gas
Electron Multipliers (GEMs) as the most promising avenue for our R&D
program

Avalanche process in the GEMs offers both charge and light as potential
bases for readout schemes — we are focusing on optical readout



An Event:

1. Neutrino scatters on a target electron

. Electron ionizes medium

. lonized electrons drift along Efield

2
3
4. Ebubbles form
5

. Ebubbles drift to readout plar\1)e afd
one plane at a time
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Backgrounds

No radioactive isotopes in detector medium

No solubility of heavier molecules in LHe, whereas H, dissolves in LNe
(useful!) — impurities freeze out

Micropore filters shown to be effective in removing “dust”

Good energy and spatial resolution give powerful capability for recognizing
“Compton clusters” of several scattered electrons from external y’s in the
MeV range

« Each secondary photon from successive scatters has a lower energy,
and a decreased absorption length, leading to events with a number of
scattering vertices easily recognized as a Compton cluster

» Calculations indicate rejection factors of order 100’s — 1000’s, depending
on the source and the fiducial cut — ongoing studies

* Irreducible background from MeV y’s with (improbable) single scatters in
the keV range in fiducial volume

Self-shielding, in LNe, effective for lower energy y’s

3D-reconstruction defines fiducial volume — track width from diffusion gives
reasonable depth measurement, in particular at top, where backgrounds from
the readout plane can be cut



Recent results from Cryogenic Test
Facility at BNL
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» Field cage
* Windows, transmitting from IR to UV

« Various ionizing particle sources
» Operation with LHe, LNe, or other fluids of interest



Build a Cryogenic Fluid Tracker

|

Single Phase Liquid

No gain (charge/light) in Liquid

* New detector technologies

|

2-Phase detector



Low-mobility carriers observed in liquids
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 Measured drift velocities consistent with known electron bubble
mobilities

» Long lifetimes! Excellent purity achieved easily



Surface behavior and trapping times

« Experimentally:

» Establish “steady-state” with ionization charges from an alpha source
being drifted to the surface, and ejected into vapor phase

» Measured current is related to surface trapping time:
Helium Neon
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Gain from GEMSs in vapor
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» Modest gain in He vapor; large gain (> 104) in Ne vapor with addition of fraction of
H, — operate at temperatures where finite H, vapor pressure

« With hydrogen doping, both He and Ne give gains > 104 in 3-GEM configuration

« Little true temperature effect - impurities play important role at high temperatures



Purity & the addition of H, to He
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Build a Cryogenic Fluid Tracker
No gain

(charge/light) » 2-phase
in Liquid / \
e

* New detector technologies

LH LNe
No gain < 4K Gain in Ne+H, ~10* @30K
trapping time dynamics
1 _phase ;raCF())Fl)Jilr(]jgwe manipulate this
(Su pe rcr|t|Ca|) « Optical/electrical gating

of charge

Dense Gas

* Remove difficulty of surface

* Possibility to use He+H, — retain
complementarity with Ne

* Possibility to tune density very
attractive

* Recombination losses are lower



GEM-optical readout concept

« Could use 2D array of amplifiers to detect charge, however
electronics with good performance at low temp. are not readily
accessible in standard silicon processes

« Avalanche produces light as well as charge - triplet excitation
produces significant visible (plus IR?) component
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(back-illuminated, not avalanches!)

« Calculations indicate transport efficiency of a few %, making use of
lenslets matched to GEM holes

« Use commercial CCD cameras, sitting at ~ 50K
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 Uncollimated alpha source, ~ 10 kHz rate, in Ne + 0.01% H, at 78K
(charge gain ~ 10)

60 sec exposure (~ 600k alphas!):

* Non-optimal geometry, with ionization from many alphas occupying only a few GEM
holes, limits available gain in this configuration



Light yield and spectrum

« Initially, studies with alpha tracks in neon-based mixtures at 78K

» Light reqgistered with PMT.
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 Highest charge gain achieved in Ne + 0.1% H,

» Highest (relative) light yield for Ne + 0.01% H, — can obtain visible light yield from
GEM holes of =2 1 photon per avalanche electron

* Much lower visible yield from helium-based mixtures (need to measure IR)



2pe/ADC Count

CCD Gas measurements:
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* In this configuration charge gain limited to O(10) before single damaging
discharge occurs



» Use narrow band filters to look at spectrum of visible light using CCD.
« CCD QE~10% at 850nm
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* H, does not influence emission spectrum in Ne.

 Harder to get light in He even with the addition of H..
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o tracks:

Collimator reduced source rate & collimated as coming out at 35deg to the

plane of the cathode
« Rate ~ O(5-10)Hz
Charge gain >104 achieved in a single GEM, due to reduction in charge

density although in a single GEM
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Pedesal~3565

* No alignment of GEM holes on multiple GEM structures is performed

« Single vs Triple GEM did not reduce the width of the tracks.
* Track width dominated by couloumb spread of the charge.
* No localization of electrons in these conditions so diffusion is not thermally
driven.




Summary of R&D results to date

Localized carriers observed in LHe, LNe — long drift times (at least 200
msec) measured, confirming high purity of fluids

Measurements of surface transfer show suitable trapping times for LHe, but
inconveniently long times for LNe, at least at 27K — higher temperatures, or
single-phase medium if Ne

Large, stable gains, up to 104, available in GEM structures, with small
fraction (0.01 — 0.1%) of H, — operating temperatures above ~ 10K —
single-phase medium if He

Can achieve visible photon yields of > 1 photon per avalanche electron from
GEM holes in neon-based gas mixtures

Visible light yields from helium-based mixtures lower — need to measure IR
yield (normal helium discharge has a bright line at ~ 1 um)

Successful initial CCD imaging of alpha tracks at cryogenic temperatures —
individual track images very soon, followed by verification with electron
tracks at T ~ 30-40K



Baseline: supercritical neon

* Initial ideas based on two-phase detector:

« Insufficient gain in vapor phase for He

» Trapping time at surface too long for Ne at 1 Bar
» Single-phase supercritical fluid:

» Electrons are still localized and thermal

* Removes difficulties of surface

 Ability to tune density very attractive

» Recombination losses lower

» Supercritical neon:

» Density ~ 0.48 g/cc (T ~ 45K, P ~ 26 bar) — electron mobility ~ 6 x 10-2
cm2sec V-1

» Recoil track lengths for pp neutrinos up to ~ 2 mm

« Keep option to run with supercritical helium: longer/straighter tracks,
pointing for lower energies, systematic checks; but smaller target mass
and reduced self-shielding



Design of cubic-meter prototype
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+ Goals:
« Detect neutrino interactions
» Measure backgrounds/self-shielding performance
« Develop analysis techniques

« Explore scaling issues



Radial dependence of Irreducible Backgrounds from single compton
scatters from 2.614MeV y from the Th232 decay chain
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Conclusion

« Good progress in measuring fundamental parameters for an electron bubble
TPC detector

* Next steps:
« Measurements and imaging in supercritical Ne (He)
» Supercritical Ne will require an upgrade to existing infrastructure

 But existing Test Chamber can demonstrate ebubble behavior in GEM
avalanche in critical density He

» Continued R&D on optical readout based on lenslets and CCD camera —
goal is full 3D track reconstruction with electron bubbles/slow drift

» Ongoing development of the cubic-meter prototype — small enough to be
transportable, with test phase at BNL before move to an underground site

« Techniques we are developing may be useful for a range of other applications
requiring measurement (tracking) of very small signals in large volume detectors

« Dark Matter
» Coherent neutrino scattering

* Double Beta decay
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