
PCI SDK Programmer’s Reference Manual
Release 1.2, initial publishing December 11, 1997.

Copyright © 1997, PLX Technology, Inc.. All rights reserved.

This document contains proprietary and confidential information of PLX Technology Inc. (PLX).
The contents of this document may not be copied nor duplicated in any form, in whole or in part,
without prior written consent from PLX.

PLX provides the information and data included in this document for your benefit, but it is not
possible for us to entirely verify and test all of this information in all circumstances, particularly
information relating to non-PLX manufactured products. PLX makes no warranties or
representations relating to the quality, content or adequacy of this information. Every effort has
been made to ensure the accuracy of this manual, however, PLX assumes no responsibility for
any errors or omissions in this document. PLX shall not be liable for any errors or for incidental
or consequential damages in connection with the furnishing, performance, or use of this manual
or the examples herein. PLX assumes no responsibility for any damage or loss resulting from the
use of this manual; for any loss or claims by third parties which may arise through the use of this
SDK; for any loss or claims by third parties which may arise through the use of this SDK; and for
any damage or loss caused by deletion of data as a result of malfunction or repair. The
information in this document is subject to change without notice.

Product and Company names are trademarks or registered trademarks of their respective owners.

Document number: sdkprog.doc

i

Table of Contents

1. INTRODUCTION 1-1
1.1 About This Manual .. 1-1

1.2 Where To Go From Here... 1-1

2. GENERAL INFORMATION 2-1
2.1 Introduction ... 2-1

2.2 Conventions ... 2-1

2.2.1 Windows Programming Conventions ... 2-1

2.3 Terminology .. 2-1

2.4 Development Requirements... 2-1

3. SOFTWARE DESIGN 3-1
3.1 Overview.. 3-1

3.2 Directory Structure .. 3-1

3.3 PLX API .. 3-3

3.3.1 Introduction... 3-3

3.3.2 API Design.. 3-3

3.3.2.1 Win32 Dynamic Link Library .. 3-3

3.3.2.2 IOP Static Libraries .. 3-4

3.3.2.3 Design Details... 3-4

3.3.2.4 PLX API Assumptions ... 3-5

3.3.3 Function Quick Reference List ... 3-5

3.3.4 API Functions Details ... 3-11

Register Access Functions... 3-13

PlxRegisterRead .. 3-13

PlxRegisterWrite ... 3-14

PlxReadRegister .. 3-15

PlxWriteRegister ... 3-16

PlxReadMailbox.. 3-17

PlxWriteMailbox... 3-18

PlxReadDoorbell ... 3-19

PlxWriteDoorbell .. 3-20

PlxReadAllRegisters ... 3-21

PlxReadAllLocalRegisters .. 3-22

PlxReadAllRuntimeRegisters.. 3-23

ii

PlxReadAllDmaRegisters.. 3-24

PlxReadAllConfigRegisters .. 3-25

PlxReadAllMessagingRegisters .. 3-26

PCI 9080 Configuration Functions.. 3-27

PlxConfigLocalArbitration.. 3-27

PlxConfigLocalSpace.. 3-29

PlxConfigBigEndian ... 3-32

PlxConfigBigEndianByteLane.. 3-33

PlxConfigLittleEndian... 3-34

PlxReloadConfigurationRegisters ... 3-35

PlxConfigVendorDeviceId.. 3-36

PlxConfigClassCode ... 3-37

PlxInitDone ... 3-38

PlxSetUserOut... 3-39

PlxClearUserOut ... 3-40

PlxGetBarRange.. 3-41

PlxSetDirectSlaveRemap .. 3-42

PlxSetDirectSlaveRange ... 3-44

PlxSetDirectMasterRemap .. 3-46

PlxSetDirectMasterBaseAddress... 3-48

DMA Functions ... 3-50

PlxSetupDmaTransfer ... 3-50

PlxDisableDmaChannel .. 3-53

PlxStartDmaChannel ... 3-54

PlxStopDmaChannel ... 3-55

PlxAbortDmaChannel ... 3-57

PlxClearDmaChannelIntr .. 3-59

PlxQueryDmaChannelDone.. 3-60

PlxDmaChannelAvailable ... 3-61

Messaging Functions ... 3-62

PlxReadInboundPort ... 3-62

PlxWriteInboundPort... 3-63

PlxReadOutboundPort... 3-64

iii

PlxWriteOutboundPort.. 3-65

PlxGetInboundFreeMfa... 3-66

PlxPutInboundPostMfa ... 3-67

PlxInitMessageFifos.. 3-68

Bus Memory and I/O Functions .. 3-69

PlxDirectSlaveReadChar... 3-69

PlxDirectSlaveWriteChar.. 3-71

PlxDirectSlaveReadShort.. 3-73

PlxDirectSlaveWriteShort ... 3-75

PlxDirectSlaveReadLong .. 3-77

PlxDirectSlaveWriteLong ... 3-79

PlxDirectSlaveRemapReadChar ... 3-81

PlxDirectSlaveRemapWriteChar... 3-83

PlxDirectSlaveRemapReadShort... 3-85

PlxDirectSlaveRemapWriteShort.. 3-87

PlxDirectSlaveRemapReadLong... 3-89

PlxDirectSlaveRemapWriteLong.. 3-91

PlxDirectMasterReadChar... 3-93

PlxDirectMasterWriteChar.. 3-94

PlxDirectMasterReadShort.. 3-95

PlxDirectMasterWriteShort... 3-96

PlxDirectMasterReadLong.. 3-97

PlxDirectMasterWriteLong... 3-98

PlxDirectMasterRemapReadChar ... 3-99

PlxDirectMasterRemapWriteChar .. 3-100

PlxDirectMasterRemapReadShort .. 3-101

PlxDirectMasterRemapWriteShort ... 3-102

PlxDirectMasterRemapReadLong... 3-103

PlxDirectMasterRemapWriteLong.. 3-104

PlxDirectPortSlaveReadChar .. 3-105

PlxDirectPortSlaveWriteChar ... 3-106

PlxDirectPortSlaveReadShort ... 3-107

PlxDirectPortSlaveWriteShort .. 3-108

iv

PlxDirectPortSlaveReadLong ... 3-109

PlxDirectPortSlaveWriteLong... 3-110

PlxDirectPortMasterReadChar.. 3-111

PlxDirectPortMasterWriteChar ... 3-112

PlxDirectPortMasterReadShort ... 3-113

PlxDirectPortMasterWriteShort .. 3-114

PlxDirectPortMasterReadLong ... 3-115

PlxDirectPortMasterWriteLong .. 3-116

EEPROM Access Functions .. 3-117

PlxReadEepromBuffer .. 3-117

PlxWriteEepromBuffer ... 3-118

Windows and IOP Device Driver Functions ... 3-119

PlxInitaializeAPI ... 3-119

PlxTerminateAPI... 3-120

PCI Device Functions.. 3-121

PlxReadConfigRegister ... 3-121

PlxWriteConfigRegister .. 3-122

PlxSelectPciDevice ... 3-123

PlxFindPciDevice.. 3-125

PlxGetBaseAddress... 3-127

9080RDK-401, 9080RDK-960 and 9080RDK-860 Support Functions 3-130

PlxResetEmbedded.. 3-130

PlxDownloadInit ... 3-131

PlxDownloadData ... 3-132

PlxStartEmbedded... 3-133

Miscellaneous Functions ... 3-135

PlxPrint.. 3-135

PlxSetIntrWait ... 3-136

PlxIsIntrActive .. 3-137

3.3.5 API Data Structures .. 3-139

IOCTL Data Structure... 3-141

Virtual Addresses Structure... 3-143

DMA Data Structure And DMA Chain Structure ... 3-145

Buffer Data Structure .. 3-147

v

Device Location Structure... 3-148

Local Bus Descriptor Structure ... 3-149

Local Space Enum Data Type ... 3-151

PCI Space Enum Data Type.. 3-152

PLX Operating System Enum Data Type ... 3-153

3.4 Windows Device Driver Design.. 3-154

3.4.1 Introduction... 3-154

3.4.2 Device Driver File Layout .. 3-154

3.4.2.1 Functions Contained Within PLXxx.C ... 3-155

3.4.2.2 Functions Contained Within INTR.C .. 3-156

3.4.2.3 Functions Contained Within PLXPCI.C ... 3-157

3.4.2.4 Functions Contained Within SERVICE.C .. 3-158

3.4.3 Windows Device Driver Design and Implementation .. 3-158

3.4.3.1 Device Driver Initialization .. 3-158

3.4.3.2 Device Driver Termination... 3-163

3.4.4 Device Driver Structures... 3-164

The Device Extension Structure.. 3-165

3.4.5 PLX Device Driver Build Environment.. 3-171

3.4.5.1 The WinNT Device Driver ... 3-171

3.4.5.2 The Win95 Device Driver .. 3-172

3.5 PLX Loader Application.. 3-173

3.5.1 Introduction... 3-173

3.5.2 Using PLX Loader .. 3-173

3.5.3 Design ... 3-173

3.5.3.1 PlxLdr Program Algorithm:.. 3-173

3.6 IOP Applications ... 3-174

3.6.1 Introduction... 3-174

3.6.2 Design of the PCI 9080RDK-401 IOP application ... 3-174

3.6.2.1 Functions Contained Within IOPMAIN.C .. 3-174

3.6.2.2 Functions Contained Within EMBED.C... 3-175

3.6.2.3 Functions Contained Within PLXAPI.C ... 3-176

3.6.2.4 Functions Contained Within SERVICE.C .. 3-176

3.6.2.5 Functions Contained Within EMBEDINT.C.. 3-176

3.6.3 Design of the PCI 9080RDK-960 IOP application ... 3-176

3.6.3.1 Functions Contained Within IOPMAIN.C .. 3-177

3.6.3.2 Functions Contained Within EMBED.C... 3-178

3.6.3.3 Functions Contained Within PLXAPI.C ... 3-178

vi

3.6.3.4 Functions Contained Within SERVICE.C .. 3-178

3.6.3.5 Functions Contained Within EMBEDINT.C.. 3-178

3.6.3.6 Functions Contained Within 16552.C ... 3-178

3.6.3.7 Functions Contained Within CHAR_IO.C .. 3-179

3.6.3.8 Functions Contained Within INT960.C ... 3-179

3.6.3.9 Functions Contained Within INTS9080.C .. 3-180

3.6.3.10 Functions Contained Within WIN32SUP.C.. 3-180

3.6.4 Microprocessor Initialization .. 3-180

3.6.5 Design of the Generic IOP application ... 3-182

3.7 Messaging FIFO .. 3-182

4. CREATING APPLICATIONS USING THE PLX API 4-1
4.1 Win32 Applications... 4-1

4.1.1 Creating A MS Developer’s Studio Workspace File .. 4-1

4.1.2 Hello World Design Skeleton ... 4-2

4.2 9080RDK Applications ... 4-5

5. COMMON PLX QUESTIONS 5-1

6. RECOMMENDATIONS FOR CUSTOM DESIGN 6-1

vii

List of Figures
Figure 3.1 Software Design .. 3-1

Figure 3.2 Software layout diagram ...3-3

List of Tables
Table 3-1 Register Access Functions..3-6

Table 3-2 PCI 9080 Configuration Functions... 3-7

Table 3-3 DMA Functions.. 3-8

Table 3-4 Messaging Functions.. 3-8

Table 3-5 Bus Memory and I/O Functions ... 3-10

Table 3-6 Serial EEPROM Functions... 3-10

Table 3-7 API Support Functions ... 3-10

Table 3-8 PCI Device Functions...3-10

Table 3-9 9080RDK-401, 9080RDK-960 and 9080RDK-860 Support Functions..................... 3-11

Table 3-10 Miscellaneous Functions .. 3-11

Table 3-11 API Data Structures.. 3-139

Table 3-12 The Device Driver Initialization Sequence .. 3-162

Table 3-13 The device driver termination sequence... 3-163

viii

PLX SOFTWARE LICENSE AGREEMENT

THIS SOFTWARE DESIGN KIT INCLUDES PLX SOFTWARE THAT IS LICENSED TO YOU UNDER SPECIFIC TERMS
AND CONDITIONS. CAREFULLY READ THE TERMS AND CONDITIONS PRIOR TO USING THIS DESIGN KIT. BY
OPENING THIS PACKAGE OR INITIAL USE OF THIS SOFTWARE DESIGN KIT INDICATES YOUR ACCEPTANCE OF
THE TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD RETURN THE ENTIRE
SOFTWARE DESIGN KIT TO PLX.

LICENSE Copyright (c) 1997 PLX Technology, Inc.

This PLX Software License agreement is a legal agreement between you and PLX Technology, Inc. for the PLX Software
Design Kit(“SOFTWARE PRODUCT”) which is provided on the enclosed PLX diskettes, or may be recorded on other media
included in this Software Design Kit. PLX Technology owns this SOFTWARE PRODUCT. The SOFTWARE PRODUCT is
protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties, and is
licensed, not sold. If you are a rightful possessor of the Software Design Kit, PLX grants you a license to use the SOFTWARE
PRODUCT as part of or in conjunction with a PLX chip on a per project basis. PLX grants this permission provided that the
above copyright notice appears in all copies and derivatives of the SOFTWARE PRODUCT. Use of any supplied runtime
object modules or derivatives from the included source code in any product without a PLX Technology, Inc. chip is strictly
prohibited. You obtain no rights other than those granted to you under this license. You may copy the SOFTWARE
PRODUCT for backup or archival purposes. You are not authorized to use, merge, copy, display, adapt, modify, execute,
distribute or transfer, reverse assemble, reverse compile, decode, or translate the SOFTWARE PRODUCT except to the
extent permitted by law.

GENERAL

If you do not agree to the terms and conditions of this PLX Software License Agreement, do not install or use the Software Design Kit
and promptly return the entire unused SOFTWARE PRODUCT to PLX Technology, Inc. You may terminate your license at any time.
PLX Technology may terminate your license if you fail to comply with the terms and conditions of this License Agreement. In either
event, you must destroy all your copies of this SOFTWARE PRODUCT. Any attempt to sub-license, rent, lease, assign or to transfer
the Software Design Kit except as expressly provided by this license, is hereby rendered null and void.

WARRANTY

PLX Technology, Inc. provides this SOFTWARE PRODUCT AS IS, WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTIBILITY OR FITNESS FOR A PARTICULAR
PURPOSE. PLX makes no guarantee or representations regarding the use of, or the results based on the use of the software and
documentation in terms of correctness, or otherwise; and that you rely on the software, documentation, and results solely at your own
risk. In no event shall PLX be liable for any loss of use, loss of business, loss of profits, incidental, special or, consequential damages
of any kind. In no event shall PLX’s total liability exceed the sum paid to PLX for the product licensed hereunder.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 1-1

1. Introduction

1.1 About This Manual
This manual provides detailed design information on the devices drivers, Application
Programmer’s Interface (API), and user applications that are supplied with the PCI SDK.

Designers should use this manual as a reference for all API functions.

1.2 Where To Go From Here
The following is a brief summary of the chapters to help guide your reading of this manual:

Chapter 2, General Information, is an overview of the Programmer’s Manual, and contains
conventions and terminology used throughout this manual.

Chapter 3, Software Design, describes the Application Programmer’s Interface, Windows NT and
Windows 95 device drivers, PlxLdr, and IOP applications included with the PCI SDK.

Chapter 4, Creating Applications Using The PLX API, demonstrates how to build applications
using the PLX API.

Chapter 5, Common PLX Questions, provides some answers to frequently asked questions.

Chapter 6, Recommendations For Custom Design, provides additional information that software
designers may find useful during their own designs.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 2-1

2. General Information

2.1 Introduction
The PCI SDK included in the development package is a powerful aide to software designers. The
PCI SDK comes complete with a powerful Application Programmer’s Interface (API), device
drivers for Windows NT and Windows 95, and sample IOP applications. We are confident that
with the PCI SDK, your designs will be brought to market faster and more efficiently.

2.2 Conventions
Please note:

� italics are used to represent variables, and program names;

� courier is used to represent source code given as examples.

2.2.1 Windows Programming Conventions
Some designers may not be familiar with Windows programming conventions. Therefore, a few
conventions have been noted below:

� PULONG data is analogous to ULONG *data or unsigned long *data; and

� IN and OUT are used to distinguish between parameters that are being passed into API
functions and parameters that are being returned by API functions.

2.3 Terminology
All references to Windows NT assume Windows NT 4.0 or higher and may be denoted as
WinNT. Similarly, references to Windows 95 may be denoted as Win95.

Win32 references are used throughout this manual to mean any application that is compatible
with either Windows NT or Windows 95.

All references to IOP software is software that runs on the evaluation board (either a PCI
9080RDK-401, a PCI 9080RDK-960, a PCI 9080RDK-860 or a generic IOP).

All references to Intel i960 always refer to the Intel i960HA processor.

2.4 Development Requirements
The PCI SDK was developed for Window NT 4.0 and Windows 95 operating systems.

PLXMon97 was developed using Microsoft Developer Studio, supplied with the Microsoft
Visual C++ 4.2 and the Microsoft Win32 Software Development Kit for Windows NT 3.51 and
Windows 95.

The API was developed using Microsoft Developer Studio, supplied with Microsoft Visual C++
4.2 and the Microsoft Win32 Software Development Kit for Windows NT 3.51 and Windows 95.

2-2 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

The WinNT device driver was developed using the Microsoft Windows NT DDK, version 4.0
and Microsoft Visual C++ 4.2.

The Win95 device driver was developed using the Microsoft Windows 95 DDK and the
Microsoft Visual C++4.2.

Development tools needed for the PCI SDK that are not supplied:

� Microsoft Visual C++ 4.2, with Microsoft Developer Studio;

� Microsoft Win32 Software Development Kit for Windows NT 3.51 and Windows 95;

� Microsoft Windows NT Device Driver Kit, version 4.0;

� Microsoft Windows 95 Device Driver Kit;

� IBM 401 Processor Development Tools.

� Intel i960 Processor Development Tools;

� Asys Diab and DriveWay Tools for the Motorola 860.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-1

3. Software Design

3.1 Overview
The PCI SDK software can be broken into three separate sections: Customer Code, API, and
Device Driver (Figure 3.1 Software Design). The customer code and API reside in user space of
the operating system, and the device driver resides in kernel space of the operating system. The
API has two purposes: To act as a translator between the customer code and the device driver;
and to decrease development time by providing a powerful library of functions to control the
hardware.

3.2 Directory Structure
The PCI SDK has been installed on your system using the following directory structure:

� <InstallPath> - is the root directory for all software;

� <InstallPath>\apps - is the root directory for all Win32 applications;

� <InstallPath>\apps\plxldr - contains all source code for the IOP loader application;

� <InstallPath>\drivers - is the root directory for all device driver source code;

� <InstallPath>\drivers\winnt - contains the source code for the WinNT device driver;

Host
Device Dr iver

Host API

Customer Code

Host PC

IOP
Device Dr iver

IOP API

Customer Code

IOP Device

PLX PCI 9080

 Figure 3.1 Software Design

3-2 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

� <InstallPath>\drivers\win95 - contains the source code for the Win95 device driver;

� <InstallPath>\inc - contains all include files for Win32 and IOP source code;

� <InstallPath>\iop - contains all IOP files;

� <InstallPath>\iop\apps - is the root directory for all the IOP applications files;

� <InstallPath>\iop\apps\401 - is the root directory for the PCI 9080RDK-401 IOP application
software;

� <InstallPath>\iop\apps\960 - is the root directory for the PCI 9080RDK-960 IOP application
software;

� <InstallPath>\iop\drivers - is the root directory for all IOP device driver source code;

� <InstallPath>\iop\drivers\401drv - is the root directory for the PCI 9080RDK-401 IOP device
driver source code;

� <InstallPath>\iop\drivers\960drv - is the root directory for the PCI 9080RDK-960 IOP device
driver source code;

� <InstallPath>\iop\drivers\860drv - is the root directory for the PCI 9080RDK-860 IOP device
driver source code;

� <InstallPath>\iop\drivers\iopdrv - is the root directory for the IOP device driver source code;

� <InstallPath>\iop\hw - is the root directory for all IOP hardware;

� <InstallPath>\iop\hw\401 - is the root directory for all PCI 9080RDK-401 IOP hardware;

� <InstallPath>\iop\hw\960 - is the root directory for all PCI 9080RDK-960 IOP hardware;

� <InstallPath>\iop\iopapi - contains all source code for the IOP API;

� <InstallPath>\iop\PlxRom - contains the PLX IOP ROM Monitor software;

� <InstallPath>\iop\PlxRom\401 - contains the PCI 9080RDK-401 IOP ROM Monitor
software;

� <InstallPath>\iop\PlxRom\960 - contains the PCI 9080RDK-960 IOP ROM Monitor
software;

� <InstallPath>\iop\PlxRom\860 - contains the PCI 9080RDK-860 IOP ROM Monitor
software;

� <InstallPath>\plxapi - contains all source code for the Win32 API; and

� <InstallPath>\bin - contains binaries of PlxMon97 and PlxLdr.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-3

A layout diagram of the software provided in the PCI SDK is shown in Figure 3.2.

3.3 PLX API

3.3.1 Introduction
The API included in this PCI SDK provides a PCI 9080 custom library that can be used by either
a Windows application or an IOP application. This section of the manual details the API design,
and provides a reference of all API functions.

3.3.2 API Design

3.3.2.1 Win32 Dynamic Link Library

The Win32 API has been designed as a Win32 Dynamic Link Library (DLL). DLLs are used in
Windows operating systems to reduce the size of applications that share library routines and to
allow greater flexibility during application upgrades. Instead of linking a static library into each
application, a single common library is shared by multiple applications. This library model not
only reduces the physical size of applications, but also offers greater flexibility in updates to

PCI BUS

IOP Sof tware
- IopApp
- IOP Samples

Programs
- IopApi.a
- IopDrv.a
- RdkDrv.a

µP

Host Sof tware
- PLXMon97.exe
- PlxLdr.exe
- Sample Programs

Programs
- PlxApi.dl l
- Plx.sys
- Plx95.vxd

Host CPU
(Pent ium)

Host
Memory

PCI 9080

Figure 3.2 Software layout diagram

3-4 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

applications. When a library function is updated, only the DLL has to be updated instead of every
application that used the function.

Designers should be aware that the development files for the DLL included in the PCI SDK have
been generated using Microsoft Visual C++ 4.2 (MSVC 4.2). The DLL can be generated with
other compiler suites but compatibility is not guaranteed. Designers should use the PlxApi project
file to load the DLL source code into Developer Studio (supplied with MSVC 4.2). Furthermore,
the DLL should always be located in the WinNT System32 directory or the Win95 System
directory.

Two different versions of the API can be generated using the Developer Studio workspace file.
They are as follows:

1. Release version, which is used under normal circumstances; and,

2. Debug version, which is used during debugging of the API and user applications.

The release and debug DLL versions work only with PCI 9080 devices. Both contain a 9080
verification routine that causes most API routines to return an error if a PCI 9080 device is not
present.

3.3.2.2 IOP Static Libraries

The IOP API and device driver included in the PCI SDK have been designed as standard link
libraries that should be familiar to most designers. No special linking instructions are required as
it should be linked into IOP applications similar to other static libraries.

The IOP API and device driver are separated into three libraries:

� The IOP API Library: This library contains all the interface code used by applications to
communicate to the device driver. This library is similar to the Win32 PLX API. The code
contained within the library is common for all IOP platforms however it must be compiled
separately for each IOP processor’s compiler suite.

� The IOP Device Driver Library: This library contains the common device driver code for all
IOP platforms. The code contained within the library is common for all IOP platforms
however it must be compiled separately for each IOP processor’s compiler suite.

� The IOP Specific Device Driver Library: This library contains the IOP specific device driver
code. The code contained within the library is specific to each IOP and should not be
compiled for other platforms.
Note: Though some of the functions within this library may be similar to others for other IOP
platforms these functions should only be used for reference purposes when working with new
IOP platforms. The IOP specific device driver libraries should only be compiled and linked to
applications destined for that specific IOP only.

3.3.2.3 Design Details

Both the Win32 and IOP APIs have similar source code, and most library functions can be used
by either platform. Section 3.3.3 summarizes each function and its availability to each platform.

The PLX API has been designed to be the middle layer between user applications and the device
drivers. All communications between the device drivers and applications are done through the

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-5

PLX API. The PLX API simply translates application calls into device driver compatible calls.
Therefore, designers should consult Section 3.4.2 for details on how each PLX API function
carries out its purpose since the device driver does the actual work.

3.3.2.4 PLX API Assumptions

The PLX API assumes:

� The PLX device’s registers are mapped into kernel memory space using PCI Base Address 0
(PCI Configuration Register 0x10).

� That all PLX devices have the following Vendor ID and Device ID (PCI Configuration
Register 0x00):

� The PCI 9080RDK-401 Vendor ID is 0x1014 and Device ID is 0x0401 ;

� The PCI 9080RDK-960 Vendor ID is 0x10B5 and Device ID is 0x0960 ;

� The PCI 9080RDK-860 Vendor ID is 0x10B5 and Device ID is 0x0860 ;

� All other devices (other than those listed previously) will be considered non-PLX devices;

� All PLX devices will have the Subsystem Vendor ID and Subsystem ID (PCI Configuration
Register 0x2C) set to 0x10B5 and 0x9080 , respectively; and,

� The PLX API is compatible only with devices that use the PCI 9080 IC.

3.3.3 Function Quick Reference List
Presented below is a quick reference of all PLX API functions grouped in the following
categories:

� Register Access Functions (Table 3-1);

� PCI 9080 Configuration Functions (Table 3-2);

� DMA Functions (Table 3-3);

� Messaging Functions (Table 3-4);

� Bus Memory and I/O Functions (Table 3-5);

� Serial EEPROM Functions (Table 3-6);

� API Support Functions (Table 3-7);

� PCI Device Functions (Table 3-8);

� PCI 9080RDK-401, PCI 9080RDK-960 and PCI 9080RDK-860 Support Functions (Table
3-9); and

� Miscellaneous Functions (Table 3-10).

Designers should consult Section 3.3.4 for a detailed description of each API function.

3-6 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Register Access Functions

Function Name Purpose Availability Page Number

PlxRegisterRead Read any register (returns
register value)

Win32/IOP 3-13

PlxRegisterWrite Write any register (takes value
directly)

Win32/IOP 3-14

PlxReadRegister Read any register (returned into
a buffer)

Win32/IOP 3-15

PlxWriteRegister Write any register (value is
stored in a buffer)

Win32/IOP 3-16

PlxReadMailbox Read any mailbox register Win32/IOP 3-17

PlxWriteMailbox Write any mailbox register Win32/IOP 3-18

PlxReadDoorbell Read any doorbell register Win32/IOP 3-19

PlxWriteDoorbell Write any doorbell register Win32/IOP 3-20

PlxReadAllRegisters Read multiple registers given a
range

Win32/IOP 3-21

PlxReadAllLocalRegisters Read all Local Configuration
registers

Win32/IOP 3-22

PlxReadAllRuntimeRegisters Read all Runtime registers Win32/IOP 3-23

PlxReadAllDmaRegisters Read all DMA registers Win32/IOP 3-24

PlxReadAllConfigRegisters Read all PCI Configuration
registers

Win32/IOP 3-25

PlxReadAllMessagingRegisters Read all Messaging Unit
registers

Win32/IOP 3-26

Table 3-1 Register Access Functions

PCI 9080 Configuration Functions

Function Name Purpose Availability Page Number

PlxConfigLocalArbitration Configures the local bus
Arbitration registers

Win32/IOP 3-27

PlxConfigLocalSpace Configures the local space
descriptor registers

Win32/IOP 3-29

PlxConfigBigEndian Configures big endian mode Win32/IOP 3-32

PlxConfigBigEndianByteLane Configures big endian byte
lanes

Win32/IOP 3-33

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-7

Function Name Purpose Availability Page Number

PlxConfigLittleEndian Configures little endian mode Win32/IOP 3-34

PlxReloadConfigurationRegisters Reloads configuration
EEPROM values

Win32/IOP 3-35

PlxConfigVendorDeviceId Program the device vendor and
device ID’s

IOP 3-36

PlxConfigClassCode Configures the devices PCI
class code

IOP 3-37

PlxInitDone Allows external PCI masters
access to PCI device

IOP 3-38

PlxSetUserOut Sets USERO pin Win32/IOP 3-39

PlxClearUserOut Clears USERO pin Win32/IOP 3-40

PlxGetBarRange Retrieves PCI Base Address
Range

Win32/IOP 3-41

PlxSetDirectSlaveRemap Configures direct slave remap
register

IOP 3-42

PlxSetDirectSlaveRange Configures direct slave range
register

IOP 3-44

PlxSetDirectMasterRemap Configures direct master remap
register

Win32/IOP 3-46

PlxSetDirectMasterBaseAddress Configures direct master base
address

Win32/IOP 3-48

Table 3-2 PCI 9080 Configuration Functions

DMA Functions

Function Name Purpose Availability Page Number

PlxSetupDmaTransfer Setup device for a DMA
Transfer

Win32/IOP 3-50

PlxDisableDmaChannel Disable a DMA channel Win32/IOP 3-53

PlxStartDmaChannel Start a DMA transfer Win32/IOP 3-54

PlxStopDmaChannel Stop a DMA transfer (pause a
transfer)

Win32/IOP 3-55

PlxAbortDmaChannel Terminates a DMA transfer
(non resumeable)

Win32/IOP 3-57

PlxClearDmaChannelIntr Clears a DMA interrupt IOP 3-59

3-8 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Function Name Purpose Availability Page Number

PlxQueryDmaChannelDone Checks DMA Done Status Win32/IOP 3-60

PlxDmaChannelAvailable Checks for first available DMA
channel.

Win32/IOP 3-61

Table 3-3 DMA Functions

Messaging Functions

Function Name Purpose Availability Page Number

PlxReadInboundPort Read Inbound Port Win32/IOP 3-62

PlxWriteInboundPort Write Inbound Port Win32/IOP 3-63

PlxReadOutboundPort Read Outbound Port Win32/IOP 3-64

PlxWriteOutboundPort Write Outbound Port Win32/IOP 3-65

PlxGetInboundFreeMfa Get a message frame from the
Inbound Free FIFO

IOP 3-66

PlxPutInboundPostMfa Put a message frame into the
Inbound Post FIFO

IOP 3-67

PlxInitMessageFifos Configures messaging unit. IOP 3-68

Table 3-4 Messaging Functions

Bus Memory and I/O Functions

Function Name Purpose Availability Page Number

PlxDirectSlaveReadChar 8-bit Memory cycle Read Win32 3-69

PlxDirectSlaveWriteChar 8-bit Memory cycle Write Win32 3-71

PlxDirectSlaveReadShort 16-bit Memory cycle Read Win32 3-73

PlxDirectSlaveWriteShort 16-bit Memory cycle Write Win32 3-75

PlxDirectSlaveReadLong 32-bit Memory cycle Read Win32 3-77

PlxDirectSlaveWriteLong 32-bit Memory cycle Write Win32 3-79

PlxDirectSlaveRemapReadChar 8-bit Memory cycle Read (with
remap)

Win32 3-81

PlxDirectSlaveRemapWriteChar 8-bit Memory cycle Write (with
remap)

Win32 3-83

PlxDirectSlaveRemapReadShort 16-bit Memory cycle Read
(with remap)

Win32 3-85

PlxDirectSlaveRemapWriteShort 16-bit Memory cycle Write Win32 3-87

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-9

Function Name Purpose Availability Page Number

(with remap)

PlxDirectSlaveRemapReadLong 32-bit Memory cycle Read
(with remap)

Win32 3-89

PlxDirectSlaveRemapWriteLong 32-bit Memory cycle Write
(with remap)

Win32 3-91

PlxDirectMasterReadChar 8-bit Memory cycle Read IOP 3-93

PlxDirectMasterWriteChar 8-bit Memory cycle Write IOP 3-94

PlxDirectMasterReadShort 16-bit Memory cycle Read IOP 3-95

PlxDirectMasterWriteShort 16-bit Memory cycle Write IOP 3-96

PlxDirectMasterReadLong 32-bit Memory cycle Read IOP 3-97

PlxDirectMasterWriteLong 32-bit Memory cycle Write IOP 3-98

PlxDirectMasterRemapReadChar 8-bit Memory cycle Read (with
remap)

IOP 3-99

PlxDirectMasterRemapWriteChar 8-bit Memory cycle Write (with
remap)

IOP 3-100

PlxDirectMasterRemapReadShort 16-bit Memory cycle Read
(with remap)

IOP 3-101

PlxDirectMasterRemapWriteShort 16-bit Memory cycle Write
(with remap)

IOP 3-102

PlxDirectMasterRemapReadLong 32-bit Memory cycle Read
(with remap)

IOP 3-103

PlxDirectMasterRemapWriteLong 32-bit Memory cycle Write
(with remap)

IOP 3-104

PlxDirectPortSlaveReadChar 8-bit I/O cycle Read Win32 3-105

PlxDirectPortSlaveWriteChar 8-bit I/O cycle Write Win32 3-106

PlxDirectPortSlaveReadShort 16-bit I/O cycle Read Win32 3-107

PlxDirectPortSlaveWriteShort 16-bit I/O cycle Write Win32 3-108

PlxDirectPortSlaveReadLong 32-bit I/O cycle Read Win32 3-109

PlxDirectPortSlaveWriteLong 32-bit I/O cycle Write Win32 3-110

PlxDirectPortMasterReadChar 8-bit I/O cycle Read IOP 3-111

PlxDirectPortMasterWriteChar 8-bit I/O cycle Write IOP 3-112

PlxDirectPortMasterReadShort 16-bit I/O cycle Read IOP 3-113

PlxDirectPortMasterWriteShort 16-bit I/O cycle Write IOP 3-114

3-10 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Function Name Purpose Availability Page Number

PlxDirectPortMasterReadLong 32-bit I/O cycle Read IOP 3-115

PlxDirectPortMasterWriteLong 32-bit I/O cycle Write IOP 3-116

Table 3-5 Bus Memory and I/O Functions

Serial EEPROM Functions

Function Name Purpose Availability Page Number

PlxReadEepromBuffer Read the contents of the
EEPROM

Win32/IOP 3-117

PlxWriteEepromBuffer Change the contents of the
EEPROM

Win32/IOP 3-118

Table 3-6 Serial EEPROM Functions

API Support Functions

Function Name Purpose Availability Page Number

PlxInitaializeAPI Initializes the API Win32/IOP 3-119

PlxTerminateAPI Terminates the API Win32/IOP 3-120

Table 3-7 API Support Functions

PCI Device Functions

Function Name Purpose Availability Page Number

PlxReadConfigRegister Read a PCI Configuration
register

Win32/IOP 3-121

PlxWriteConfigRegister Write to a PCI Configuration
register

Win32/IOP 3-122

PlxSelectPciDevice Select a PCI device given Bus
Number, Slot Number, Device
ID, and Vendor ID.

Win32/IOP 3-123

PlxFindPciDevice Find a PCI device given Bus
Number, Slot Number, Device
ID, and Vendor ID.

Win32 3-125

PlxGetBaseAddress Get the user virtual addresses
(for use by Windows
applications) for a PCI device.

Win32/IOP 3-127

Table 3-8 PCI Device Functions

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-11

9080RDK-401, 9080RDK-960 and 9080RDK-860 Support Functions

Function Name Purpose Availability Page Number

PlxResetEmbedded Reset the evaluation board Win32 3-130

PlxDownloadInit Initialize the device driver for
an IOP download

Win32 3-131

PlxDownloadData Download a block of IOP
software

Win32 3-132

PlxStartEmbedded Start IOP software Win32 3-133

Table 3-9 9080RDK-401, 9080RDK-960 and 9080RDK-860 Support Functions

Miscellaneous Support Functions

Function Name Purpose Availability Page Number

PlxPrint Print a formatted string Win32/IOP 3-135

PlxSetIntrWait Pass a doorbell interrupt wait
event handle to the device
driver

Win32 3-136

PlxIsIntrActive Retrieves interrupt information Win32/IOP 3-137

Table 3-10 Miscellaneous Functions

3.3.4 API Functions Details
This section contains a detailed description of each function in the API. The functions are listed
by category.

The following sample entry lists each entry section and describes the information therein.

Note: Devices supported by PCI SDK Version 1.2: PCI 9080

Sample Function Entry

Syntax:

function(modifier parameter[,...]);

This gives the declaration syntax for each function. Each parameter is italicized.

Description:

Summary of the function’s purpose followed by the parameters it takes. Also includes any
relevant information pertaining to the function.

3-12 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Return Value:

The value returned by the function.

Portability:

States whether this function can be used with Win32, IOP applications or both.

Usage:

A sample is provided to demonstrate the function’s use.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-13

Register Access Functions

PlxRegisterRead

Syntax:

ULONG PlxRegisterRead(IN HANDLE drvHandle,
IN ULONG registerNumber);

Description:

Reads any register on the currently selected PCI device.

� drvHandle is the handle of the PCI device; and

� registerNumber is the register number.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

This function returns the data value read from register registerNumber.

This function does not return any error code.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerNumber;

/* Read register PCI9080_MAILBOX0 of the currently selected PCI
device */
registerNumber = PCI9080_MAILBOX0;

PlxPrint((“\nValue at register 0x%x = 0x%x \n”,
 registerNumber,
 PlxRegisterRead(drvHandle, registerNumber)
));

3-14 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxRegisterWrite

Syntax:

RETURN_CODE PlxWriteRegister(IN HANDLE drvHandle,
IN ULONG registerNumber,
IN ULONG data);

Description:

Writes a value to any register on a PCI device.

� drvHandle is the handle of the PCI device;

� registerNumber is the register number; and

� data is a ULONG value to store in the register.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If the register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerNumber;

/* Modify the contents of Register PCI9080_MAILBOX0 */
registerNumber = PCI9080_MAILBOX0;
PlxRegisterWrite(drvHandle,
 registerNumber,
 PlxRegisterRead(drvHandle, registerNumber)
 || 0x80
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-15

PlxReadRegister

Syntax:

RETURN_CODE PlxReadRegister(IN HANDLE drvHandle,
IN ULONG registerNumber,
OUT PULONG data);

Description:

Reads any register on the currently selected PCI device.

� drvHandle is the handle of the PCI device;

� registerNumber is the register number; and

� data is a pointer to a buffer to store the register contents.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If the register number is out of range, this function returns API_FAILED and data contains
0xFFFFFFFF.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerNumber, data;

/* Read register PCI9080_MAILBOX0 of the currently selected PCI
device */
registerNumber = PCI9080_MAILBOX0;
PlxReadRegister(drvHandle, registerNumber, &data);
PlxPrint((“\nValue at register 0x%x = 0x%x \n”,
 registerNumber,
 data
));

3-16 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxWriteRegister

Syntax:

RETURN_CODE PlxWriteRegister(IN HANDLE drvHandle,
IN ULONG registerNumber,
IN PULONG data);

Description:

Writes a value to any register on a PCI device.

� drvHandle is the handle of the PCI device;

� registerNumber is the register number; and

� data is a ULONG pointer to the value to store in the register.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If the register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerNumber, data;

/*
 * Write 0x123456 to register PCI9080_MAILBOX0 of the currently
selected
 * PCI device
 */
registerNumber = PCI9080_MAILBOX0;
data = 0x123456;
PlxWriteRegister(drvHandle, registerNumber, &data);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-17

PlxReadMailbox

Syntax:

RETURN_CODE PlxReadMailbox(IN HANDLE drvHandle,
IN ULONG mailboxNumber,
OUT PULONG data);

Description:

Reads any mailbox register on the currently selected PCI device.

� drvHandle is the handle of the PCI device;

� mailboxNumber is the mailbox register number; and

� data is a pointer to a buffer to store the register contents.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If the register number is out of range, this function returns API_FAILED and data contains
0xFFFFFFFF.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG mailboxNumber;
ULONG data;

/*
 * Read mailbox register PCI9080_MAILBOX0 of the currently
 * selected PCI device
 */
mailboxNumber = PCI9080_MAILBOX0;
PlxReadMailbox(drvHandle, mailboxNumber, &data);
PlxPrint((“\nValue at mailbox register 0x%x = 0x%x \n”,
 mailboxNumber,
 data
));

3-18 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxWriteMailbox

Syntax:

RETURN_CODE PlxWriteMailbox(IN HANDLE drvHandle,
IN ULONG mailboxNumber,
IN PULONG data);

Description:

Writes a value to any mailbox register on a PCI device.

� drvHandle is the handle of the PCI device;

� mailboxNumber is the register number; and

� data is a ULONG pointer to the value to store in the register.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If the mailbox register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG mailboxNumber;
ULONG data;

/*
 * Write 0x123456 to Mailbox register PCI9080_MAILBOX0 of the
 * currently selected PCI device
 */
mailboxNumber = PCI9080_MAILBOX0;
data = 0x123456;
PlxWriteMailbox(drvHandle, mailboxNumber, &data);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-19

PlxReadDoorbell

Syntax:

RETURN_CODE PlxReadDoorbell(IN HANDLE drvHandle,
IN ULONG doorbellNumber,
OUT PULONG data);

Description:

Reads any doorbell register on the currently selected PCI device.

� drvHandle is the handle of the PCI device;

� doorbellNumber is the register number; and

� data is a pointer to a buffer to store the register contents.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If the doorbell register number is out of range, this function returns API_FAILED and data
contains 0xFFFFFFFF.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG doorbellNumber;
ULONG data;

/*
 * Read doorbell register PCI9080_LOCAL_DOORBELL of the currently
 * selected PCI device
 */
doorbellNumber = PCI9080_LOCAL_DOORBELL;
PlxReadDoorbell(drvHandle, doorbellNumber, &data);
PlxPrint((“\nValue at doorbell register 0x%x = 0x%x \n”,
 doorbellNumber,
 data
));

3-20 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxWriteDoorbell

Syntax:

RETURN_CODE PlxWriteDoorbell(IN HANDLE drvHandle,
IN ULONG doorbellNumber,
IN PULONG data);

Description:

Writes a value to any doorbell register on a PCI device.

� drvHandle is the handle of the PCI device;

� doorbellNumber is the register number; and

� data is a ULONG pointer to the value to store in the register.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If the doorbell register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG doorbellNumber;
ULONG data;

/*
 * Write 0x2 to doorbell register PCI9080_LOCAL_DOORBELL of the
 * currently selected PCI device
 */
doorbellNumber = PCI9080_LOCAL_DOORBELL;
data = 0x2;
PlxWriteDoorbell(drvHandle, doorbellNumber, &data);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-21

PlxReadAllRegisters

Syntax:

RETURN_CODE PlxReadAllRegisters(IN HANDLE drvHandle,
OUT PULONG registerList,
IN ULONG regStartOffset,
IN ULONG regRange);

Description:

Reads multiple registers on a PCI device.

� drvHandle is the handle of the PCI device;

� registerList is the storage location for the register values;

� regStartOffset is the register offset to start reading at; and

� regRange is the number of bytes to read starting at regStartOffset.

Note: regRange is the number of bytes to read. Usually registers on PCI devices are 32-bits,
therefore this parameter is usually divided by 4. Before this function can be used in a Win32
environment, a PCI device must be selected using PlxSelectPciDevice(). This function will not
read the PCI configuration registers from the Win32 side (For Win32: use
PlxReadAllConfigRegisters())

Return Value:

On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerList[MAX_NUMBER_OF_REGISTERS];

/* Read 2 32-bit registers starting at register 0x00 */
PlxReadAllRegisters(drvHandle, ®isterList[0], 0x00, 0x08);
PlxPrint((“ registerList[1] (Register 0x04) = 0x%08x\n”,
 registerList[1]
));

3-22 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxReadAllLocalRegisters

Syntax:

RETURN_CODE PlxReadAllLocalRegisters(IN HANDLE drvHandle,
OUT PULONG registerList);

Description:

Reads all Local Configuration registers on a PCI device.

� drvHandle is the handle of the PCI device; and

� registerList is the storage location for the register values.

Note: registerList MUST be already allocated and must hold enough room for all Local
Configuration registers. Before this function can be used in a Win32 environment, a PCI device
must be selected using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerList[MAX_NUMBER_OF_REGISTERS];

/* Read all Local Configuration registers */
PlxReadAllLocalRegisters(drvHandle, ®isterList[0]);
PlxPrint((“ registerList[1] (PCI 0x04, IOP 0x84) = 0x%08x\n”,
 registerList[1]
));

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-23

PlxReadAllRuntimeRegisters

Syntax:

RETURN_CODE PlxReadAllRuntimeRegisters(IN HANDLE drvHandle,
OUT PULONG registerList);

Description:

Reads all Runtime registers on a PCI device.

� drvHandle is the handle of the PCI device; and

� registerList is the storage location for the register values;

Note: registerList MUST be already allocated and must hold enough room for all Runtime
registers. Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerList[MAX_NUMBER_OF_REGISTERS];

/* Read all Runtime registers */
PlxReadAllRuntimeRegisters(drvHandle, ®isterList[0]);
PlxPrint((“ registerList[1] (PCI 0x44, IOP 0xC4) = 0x%08x\n”,
 registerList[1]
));

3-24 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxReadAllDmaRegisters

Syntax:

RETURN_CODE PlxReadAllDmaRegisters(IN HANDLE drvHandle,
OUT PULONG registerList);

Description:

Reads all DMA registers on a PCI device.

� drvHandle is the handle of the PCI device; and

� registerList is the storage location for the register values.

Note: registerList MUST already be allocated and must hold enough room for all DMA registers.
Before this function can be used in a Win32 environment, a PCI device must be selected using
PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerList[MAX_NUMBER_OF_REGISTERS];

/* Read all DMA registers */
PlxReadAllDmaRegisters(drvHandle, ®isterList[0]);
PlxPrint((“ registerList[1] (PCI 0x84, IOP 0x104) = 0x%08x\n”,
 registerList[1]
));

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-25

PlxReadAllConfigRegisters

Syntax:

RETURN_CODE PlxReadAllConfigRegisters(IN HANDLE drvHandle,
OUT PULONG registerList);

Description:

Reads all PCI Configuration registers on a PCI device.

� drvHandle is the handle of the PCI device; and

� registerList is the storage location for the register values.

Note: registerList MUST be already allocated and must hold enough room for all PCI
Configuration registers. Before this function can be used in a Win32 environment, a PCI device
must be selected using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerList[MAX_NUMBER_OF_REGISTERS];

/* Read all PCI Configuration registers */
PlxReadAllConfigRegisters(drvHandle, ®isterList[0]);
PlxPrint((“ registerList[1] (PCI CFG 0x04, IOP 0x84) = 0x%08x\n”,
 registerList[1]
));

3-26 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxReadAllMessagingRegisters

Syntax:

RETURN_CODE PlxReadAllMessagingRegisters(IN HANDLE drvHandle,
OUT PULONG registerList);

Description:

Reads all Messaging registers on a PCI device.

� drvHandle is the handle of the PCI device; and

� registerList is the storage location for the register values.

Note: registerList MUST already be allocated and must hold enough room for all Messaging
registers. Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerList[MAX_NUMBER_OF_REGISTERS];

/* Read all messaging registers */
PlxReadAllMessagingRegisters(drvHandle, ®isterList[0]);
PlxPrint((“ registerList[1] (PCI CFG 0x04, IOP 0x84) = 0x%08x\n”,
 registerList[1]
));

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-27

PCI 9080 Configuration Functions

PlxConfigLocalArbitration

Syntax:

RETURN_CODE PlxConfigLocalArbitration(IN HANDLE drvHandle,
IN ULONG modeEnableDescriptor,
IN UCHAR localBusLatencyTimer,
IN UCHAR localBusPauseTimer,
IN ULONG dmaChannelPriority);

Description:

Configures the Local bus arbitration registers.

� drvHandle is the handle of the PCI device;

� modeEnableDescriptor is the descriptor value that enables or disables local arbitration
features. Possible descriptors that should be OR’ed together are:

� LOCAL_BUS_LATENCY_TIMER_ENABLE

� LOCAL_BUS_PAUSE_TIMER_ENABLE

� LOCAL_BUS_BREQ_ENABLE

� LOCAL_BUS_DIRECT_SLAVE_GIVE_UP_BUS_ENABLE

� DIRECT_SLAVE_LLOCKO_ENABLE

� PCI_REQUEST_MODE_ENABLE

� PCI_REV21_MODE_ENABLE

� PCI_READ_NO_WRITE_MODE_ENABLE

� PCI_READ_WRITE_FLUSH_MODE_ENABLE

� GATE_LOCAL_BUS_LATENCY_TIMER_BREQ_ENABLE

� PCI_READ_NO_FLUSH_MODE_ENABLE

� PCI_DEVICE_VENDOR_ID_SWITCH_ENABLE

� localBusLatencyTimer is the number of bus clocks the PCI device maintains ownership of the
local bus after finishing a bus transaction;

� localBusPauseTimer is the number of bus clocks the PCI device waits before requesting
ownership of the local bus after having finished a bus transaction; and

� dmaChannelPriority is the DMA priority scheme.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

3-28 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG modeEnableDescriptor, modeEnableDescriptor,
 dmaChannelPriority = 0x0;
UCHAR localBusLatencyTimer = 0x0, localBusPauseTimer = 0x0;

modeEnableDescriptor = LOCAL_BUS_BREQ_ENABLE
 | PCI_REV21_MODE_ENABLE;

PlxConfigLocalArbitration(drvHandle,
 modeEnableDescriptor,
 localBusLatencyTimer,
 localBusPauseTimer,
 dmaChannelPriority
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-29

PlxConfigLocalSpace

Syntax:

RETURN_CODE PlxConfigLocalSpace (IN HANDLE drvHandle,
IN LOCAL_SPACE localSpace,
IN PLOCAL_BUS_DESCRIPTOR pDescriptor);

Description:

Configures the Local Space descriptor registers.

� drvHandle is the handle of the PCI device;

� localSpace is the specific PCI device local space; and

� pDescriptor is a pointer to the local space descriptor variable.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

3-30 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Local bus descriptor data type:

typedef struct _LOCAL_BUS_DESCRIPTOR
{
 unsigned long busWidth : 2;
 unsigned long dataToDataWaitStates : 4;
 unsigned long readyInputEnable : 1;
 unsigned long btermInputEnable : 1;
 unsigned long prefetchDisable : 1;
 unsigned long prefetchCountEnable : 1;
 unsigned long burstEnable : 1;
 unsigned long prefetchCounter : 4;
 unsigned long reserved : 17; /* Word-alignment */
} LOCAL_BUS_DESCRIPTOR, *PLOCAL_BUS_DESCRIPTOR;

Purpose:

Structure used to describe the local bus characteristics.

Members:

busWidth
The width of the local bus.

dataToDataWaitStates
The number of wait states inserted after the address is presented on the local bus until the
data is ready. The value must be between 0-15.

readyInputEnable
Enables or disables the Ready input.

btermInputEnable
Enables or disables the BTERM input.

prefetchDisable
Enables or disables prefetching when reading memory.

prefetchCountEnable
Enables or disables prefetching counter. If enabled the PCI 9080 reads up to the number
of ULONGs specified in the prefetch counter. If disabled the PCI 9080 ignores the
prefetch counter and reads continuously until terminated by the PCI bus.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-31

burstEnable
Enables or disables bursting. If bursting is disabled then the PCI 9080 performs
continuous single cycle accesses for burst PCI read/write cycles.

prefetchCounter
Stores the number of ULONGs that can be prefetched. Up to 16 ULONGs can be
prefetched during memory read cycles.

Comments:

The local bus descriptor structure is used to describe the local bus characteristics.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
LOCAL_BUS_DESCRIPTOR pDescriptor = 0x0;

pDescriptor.busWith = 0x3; /* 32 bit */
pDescriptor.dataToDataWaitSates = 0x00; /* 0 wait states */
pDescriptor.readyInputEnable = 0x01; /* ready enabled */
pDescriptor.btermInputEnable = 0x00; /* bterm disable */
pDescriptor.prefetchDisable = 0x00; /* prefetch enabled */
pDescriptor.prefetchCountEnable = 0x00; /* ignore count */
pDescriptor.burstEnable = 0x01; /*enable bursting */

/* Config Local Space 0 */
PlxConfigLocalSpace (drvHandle, LocalSpace0, &pDescriptor);

3-32 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxConfigBigEndian

Syntax:

RETURN_CODE PlxConfigBigEndian (IN HANDLE drvHandle,
IN ULONG endianDescriptor);

Description:

Configures the PCI device for Big Endian operation.

� drvHandle is the handle of the PCI device; and

� endianDescriptor is the descriptor register that enables Big Endian byte swapping. Possible
descriptors that should be OR’ed together are:

� CONFIGURATION_ENDIAN_MODE

� DIRECT_MASTER_ENDIAN_MODE

� DIRECT_SLAVE_SPACE0_ENDIAN_MODE

� DIRECT_SLAVE_EROM_ENDIAN_MODE

� DIRECT_SLAVE_SPACE1_ENDIAN_MODE

� DMA_CHANNEL1_ENDIAN_MODE

� DMA_CHANNEL0_ENDIAN_MODE

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG endianDescriptor;

/* Enable Big endian mode for direct master accesses */
endianDescriptor = DIRECT_MASTER_ENDIAN_MODE ;
PlxConfigBigEndian(drvHandle, endianDescriptor);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-33

PlxConfigBigEndianByteLane

Syntax:

RETURN_CODE PlxConfigBigEndianByteLane (IN HANDLE drvHandle,
IN ULONG endianLaneDescriptor);

Description:

Configures the PCI device byte lanes for Big Endian operation in 8 or 16 bit local buses.

� drvHandle is the handle of the PCI device; and

� endianLaneDescriptor is the descriptor that determines Big Endian byte lanes for 8 or 16 bit
local buses only. Possible descriptors that should be OR’ed together are:

� UPPER_BYTE_LANE_ENDIAN_MODE

� LOWER_BYTE_LANE_ENDIAN_MODE

Note: This function only has meaning if Big Endian operation is enabled. Before this function can
be used in a Win32 environment, a PCI device must be selected using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG endianLaneDescriptor;

endianLaneDescriptor = UPPPER_BYTE_LANE_ENDIAN_MODE;
PlxConfigBigEndianByteLane(drvHandle, endianLaneDescriptor);

3-34 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxConfigLittleEndian

Syntax:

RETURN_CODE PlxConfigLittleEndian(IN HANDLE drvHandle,
IN ULONG endianDescriptor);

Description:

Configures the PCI device for Little Endian operation.

� drvHandle is the handle of the PCI device; and

� endianDescriptor is the descriptor register that enables Little Endian operation. Possible
descriptors that should be OR’ed together are:

� CONFIGURATION_ENDIAN_MODE

� DIRECT_MASTER_ENDIAN_MODE

� DIRECT_SLAVE_SPACE0_ENDIAN_MODE

� DIRECT_SLAVE_EROM_ENDIAN_MODE

� DIRECT_SLAVE_SPACE1_ENDIAN_MODE

� DMA_CHANNEL1_ENDIAN_MODE

� DMA_CHANNEL0_ENDIAN_MODE

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG endianDescriptor;

/* Enable Little endian mode for direct master accesses */
endianDescriptor = DIRECT_MASTER_ENDIAN_MODE ;
PlxConfigLittleEndian(drvHandle, endianDescriptor);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-35

PlxReloadConfigurationRegisters

Syntax:

RETURN_CODE PlxReloadConfigurationRegisters(IN HANDLE drvHandle);

Description:

Initiates the PCI device to reload the PCI configuration registers from its serial EEPROM.

� drvHandle is the handle of the PCI device.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;

PlxReloadConfigurationRegisters(drvHandle);

3-36 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxConfigVendorDeviceId

Syntax:

RETURN_CODE PlxConfigVendorDeviceId(IN HANDLE drvHandle,
IN USHORT vendorId,
IN USHORT deviceId);

Description:

Programs the PCI device’s Vendor and Device IDs .

� drvHandle is the handle of the PCI device;

� vendorId is the vendor specific identification number distributed by the PCI SIG; and

� deviceId is the device specific identification number.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by IOP applications.

Usage:

HANDLE drvHandle;

PlxConfigVendorDeviceId(drvHandle,
 PLX_VENDOR_ID,
 PLX_9080RDK_960_DEVICE_ID
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-37

PlxConfigClassCode

Syntax:

RETURN_CODE PlxConfigClassCode(IN HANDLE drvHandle,
IN UCHAR registerLevel,
IN UCHAR subClass,
IN UCHAR baseClass);

Description:

Programs the PCI device’s Register Level Programming Interface, SubClass code, and Base Class
code.

� drvHandle is the handle of the PCI device;

� registerLevel is an application specific identification number identifying programming
interface;

� subClass is an application specific identification number identifying type of adapter; and

� baseClass is an application specific identification number identifying type of adapter.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by IOP applications.

Usage:

HANDLE drvHandle;

PlxConfigClassCode(drvHandle,
 PLX9080_I2O_RLPI,
 PLX9080_I2O_SUBCLASS,
 PLX9080_I2O_BASE_CLASS
);

3-38 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxInitDone

Syntax:

RETURN_CODE PlxInitDone(IN HANDLE drvHandle);

Description:

Signals PCI device to allow external PCI masters (i.e. PCI BIOS) access to the PCI device.

� drvHandle is the handle of the PCI device.

Note: Upon completion of initialization by the IOP processor, this function must be called in
order to give access to external PCI masters to the PCI device. Failure to do so will result in
system hang.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by IOP applications.

Usage:

HANDLE drvHandle;
ULONG data;

/* Configure the IOP processor and the PLX PCI9080 */
data = 0x10000000;
PlxSetDirectSlaveRemap(drvHandle, pciMemSpace ,&data);

data = 0xf0000000;
PlxSetDirectSlaveRange(drvHandle, pciMemSpace ,&data);

data = 0x10000000;
PlxSetDirectMasterRemap(drvHandle, pciMemSpace ,&data);

data = 0x40000000; /* local address for DM is 0x40000000 */
PlxSetDirectMasterBaseAddress(drvHandle, pciMemSpace ,&data);

/* Now let PCI masters access us */
PlxInitDone(drvHandle);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-39

PlxSetUserOut

Syntax:

RETURN_CODE PlxSetUserOut(IN HANDLE drvHandle);

Description:

Sets the PCI device’s USERO pin.

� drvHandle is the handle of the PCI device.

 Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;

PlxSetUserOut(drvHandle);

3-40 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxClearUserOut

Syntax:

RETURN_CODE PlxClearUserOut(IN HANDLE drvHandle);

Description:

Clears the PCI device’s USERO pin.

� drvHandle is the handle of the PCI device.

 Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;

PlxClearUserOut(drvHandle);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-41

PlxGetBarRange

Syntax:

RETURN_CODE PlxGetBarRange(IN HANDLE drvHandle,
IN ULONG barRegisterNumber,
OUT PULONG data,
IN ULONG bus,
IN ULONG slot);

Description:

Retrieves the range of any PCI base address register.

� drvHandle is the handle of the PCI device;

� barRegisterNumber is the base address register number;

� data is a pointer to a buffer that stores the range;

� bus is the PCI bus number containing the device to read, for current bus use 0xFFFFFFFF;

� slot is the PCI slot number containing the device to read, for current slot use 0xFFFFFFFF.

 Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG data;

/* read range of BAR0 on device 11, bus 0 */
PlxGetBarRange(drvHandle, PCI9080_RTR_BASE, &data, 0x0, 0x11);

3-42 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxSetDirectSlaveRemap

Syntax:

RETURN_CODE PlxSetDirectSlaveRemap(IN HANDLE drvHandle,
IN LOCAL_SPACE localSpace,
IN ULONG data);

Description:

Configures the remap register for Direct Slave accesses

� drvHandle is the handle of the PCI device;

� localSpace defines which local space is to be configured; and,

� data is a pointer to a buffer that contains the configuration information.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-43

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Comments

The local space enumerated type is used to select the type of bus cycles when accessing the PCI
bus.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by IOP applications.

Usage:

HANDLE drvHandle;
ULONG data;

/* Configure the IOP processor and the PLX PCI9080 */
data = 0x10000000;
PlxSetDirectSlaveRemap(drvHandle, LocalSpace0 ,&data);

data = 0xf0000000;
PlxSetDirectSlaveRange(drvHandle, LocalSpace0 ,&data);

data = 0x30000000;
PlxSetDirectMasterRemap(drvHandle, pciMemSpace ,&data);

data = 0x40000000; /* local address for DM is 0x40000000 */
PlxSetDirectMasterBaseAddress(drvHandle, pciMemSpace ,&data);

/* Now let PCI masters access us */
PlxInitDone(drvHandle);

3-44 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxSetDirectSlaveRange

Syntax:

RETURN_CODE PlxSetDirectSlaveRange(IN HANDLE drvHandle,
IN LOCAL_SPACE localSpace,
IN ULONG data);

Description:

Configures the range register for Direct Slave accesses

� drvHandle is the handle of the PCI device;

� localSpace defines which local space is to be configured; and,

� data is a pointer to a buffer that contains the configuration information.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-45

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Comments

The local space enumerated type is used to select the type of bus cycles when accessing the PCI
bus.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by IOP applications.

Usage:

HANDLE drvHandle;
ULONG data;

/* Configure the IOP processor and the PLX PCI9080 */
data = 0x10000000;
PlxSetDirectSlaveRemap(drvHandle, LocalSpace0 ,&data);

data = 0xf0000000;
PlxSetDirectSlaveRange(drvHandle, LocalSpace0 ,&data);

data = 0x30000000;
PlxSetDirectMasterRemap(drvHandle, pciMemSpace ,&data);

data = 0x40000000; /* local address for DM is 0x40000000 */
PlxSetDirectMasterBaseAddress(drvHandle, pciMemSpace ,&data);

/* Now let PCI masters access us */
PlxInitDone(drvHandle);

3-46 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxSetDirectMasterRemap

Syntax:

RETURN_CODE PlxSetDirectMasterRemap(IN HANDLE drvHandle,
IN PCI_SPACE pciSpace,
IN ULONG data);

Description:

Configures the remap register for Direct Master I/O accesses

� drvHandle is the handle of the PCI device;

� pciSpace defines which PCI space is to be configured (Memory or I/O); and,

� data is a pointer to a buffer that contains the configuration information.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

PCI Space Enum Data Type

typedef enum _PCI_SPACE
{
 pciMemSpace,
 pciIoSpace
} PCI_SPACE;

Purpose

Enumerated type used for choosing the desired PCI Address Space access.

Members

pciMemSpace
Use PCI memory cycles when accessing the PCI bus.

pciIoSpace
Use PCI I/O cycles when accessing the PCI bus.

Comments

The local space enumerated type is used to select the type of bus cycles when accessing the PCI
bus.

Return Value:

On success, this function returns API_SUCCESS.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-47

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG data;

/* Configure the IOP processor and the PLX PCI9080 */
data = 0x10000000;
PlxSetDirectSlaveRemap(drvHandle, pciMemSpace ,&data);

data = 0xf0000000;
PlxSetDirectSlaveRange(drvHandle, pciMemSpace ,&data);

data = 0x30000000;
PlxSetDirectMasterRemap(drvHandle, pciMemSpace ,&data);

data = 0x40000000; /* local address for DM is 0x40000000 */
PlxSetDirectMasterBaseAddress(drvHandle, pciMemSpace ,&data);

/* Now let PCI masters access us */
PlxInitDone(drvHandle);

3-48 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxSetDirectMasterBaseAddress

Syntax:

RETURN_CODE PlxSetDirectMasterBaseAddress(IN HANDLE drvHandle,
IN PCI_SPACE pciSpace,
IN ULONG data);

Description:

Defines the base address Direct Master accesses

� drvHandle is the handle of the PCI device;

� pciSpace defines which PCI space is to be configured (Memory or I/O); and,

� data is a pointer to a buffer that contains the base address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

PCI Space Enum Data Type

typedef enum _PCI_SPACE
{
 pciMemSpace,
 pciIoSpace
} PCI_SPACE;

Purpose

Enumerated type used for choosing the desired PCI Address Space access.

Members

pciMemSpace
Use PCI memory cycles when accessing the PCI bus.

pciIoSpace
Use PCI I/O cycles when accessing the PCI bus.

Comments

The local space enumerated type is used to select the type of bus cycles when accessing the PCI
bus.

Return Value:

On success, this function returns API_SUCCESS.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-49

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG data;

/* Configure the IOP processor and the PLX PCI9080 */
data = 0x10000000;
PlxSetDirectSlaveRemap(drvHandle, pciMemSpace ,&data);

data = 0xf0000000;
PlxSetDirectSlaveRange(drvHandle, pciMemSpace ,&data);

data = 0x30000000;
PlxSetDirectMasterRemap(drvHandle, pciMemSpace ,&data);

data = 0x40000000; /* local address for DM is 0x40000000 */
PlxSetDirectMasterBaseAddress(drvHandle, pciMemSpace ,&data);

/* Now let PCI masters access us */
PlxInitDone(drvHandle);

3-50 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

DMA Functions

PlxSetupDmaTransfer

Syntax:

RETURN_CODE PlxSetupDmaTransfer (IN HANDLE drvHandle,
IN ULONG channelNumber,
IN PDMADATA dmaData);

Description:

Configures the PCI device for a DMA transfer.

� drvHandle is the handle of the PCI device;

� channelNumber is the DMA channel to setup (either DMA_CHANNEL0, or
DMA_CHANNEL1); and

� dmaData is a structure that contains the DMA setup information.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

DMA Data Structure And DMA Chain Structure

typedef struct _DMADATA
{
 ULONG dmaMode;
 DMACHAIN dmaChain[1];
}DMADATA, *PDMADATA;

typedef struct _DMACHAIN
{
 ULONG pciAddr;
 ULONG localAddr;
 ULONG transferByteCount;
 ULONG descriptorPointer;
}DMACHAIN, *PDMACHAIN;

Purpose

Structure containing the DMA data used to program the PCI 9080 DMA registers.

Members

dmaMode
The DMA mode data used to program the PCI 9080 DMA Mode register for a given
DMA channel.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-51

dmaChain
An array of DMA chain data structures.

dmaChain.pciAddr
The PCI buffer address for the DMA transfer. This value is used to program the PCI 9080
DMA PCI Address Register for a given DMA channel.

dmaChain.localAddr
The IOP buffer address for the DMA transfer. This value is used to program the PCI
9080 DMA Local Address Register for a given DMA channel.

dmaChain.transferByteCount
The number of bytes to be transferred. This value is used to program the PCI 9080 DMA
Transfer Byte Count Register for a given DMA channel.

dmaChain.descriptorPointer
The descriptor pointer that points to the next DMA chain element. This value is used to
program the PCI 9080 DMA Descriptor Pointer Register for a given DMA channel. The
lower four bits are used for programming this DMA transfer. Refer to the PCI 9080 Data
Sheet for more information.

Comments

The DMA data structure is used to program the PCI 9080 DMA Registers.

For DMA transfers that use DMA chaining, the DMA chains need to be allocated and filled
before filling the DMA data structure. When the DMA chain is complete insert the address of the
first chain element into the dmaChain.descriptorPointer of the DMA data structure (with the
lower four bits programmed according to the PCI 9080 Data Sheet). Do not fill in the other chain
elements (dmaChain.pciAddr, dmaChain.localAddr and dmaChain.transferByteCount) of the
DMA chain structure element of the DMA data structure.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;
DMADATA data;
DMACHAIN myChain[2];

3-52 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

/* Setup a DMA transfer on Channel 0 as a Read, without chaining,
and with interrupts */
channelNumber = DMA_CHANNEL0;
data.dmaMode = PCI_DMA_MODE_DEFAULT | PCI_DMA_INTR_ENABLE_BIT;
data.dmaChain.pciAddr = 0xF4000000;
data.dmaChain.localAddr = 0x00001000;
data.dmaChain.transferByteCount = 1024;
data.dmaChain.descriptorPointer = 0x0 | PCI_DMA_DESCR_READ;
PlxSetupDmaTransfer(drvHandle, channelNumber, &data);

/* Setup a DMA transfer on Channel 1 as a Read then a Write, with
chaining, and with interrupts */
myChain[0].pciAddr = 0xF4000000;
myChain[0].localAddr = 0x00001000;
myChain[0].transferByteCount = 1024;
myChain[0].descriptorPointer = &myChain[1] & 0xFFFFFFF0;
myChain[0].descriptorPointer |= PCI_DMA_DESCR_READ;

myChain[1].pciAddr = 0xF8000000;
myChain[1].localAddr = 0x00005000;
myChain[1].transferByteCount = 1024;
myChain[1].descriptorPointer = 0x0 | PCI_DMA_DESCR_WRITE |

PCI_DMA_DESCR_CHAIN_END;

channelNumber = DMA_CHANNEL1;
data.dmaMode = PCI_DMA_MODE_DEFAULT | PCI_DMA_INTR_ENABLE_BIT|

PCI_DMA_CHAIN_ENABLE;
data.dmaChain.pciAddr = 0x0;
data.dmaChain.localAddr = 0x0;
data.dmaChain.transferByteCount = 0x0;
data.dmaChain.descriptorPointer = &myChain[0] & 0xFFFFFFF0;

PlxSetupDmaTransfer(drvHandle, channelNumber, &data);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-53

PlxDisableDmaChannel

Syntax:

RETURN_CODE PlxDisableDmaChannel(IN HANDLE drvHandle,
IN ULONG channelNumber);

Description:

Disables a DMA channel on a PCI device.

� drvHandle is the handle of the PCI device; and

� channelNumber is the DMA channel to enable (either DMA_CHANNEL0, or
DMA_CHANNEL1);

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;

/* Disable DMA Channel 0 */
channelNumber = DMA_CHANNEL0;
PlxDisableDmaChannel(drvHandle, channelNumber);

3-54 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxStartDmaChannel

Syntax:

RETURN_CODE PlxStartDmaChannel(IN HANDLE drvHandle,
IN ULONG channelNumber);

Description:

Starts a DMA transfer on a PCI device.

� drvHandle is the handle of the PCI device; and,

� channelNumber is the DMA channel to enable (either DMA_CHANNEL0, or
DMA_CHANNEL1).

Note: For this function to succeed, the DMA channel must be setup using PlxSetupDmaTransfer.
This function enables the DMA channel before it starts the transfer. Before this function can be
used in a Win32 environment, a PCI device must be selected using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;
DMADATA data;

/* Setup a DMA transfer on Channel 0 as a Read, without chaining,
and with interrupts */
channelNumber = DMA_CHANNEL0;
data.dmaMode = PCI_DMA_MODE_DEFAULT | PCI_DMA_INTR_ENABLE_BIT;
data.dmaChain.pciAddr = 0xF4000000;
data.dmaChain.localAddr = 0x00001000;
data.dmaChain.transferByteCount = 0x1024;
data.dmaChain.descriptorPointer = 0x0 | PCI_DMA_DESCR_READ;
PlxSetupDmaChannel(drvHandle, channelNumber, &data);

/* Start a DMA transfer */
PlxStartDmaChannel(drvHandle, channelNumber);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-55

PlxStopDmaChannel

Syntax:

RETURN_CODE PlxStopDmaChannel(IN HANDLE drvHandle,
IN ULONG channelNumber);

Description:

Stops a DMA transfer on a PCI device.

� drvHandle is the handle of the PCI device; and

� channelNumber is the DMA channel to enable (either DMA_CHANNEL0, or
DMA_CHANNEL1).

Note: This function pauses the current DMA transfer. Also, see PlxAbortDmaTransfer. Before
this function can be used in a Win32 environment, a PCI device must be selected using
PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;
DMADATA data;

/* Setup a DMA transfer on Channel 0 as a Read, without chaining,
and with interrupts */
channelNumber = DMA_CHANNEL0;
data.dmaMode = PCI_DMA_MODE_DEFAULT | PCI_DMA_INTR_ENABLE_BIT;
data.dmaChain.pciAddr = 0xF4000000;
data.dmaChain.localAddr = 0x00001000;
data.dmaChain.transferByteCount = 0x1024;
data.dmaChain.descriptorPointer = 0x0 | PCI_DMA_DESCR_READ;

PlxSetupDmaChannel(drvHandle, channelNumber, &data);
/* Start a DMA transfer */
PlxStartDmaChannel(drvHandle, channelNumber);

/* Pause the DMA transfer */

3-56 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxStopDmaChannel(drvHandle, channelNumber);

..... /* service other code */

/* Start the transfer again */
PlxStartDmaChannel(drvHandle, channelNumber);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-57

PlxAbortDmaChannel

Syntax:

RETURN_CODE PlxAbortDmaChannel(IN HANDLE drvHandle,
IN ULONG channelNumber);

Description:

Aborts a DMA transfer on a PCI device.

� drvHandle is the handle of the PCI device; and

� channelNumber is the DMA channel to enable (either DMA_CHANNEL0, or
DMA_CHANNEL1).

Note: This function permanently stops the current DMA transfer. The transfer cannot be
restarted using PlxStartDmaTransfer after this function is used. Also, see PlxStopDmaTransfer().
Before this function can be used in a Win32 environment, a PCI device must be selected using
PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;
DMADATA data;

/* Setup a DMA transfer on Channel 0 as a Read, without chaining,
and with interrupts */
channelNumber = DMA_CHANNEL0;
data.dmaMode = PCI_DMA_MODE_DEFAULT | PCI_DMA_INTR_ENABLE_BIT;
data.dmaChain.pciAddr = 0xF4000000;
data.dmaChain.localAddr = 0x00001000;
data.dmaChain.transferByteCount = 0x1024;
data.dmaChain.descriptorPointer = 0x0 | PCI_DMA_DESCR_READ;

PlxSetupDmaChannel(drvHandle, channelNumber, &data);

/* Start a DMA transfer */
PlxStartDmaChannel(drvHandle, channelNumber);

3-58 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

/* Pause the DMA transfer */
PlxStopDmaChannel(drvHandle, channelNumber);

/* Abort the transfer */
PlxAbortDmaChannel(drvHandle, channelNumber);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-59

PlxClearDmaChannelIntr

Syntax:

RETURN_CODE PlxClearDmaChannelIntr(IN HANDLE drvHandle,
IN ULONG channelNumber);

Description:

Clears a DMA channel interrupt.

� drvHandle is the handle of the PCI device; and

� channelNumber is the DMA channel to clear (either DMA_CHANNEL0, or
DMA_CHANNEL1).

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;

/****** IOP CODE SAMPLE ONLY ********/
/* Clear DMA Interrupt on Channel 0 */
channelNumber = DMA_CHANNEL0;
PlxClearDmaChannelIntr(drvHandle, channelNumber);

3-60 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxQueryDmaChannelDone

Syntax:

RETURN_CODE PlxQueryDmaChannelDone(IN HANDLE drvHandle,
IN ULONG channelNumber,
OUT PULONG channelStatus);

Description:

Queries if a DMA transfer is done.

� drvHandle is the handle of the PCI device;

� channelNumber is the DMA channel to query(either DMA_CHANNEL0, or
DMA_CHANNEL1); and

� channelStatus returns the status flag of the DMA channel. A value greater than zero is
returned if the DMA transfer is complete. A value of zero is returned if the DMA transfer is
not complete.

Note: This function is usually used when users do not wish to enable DMA interrupts. Under
normal circumstances DMA interrupts should be enabled and this function is not necessary.
Before this function can be used in a Win32 environment, a PCI device must be selected using
PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber = DMA_CHANNEL0;
ULONG channelStatus;

/* Poll DMA channel status */
do {

/* Sleep for 100 ms and recheck */
Sleep(100);
/* check status */
PlxQueryDmaChannelDone(drvHandle, channelNumber,

&channelStatus);
} while (channelStatus == 0x0);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-61

PlxDmaChannelAvailable

Syntax:

ULONG PlxDmaChannelAvailable(IN HANDLE drvHandle);

Description:

Checks for first available DMA channel.

� drvHandle is the handle of the PCI device;

Note: This function is used to get the first available DMA channel. Note that race conditions may
arise from the use of this function under certain situations. Before this function can be used in a
Win32 environment, a PCI device must be selected using PlxSelectPciDevice().

Return Value:

If DMA channels 0 or 1 are available, the function will return DMA_CHANNEL0 or
DMA_CHANNEL1, respectively.

If no channels are available, NO_DMA_CHANNEL_AVAILABLE will be returned.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;
DMADATA data;

/* Check which channel is available */
channelNumber = PlxDmaChannelAvailable(drvHandle);

/* Setup a DMA transfer as a Read, without chaining, and with
interrupts */
data.dmaMode = PCI_DMA_MODE_DEFAULT | PCI_DMA_INTR_ENABLE_BIT;
data.dmaChain.pciAddr = 0xF4000000;
data.dmaChain.localAddr = 0x00001000;
data.dmaChain.transferByteCount = 0x1024;
data.dmaChain.descriptorPointer = 0x0 | PCI_DMA_DESCR_READ;
PlxSetupDmaChannel(drvHandle, channelNumber, &data);

/* Start a DMA transfer */
PlxStartDmaChannel(drvHandle, channelNumber);

3-62 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Messaging Functions

PlxReadInboundPort

Syntax:

RETURN_CODE PlxReadInboundPort(IN HANDLE drvHandle,
IN PULONG framePointer);

Description:

Reads the Messaging Inbound Port.

� drvHandle is the handle of the PCI device; and

� framePointer is the address of the Message Frame (MFA).

The resulting MFA depends on if this function is being called from the Win32 application or the
IOP application. See the table below for reference.

Function Called From Purpose MFA returned

Win32 Application Get an Empty Message Frame Inbound Free Tail Pointer

IOP Application Get a Posted Message Frame Inbound Post Tail Pointer

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG framePointer;

/* Read Inbound Port */
PlxReadInboundPort(drvHandle, &framePointer);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-63

PlxWriteInboundPort

Syntax:

RETURN_CODE PlxWriteInboundPort(IN HANDLE drvHandle,
IN PULONG framePointer);

Description:

Write to the Messaging Inbound Port.

� drvHandle is the handle of the PCI device;

� framePointer is the address of the Message Frame (MFA) to write.

The destination FIFO of the MFA written depends on if this function is being called from the
Win32 application or the IOP application. See the table below for reference.

Function Called From Purpose MFA destination

Win32 Application Post a Message to the FIFO Inbound Post Head Pointer

IOP Application Free a Message Frame Inbound Free Head Pointer

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG framePointer;

/* Write to the Inbound Port from the Win32 */
framePointer = malloc(sizeof(ULONG)*60);

/* fill the message frame with relevant data */
...

/* Post the address of the message frame to the Inbound Port */
PlxWriteInboundPort(drvHandle, &framePointer);

3-64 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxReadOutboundPort

Syntax:

RETURN_CODE PlxReadOutboundPort(IN HANDLE drvHandle,
IN PULONG framePointer);

Description:

Reads the Messaging Outbound Port.

� drvHandle is the handle of the PCI device; and

� framePointer is the address of the Message Frame (MFA).

The resulting MFA depends on if this function is being called from the Win32 application or the
IOP application. See the table below for reference.

Function Called From Purpose MFA returned

Win32 Application Get a Posted Message Frame Outbound Post Tail Pointer

IOP Application Get an Empty Message Frame Outbound Free Tail Pointer

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG framePointer;

/* Read outbound port */
PlxReadOutboundPort(drvHandle, &framePointer);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-65

PlxWriteOutboundPort

Syntax:

RETURN_CODE PlxWriteOutboundPort(IN HANDLE drvHandle,
IN PULONG framePointer);

Description:

Write to the Messaging Outbound Port.

� drvHandle is the handle of the PCI device; and

� framePointer is the address of the Message Frame (MFA) to write.

The destination FIFO of the MFA written depends on if this function is being called from the
Win32 application or the IOP application. See the table below for reference.

Function Called From Purpose MFA destination

Win32 Application Free a Message Frame Outbound Free Head Pointer

IOP Application Post a Message to the FIFO Outbound Post Head Pointer

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG framePointer;

/* Write to the Outbound Port from the Win32 */
PlxWriteOutboundPort(drvHandle, &framePointer);

3-66 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxGetInboundFreeMfa

Syntax:

RETURN_CODE PlxGetInboundFreeMfa(IN HANDLE drvHandle,
IN PULONG framePointer);

Description:

Retrieves a MFA from the Messaging Inbound Free FIFO. This is used by the IOP to send a
message back to itself via the PlxPutInboundPostMfa() API call.

� drvHandle is the handle of the PCI device; and

� framePointer is the address of the Message Frame (MFA).

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by IOP applications.

Usage:

HANDLE drvHandle;
ULONG framePointer;

/* Get Inbound Free MFA */
PlxGetInboundFreeMfa(drvHandle, &framePointer);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-67

PlxPutInboundPostMfa

Syntax:

RETURN_CODE PlxPutInboundPostMfa(IN HANDLE drvHandle,
IN PULONG framePointer);

Description:

Posts an MFA to the Messaging Inbound Post FIFO. This is used by the IOP to send a message
back to itself. This is used in conjunction with PlxGetInboundFreeMfa() API call.

� drvHandle is the handle of the PCI device; and

� framePointer is the address of the Message Frame (MFA) to write.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by IOP applications.

Usage:

HANDLE drvHandle;
ULONG framePointer;

/* Post a MFA to the Inbound Post FIFO */
framePointer = malloc(sizeof(ULONG)*60);

/* fill the message frame with relevant data */
...

/* Post the address of the message frame to the Inbound Port */
PlxPutInboundPostMfa(drvHandle, &framePointer);

3-68 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxInitMessageFifos

Syntax:

RETURN_CODE PlxInitMessageFifos(IN HANDLE drvHandle,
IN ULONG fifoSize,
IN ULONG localAddr);

Description:

Configures messaging FIFO addresses.

� drvHandle is the handle of the PCI device;

� fifoSize is the size of each FIFO; and

� localAddr is the base address for the FIFOs. The base address must start on a 1MB boundary.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by IOP applications.

Usage:

HANDLE drvHandle;

PlxInitMessageFifos(drvHandle, FIFO_SIZE_16K, 0x20000000);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-69

Bus Memory and I/O Functions

PlxDirectSlaveReadChar

Syntax:

RETURN_CODE PlxDirectSlaveReadChar(IN HANDLE drvHandle,
IN LOCAL_SPACE localSpace,
IN ULONG localSpaceOffset,
IN ULONG size,
OUT PUCHAR destination);

Description:

Reads an 8-bit value from the local bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� localSpace defines which local address space register to used;

� localSpaceOffset is the starting offset from the localSpace PCI address to start reading from;

� size defines the number of bytes you want to read from the local bus; and

� destination is a pointer to the storage location of the return value.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice(). This API function does not remap the local space window. You may
use PlxDirectSlaveRemapReadChar() API function if you wish to remap the local space window.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

3-70 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

LocalSpace1
Use Local Space 1 base address register.

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
UCHAR buff[BUFFER_SIZE];

/*
 * Read 0x64 bytes of local bus memory starting at location
 * 0x100000
 */
PlxDirectSlaveReadChar(drvHandle,
 LocalSpace0,
 0x100000,
 BUFFER_SIZE,
 buff
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-71

PlxDirectSlaveWriteChar

Syntax:

RETURN_CODE PlxDirectSlaveWriteChar(IN HANDLE drvHandle,
IN LOCAL_SPACE localSpace,
IN ULONG localSpaceOffset,
IN ULONG size,
OUT PUCHAR source);

Description:

Writes an 8-bit value to the local bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� localSpace defines which local address space register to used;

� localSpaceOffset is the starting offset from the localSpace PCI address to start writing to;

� size defines the number of bytes you want to read from the local bus; and

� source is a pointer to the buffer that holds the data to store on the local bus.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice(). This API function does not remap the local space window. You may
use PlxDirectSlaveRemapWriteChar() API function if you wish to remap the local space window.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

3-72 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

/*
 * Clear 0x64 bytes of local bus memory starting at location
 * 0x100000
 */
buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectSlaveWriteChar(drvHandle,
 LocalSpace0,
 0x100000,
 BUFFER_SIZE,
 buff
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-73

PlxDirectSlaveReadShort

Syntax:

RETURN_CODE PlxDirectSlaveReadShort(IN HANDLE drvHandle,
IN LOCAL_SPACE localSpace,
IN ULONG localSpaceOffset,
IN ULONG size,
OUT PUSHORT destination);

Description:

Reads a 16-bit value from the local bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� localSpace defines which local address space register to used;

� localSpaceOffset is the starting offset from the localSpace PCI address to start reading from;

� size defines the number of shorts you want to read from the local bus; and

� destination is a pointer to the storage location of the return value.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice(). This API function does not remap the local space window. You may
use PlxDirectSlaveRemapReadShort() API function if you wish to remap the local space window.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

3-74 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
USHORT buff[BUFFER_SIZE];

/*
 * Read 0x64 shorts of local bus memory starting at location
 * 0x100000
 */
PlxDirectSlaveReadShort(drvHandle,
 LocalSpace0,
 0x100000,
 BUFFER_SIZE,
 buff
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-75

PlxDirectSlaveWriteShort

Syntax:

RETURN_CODE PlxDirectSlaveWriteShort(IN HANDLE drvHandle,
IN ULONG localSpace,
IN ULONG localSpaceOffset,
IN ULONG size,
OUT PUSHORT source);

Description:

Writes a 16-bit value to the local bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� localSpace defines which local address space register to used;

� localSpaceOffset is the starting offset of the localSpace PCI address to start writing to;

� size defines the number of shorts you want to read from the local bus; and

� source is a pointer to the buffer that holds the data to store on the local bus.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice(). This API function does not remap the local space window. You may
use PlxDirectSlaveRemapWriteShort() API function if you wish to remap the local space window.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

3-76 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

/*
 * Clear 0x64 shorts of local bus memory starting at location
 * 0x100000
 */
buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectSlaveWriteShort(drvHandle,
 LocalSpace0,
 0x100000,
 BUFFER_SIZE,
 buff
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-77

PlxDirectSlaveReadLong

Syntax:

RETURN_CODE PlxDirectSlaveReadLong(IN HANDLE drvHandle,
IN ULONG localSpace,
IN ULONG localSpaceOffset,
IN ULONG size,
OUT PULONG destination);

Description:

Reads a 32-bit value from the local bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� localSpace defines which local address space register to use.

� localSpaceOffset is the starting offset of the localSpace PCI address to start reading from;

� size defines the number of longs you want to read from the local bus; and

� destination is a pointer to the storage location of the return value.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice(). This API function does not remap the local space window. You may
use PlxDirectSlaveRemapReadLong() API function if you wish to remap the local space window.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

3-78 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
ULONG buff[BUFFER_SIZE];

/*
 * Read 0x64 longs of local bus memory starting at location
 * 0x100000
 */
PlxDirectSlaveReadLong(drvHandle,
 LocalSpace0,
 0x100000,
 BUFFER_SIZE,
 buff
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-79

PlxDirectSlaveWriteLong

Syntax:

RETURN_CODE PlxDirectSlaveWriteLong(IN HANDLE drvHandle,
IN ULONG localSpace,
IN ULONG localSpaceOffset,
IN ULONG size,
OUT PULONG source);

Description:

Writes a 32-bit value to the local bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� localSpace defines which local address space register to used;

� localSpaceOffset is the starting offset from the localSpace PCI address to start writing to;

� size defines the number of longs you want to read from the local bus; and

� source is a pointer to the buffer that holds the data to store on the local bus.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice(). This API function does not remap the local space window. You may
use PlxDirectSlaveRemapWriteLong() API function if you wish to remap the local space window.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

3-80 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

/*
 * Clear 0x64 longs of local bus memory starting at location
 * 0x100000
 */
buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectSlaveWriteLong(drvHandle,
 LocalSpace0,
 0x100000,
 BUFFER_SIZE,
 buff
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-81

PlxDirectSlaveRemapReadChar

Syntax:

RETURN_CODE PlxDirectSlaveRemapReadChar(IN HANDLE drvHandle,
OUT PUCHAR destination,
IN ULONG startLocAddr,
IN ULONG size,
IN LOCAL_SPACE localSpace);

Description:

Reads an 8-bit value from the local bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� startLocAddr is the staring address on the local bus to start reading from;

� size defines the number of bytes you want to read from the local bus; and

� localSpace defines which local address space register to use.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice(). This API function remaps the local space window. Therefore,
performance is sacrificed in favor of robustness. Users who wish to have maximum performance
should use the PlxDirectSlaveReadChar() function.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

3-82 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
UCHAR buff[BUFFER_SIZE];

buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
/*
 * Read 0x64 chars from local bus (local space 1) starting at
 * location 0x10000000 on the local bus
 */
PlxDirectSlaveRemapReadChar(drvHandle,
 buff,
 0x10000000,
 BUFFER_SIZE,
 LocalSpace1
);
PlxPrint((“1st Char = 0x%x\n”, buff[0]);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-83

PlxDirectSlaveRemapWriteChar

Syntax:

RETURN_CODE PlxDirectSlaveRemapWriteChar(IN HANDLE drvHandle,
IN PUCHAR source,
IN ULONG startLocAddr,
IN ULONG size,
IN LOCAL_SPACE localSpace);

Description:

Writes an 8-bit value to the local bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the local bus;

� startLocAddr is the staring address on the local bus to start writing to;

� size defines the number of bytes you want to read from the local bus; and

� localSpace defines which local address space register to use.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice(). This API function remaps the local space window. Therefore,
performance is sacrificed in favor of robustness. Users who wish to have maximum performance
should use the PlxDirectSlaveWriteChar() function.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

3-84 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

/*
 * Clear 0x64 chars of local bus memory starting at location
 * 0x10000000 on the local bus
 */
buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectSlaveRemapWriteChar(drvHandle,
 buff,
 0x10000000,
 BUFFER_SIZE,
 LocalSpace1
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-85

PlxDirectSlaveRemapReadShort

Syntax:

RETURN_CODE PlxDirectSlaveRemapReadShort(IN HANDLE drvHandle,
OUT PUSHORT destination,
IN ULONG startLocAddr,
IN ULONG size,
IN LOCAL_SPACE localSpace);

Description:

Reads a 16-bit value from the local bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� startLocAddr is the staring address on the local bus to start reading from;

� size defines the number of shorts you want to read from the local bus; and

� localSpace defines which local address space register to use.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice(). This API function remaps the local space window. Therefore,
performance is sacrificed in favor of robustness. Users who wish to have maximum performance
should use the PlxDirectSlaveReadShort() function.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

3-86 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
/*
 * Read 0x64 shorts from local bus (local space 1) starting at
 * location 0x10000000 on the local bus
 */
PlxDirectSlaveRemapReadShort(drvHandle,
 buff,
 0x10000000,
 BUFFER_SIZE,
 LocalSpace1
);
PlxPrint((“1st Short = 0x%x\n”, buff[0]);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-87

PlxDirectSlaveRemapWriteShort

Syntax:

RETURN_CODE PlxDirectSlaveRemapWriteShort(IN HANDLE drvHandle,
IN PUSHORT source,
IN ULONG startLocAddr,
IN ULONG size,
IN LOCAL_SPACE localSpace);

Description:

Writes a 16-bit value to the local bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the local bus;

� startLocAddr is the staring address on the local bus to start writing to;

� size defines the number of shorts you want to read from the local bus; and

� localSpace defines which local address space register to use.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice(). This API function remaps the local space window. Therefore,
performance is sacrificed in favor of robustness. Users who wish to have maximum performance
should use the PlxDirectSlaveWriteShort() function.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

3-88 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

/*
 * Clear 0x64 Shorts of local bus memory starting at location
 * 0x10000000 on local bus
 */
buff = (PUSHORT) malloc(sizeof(USHORT)* BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectSlaveRemapWriteShort(drvHandle,
 buff,
 0x10000000,
 BUFFER_SIZE,
 LocalSpace1
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-89

PlxDirectSlaveRemapReadLong

Syntax:

RETURN_CODE PlxDirectSlaveRemapReadLong(IN HANDLE drvHandle,
OUT PULONG destination,
IN ULONG startLocAddr,
IN ULONG size,
IN LOCAL_SPACE localSpace);

Description:

Reads a 32-bit value from the local bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� startLocAddr is the staring address on the local bus to start reading from;

� size defines the number of longs you want to read from the local bus; and

� localSpace defines which local address space register to use.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice(). This API function remaps the local space window. Therefore,
performance is sacrificed in favor of robustness. Users who wish to have maximum performance
should use the PlxDirectSlaveReadLong() function.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

3-90 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
/*
 * Read 0x64 longs from local bus (local space 0) starting at
 * location 0x10000000 on the local bus
 */
PlxDirectSlaveRemapReadLong(drvHandle,
 buff,
 0x10000000,
 BUFFER_SIZE,
 LocalSpace0
);
PlxPrint((“1st Long = 0x%x\n”, buff[0]);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-91

PlxDirectSlaveRemapWriteLong

Syntax:

RETURN_CODE PlxDirectSlaveRemapWriteLong(IN HANDLE drvHandle,
IN PULONG source,
IN ULONG startLocAddr,
IN ULONG size,
IN LOCAL_SPACE localSpace);

Description:

Writes a 32-bit value to the local bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the local bus;

� startLocAddr is the staring address on the local bus to start writing to;

� size defines the number of longs you want to read from the local bus; and

� localSpace defines which local address space register to use.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice(). This API function remaps the local space window. Therefore,
performance is sacrificed in favor of robustness. Users who wish to have maximum performance
should use the PlxDirectSlaveReadLong() function.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

3-92 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

/*
 * Clear 0x64 longs of local bus memory starting at location
 * 0x10000000 on local bus
 */
buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectSlaveRemapWriteLong(drvHandle,
 buff,
 0x10000000,
 BUFFER_SIZE,
 LocalSpace1
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-93

PlxDirectMasterReadChar

Syntax:

RETURN_CODE PlxDirectMasterReadChar(IN HANDLE drvHandle,
OUT PUCHAR destination,
IN ULONG startAddrOffset,
IN ULONG size);

Description:

Reads an 8-bit value from the PCI bus using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� startAddrOffset is the starting address offset used in conjunction with the PCI Base Address
(Remap) Register for Direct Master to PCI Memory to form the PCI starting address to read
from; and

� size defines the number of bytes you want to read from the PCI bus.

Note: This API function does not remap the local space window. You may use
PlxDirectMasterRemapReadChar() API function if you wish to remap the local space window.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
/* Read 0x64 bytes from PCI bus starting at location 0x100000 */
PlxDirectMasterReadChar(drvHandle, buff, 0x100000, BUFFER_SIZE);
PlxPrint((“1st byte = 0x%x\n”, buff[0]));

3-94 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDirectMasterWriteChar

Syntax:

RETURN_CODE PlxDirectMasterWriteChar(IN HANDLE drvHandle,
IN PUCHAR source,
IN ULONG startAddrOffset,
IN ULONG size);

Description:

Writes an 8-bit value to the PCI bus using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the local bus;

� startAddrOffset is the starting address offset used in conjunction with the PCI Base Address
(Remap) Register for Direct Master to PCI Memory to form the PCI starting address to write
to; and

� startLocAddr is the staring address on the PCI bus to start writing to; and

� size defines the number of bytes you want to write to the PCI bus.

Note: This API function does not remap the local space window. You may use
PlxDirectMasterRemapWriteChar() API function if you wish to remap the local space window.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

/* Clear 0x64 bytes of PCI bus memory starting at location
 * 0x100000 */
buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)
 buff[i] = 0x0L;
PlxDirectMasterWriteChar(drvHandle, buff, 0x100000, BUFFER_SIZE);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-95

PlxDirectMasterReadShort

Syntax:

RETURN_CODE PlxDirectMasterReadShort(IN HANDLE drvHandle,
OUT PUSHORT destination,
IN ULONG startAddrOffset,
IN ULONG size);

Description:

Reads a 16-bit value from the PCI bus using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� startAddrOffset is the starting address offset used in conjunction with the PCI Base Address
(Remap) Register for Direct Master to PCI Memory to form the PCI starting address to read
from; and

� size defines the number of shorts to read from the PCI bus.

Note: This API function does not remap the local space window. You may use
PlxDirectMasterRemapReadShort() API function if you wish to remap the local space window.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

buff = malloc(sizeof(USHORT) * BUFFER_SIZE);
/* Read 0x64 shorts from PCI bus starting at location 0x100000 */
PlxDirectMasterReadShort(drvHandle, buff, 0x100000, BUFFER_SIZE);
PlxPrint((“1st short = 0x%x\n”, buff[0]));

3-96 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDirectMasterWriteShort

Syntax:

RETURN_CODE PlxDirectMasterWriteShort(IN HANDLE drvHandle,
IN PUSHORT source,
IN ULONG startAddrOffset,
IN ULONG size);

Description:

Writes a 16-bit value to the PCI bus using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the PCI bus;

� startAddrOffset is the starting address offset used in conjunction with the PCI Base Address
(Remap) Register for Direct Master to PCI Memory to form the PCI starting address to write
to, and

� size defines the number of shorts to write to the PCI bus.

Note: This API function does not remap the local space window. You may use
PlxDirectMasterRemapWriteShort() API function if you wish to remap the local space window.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

/* Clear 0x64 shorts of PCI bus memory starting at location
 * 0x100000 */
buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;
PlxDirectMasterWriteShort(drvHandle, buff, 0x100000,
 BUFFER_SIZE);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-97

PlxDirectMasterReadLong

Syntax:

RETURN_CODE PlxDirectMasterReadLong(IN HANDLE drvHandle,
OUT PULONG destination,
IN ULONG startAddrOffset,
IN ULONG size);

Description:

Reads a 32-bit value from the PCI bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� startAddrOffset is the starting address offset used in conjunction with the PCI Base Address
(Remap) Register for Direct Master to PCI Memory to form the PCI starting address to read
from; and

� size defines the number of longs to read from the PCI bus.

Note: This API function does not remap the local space window. You may use
PlxDirectMasterRemapReadLong() API function if you wish to remap the local space window.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

buff = (PULONG) malloc(sizeof(ULONG)* BUFFER_SIZE);
/* Read 0x64 longs from PCI bus starting at location 0x100000 */
PlxDirectMasterReadLong(drvHandle, buff, 0x100000, BUFFER_SIZE);
PlxPrint((“1st long = 0x%x\n”, buff[0]));

3-98 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDirectMasterWriteLong

Syntax:

RETURN_CODE PlxDirectMasterWriteLong(IN HANDLE drvHandle,
IN PULONG source,
IN ULONG startAddrOffset,
IN ULONG size);

Description:

Writes a 32-bit value to the PCI bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the PCI bus;

� startAddrOffset is the starting address offset used in conjunction with the PCI Base Address
(Remap) Register for Direct Master to PCI Memory to form the PCI starting address to write
to; and

� size defines the number of longs to write to the PCI bus.

Note: This API function does not remap the local space window. You may use
PlxDirectMasterRemapWriteLong() API function if you wish to remap the local space window.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

/* Clear 0x64 longs of PCI bus memory starting at location
 0x100000 */
buff = malloc(sizeof(ULONG)* BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectMasterWriteLong(drvHandle, buff, 0x100000, BUFFER_SIZE);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-99

PlxDirectMasterRemapReadChar

Syntax:

RETURN_CODE PlxDirectMasterRemapReadChar(IN HANDLE drvHandle,
OUT PUCHAR destination,
IN ULONG startHostAddr,
IN ULONG size);

Description:

Reads an 8-bit value from the PCI bus using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� startHostAddr is the staring address on the PCI bus to start reading from; and

� size defines the number of bytes to read from the PCI bus.

Note: This API function remaps the local space window. Therefore, performance is sacrificed in
favor of robustness. Users who wish to have maximum performance should use the
PlxDirectMasterReadChar() function.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
/* Read 0x64 bytes from PCI bus starting at location 0x10000000
 * on the PCI bus */
PlxDirectMasterRemapReadChar(drvHandle,
 buff,
 0x10000000,
 BUFFER_SIZE
);
PlxPrint((“1st byte = 0x%x\n”, buff[0]));

3-100 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDirectMasterRemapWriteChar

Syntax:

RETURN_CODE PlxDirectMasterRemapWriteChar(IN HANDLE drvHandle,
IN PUCHAR source,
IN ULONG startHostAddr,
IN ULONG size);

Description:

Writes an 8-bit value to the PCI bus using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the local bus;

� startHostAddr is the staring address on the PCI bus to start writing to; and

� size defines the number of bytes to write to the PCI bus.

Note: This API function remaps the local space window. Therefore, performance is sacrificed in
favor of robustness. Users who wish to have maximum performance should use the
PlxDirectMasterWriteChar() function.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

/* Clear 0x64 bytes of PCI bus memory starting at location
 0x10000000 on PCI bus */
buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectMasterRemapWriteChar(drvHandle, buff, 0x10000000,
 BUFFER_SIZE);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-101

PlxDirectMasterRemapReadShort

Syntax:

RETURN_CODE PlxDirectMasterRemapReadShort(IN HANDLE drvHandle,
OUT PUSHORT destination,
IN ULONG startHostAddr,
IN ULONG size);

Description:

Reads a 16-bit value from the PCI bus using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� startHostAddr is the staring address on the PCI bus to start reading from; and

� size defines the number of shorts to read from the PCI bus.

Note: This API function remaps the local space window. Therefore, performance is sacrificed in
favor of robustness. Users who wish to have maximum performance should use the
PlxDirectMasterReadShort() function.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
/* Read 0x64 shorts from PCI bus starting at location 0x10000000
 on PCI bus */
PlxDirectMasterRemapReadShort(drvHandle, buff, 0x10000000,
 BUFFER_SIZE);
PlxPrint((“1st Short = 0x%x\n”, buff[0]);

3-102 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDirectMasterRemapWriteShort

Syntax:

RETURN_CODE PlxDirectMasterRemapWriteShort(IN HANDLE drvHandle,
IN PUSHORT source,
IN ULONG startHostAddr,
IN ULONG size);

Description:

Writes a 16-bit value to the PCI bus using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the PCI bus;

� startHostAddr is the staring address on the PCI bus to start writing to; and

� size defines the number of shorts to write to the PCI bus.

Note: This API function remaps the local space window. Therefore, performance is sacrificed in
favor of robustness. Users who wish to have maximum performance should use the
PlxDirectMasterWriteShort() function.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

/* Clear 0x64 Shorts of PCI bus memory starting at location
 0x10000000 on PCI bus */
buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectMasterRemapWriteShort(drvHandle, buff, 0x10000000,
 BUFFER_SIZE);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-103

PlxDirectMasterRemapReadLong

Syntax:

RETURN_CODE PlxDirectMasterRemapReadLong(IN HANDLE drvHandle,
OUT PULONG destination,
IN ULONG startHostAddr,
IN ULONG size);

Description:

Reads a 32-bit value from the PCI bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� startHostAddr is the staring address on the PCI bus to start reading from; and

� size defines the number of longs to read from the PCI bus.

Note: This API function remaps the local space window. Therefore, performance is sacrificed in
favor of robustness. Users who wish to have maximum performance should use the
PlxDirectMasterReadLong() function.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
/* Read 0x64 longs from PCI bus starting at location 0x10000000
 on PCI bus */
PlxDirectMasterRemapReadLong(drvHandle,
 buff,
 0x10000000,
 BUFFER_SIZE
);
PlxPrint((“1st Long = 0x%x\n”, buff[0]);

3-104 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDirectMasterRemapWriteLong

Syntax:

RETURN_CODE PlxDirectMasterRemapWriteLong(IN HANDLE drvHandle,
IN PULONG source,
IN ULONG startHostAddr,
IN ULONG size);

Description:

Writes a 32-bit value to the PCI bus of a PCI device using Memory bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the PCI bus;

� startHostAddr is the staring address on the PCI bus to start writing to; and

� size defines the number of longs to write to the PCI bus.

Note: This API function remaps the local space window. Therefore, performance is sacrificed in
favor of robustness. Users who wish to have maximum performance should use the
PlxDirectMasterWriteLong() function.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

/* Clear 0x64 longs of PCI bus memory starting at location
 0x10000000 on PCI bus */
buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectMasterRemapWriteLong(drvHandle, buff, 0x10000000,
 BUFFER_SIZE);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-105

PlxDirectPortSlaveReadChar

Syntax:

RETURN_CODE PlxDirectPortSlaveReadChar(IN HANDLE drvHandle,
OUT PUCHAR destination,
IN LONG size,
IN ULONG portAddr);

Description:

Reads an 8-bit value from the local bus of a PCI device using I/O bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� size defines the number of bytes you want to read from the local bus; and

� portAddr the starting I/O port address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
/* Read 0x64 bytes from local bus starting at location 0xEF00*/
PlxDirectPortSlaveReadChar(drvHandle, buff, BUFFER_SIZE, 0xEF00);
PlxPrint((“1st byte = 0x%x\n”, buff[0]);

3-106 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDirectPortSlaveWriteChar

Syntax:

RETURN_CODE PlxDirectPortSlaveWriteChar(IN HANDLE drvHandle,
IN PUCHAR source,
IN LONG size,
IN ULONG portAddr);

Description:

Writes an 8-bit value to the local bus of a PCI device using I/O bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the local bus;

� size defines the number of bytes you want to write to the local bus; and

� portAddr the starting I/O port address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

/* Clear 0x64 bytes of local bus memory starting at location
 0xEF00 */
buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectPortSlaveWriteChar(drvHandle, buff, BUFFER_SIZE,
 0xEF00);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-107

PlxDirectPortSlaveReadShort

Syntax:

RETURN_CODE PlxDirectPortSlaveReadShort(IN HANDLE drvHandle,
OUT PUSHORT destination,
IN LONG size,
IN ULONG portAddr);

Description:

Reads a 16-bit value from the local bus of a PCI device using I/O bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� size defines the number of shorts you want to read from the local bus; and

� portAddr the starting I/O port address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
/* Read 0x64 shorts from local bus starting at location 0xEF00 */
PlxDirectPortSlaveReadChar(drvHandle, buff, BUFFER_SIZE, 0xEF00);
PlxPrint((“1st short = 0x%x\n”, buff[0]);

3-108 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDirectPortSlaveWriteShort

Syntax:

RETURN_CODE PlxDirectPortSlaveWriteShort(IN HANDLE drvHandle,
IN PUSHORT source,
IN LONG size,
IN ULONG portAddr);

Description:

Writes a 16-bit value to the local bus of a PCI device using I/O bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the local bus;

� size defines the number of shorts you want to write to the local bus; and

� portAddr the starting I/O port address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

/* Clear 0x64 shorts of local bus memory starting at location
 0xEF00 */
buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectPortSlaveWriteChar(drvHandle, buff, BUFFER_SIZE,
 0xEF00);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-109

PlxDirectPortSlaveReadLong

Syntax:

RETURN_CODE PlxDirectPortSlaveReadLong(IN HANDLE drvHandle,
OUT PULONG destination,
IN LONG size,
IN ULONG portAddr);

Description:

Reads a 32-bit value from the local bus of a PCI device using I/O bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� size defines the number of longs you want to read from the local bus; and

� portAddr the starting I/O port address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
/* Read 0x64 longs from local bus starting at location 0xEF00 */
PlxDirectPortSlaveReadChar(drvHandle, buff, BUFFER_SIZE, 0xEF00);
PlxPrint((“1st long = 0x%x\n”, buff[0]);

3-110 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDirectPortSlaveWriteLong

Syntax:

RETURN_CODE PlxDirectPortSlaveWriteLong(IN HANDLE drvHandle,
IN PULONG source,
IN LONG size,
IN ULONG portAddr);

Description:

Writes a 32-bit value to the local bus of a PCI device using I/O bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the local bus;

� size defines the number of longs you want to write to the local bus; and

� portAddr the starting I/O port address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

/* Clear 0x64 longs of local bus memory starting at location
 0xEF00 */
buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectPortSlaveWriteChar(drvHandle, buff, BUFFER_SIZE,
 0xEF00);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-111

PlxDirectPortMasterReadChar

Syntax:

RETURN_CODE PlxDirectPortMasterReadChar(IN HANDLE drvHandle,
OUT PUCHAR destination,
IN LONG size,
IN ULONG portAddr);

Description:

Reads an 8-bit value from the PCI bus with a PCI device using I/O bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� size defines the number of bytes you want to read from the PCI bus; and

� portAddr the starting I/O port address.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used in an IOP environment.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
/* Read 0x64 bytes from PCI bus starting at location 0xEF00 */
PlxDirectPortMasterReadChar(drvHandle,
 buff,
 BUFFER_SIZE,
 0xEF00
);
PlxPrint((“1st byte = 0x%x\n”, buff[0]);

3-112 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDirectPortMasterWriteChar

Syntax:

RETURN_CODE PlxDirectPortMasterWriteChar(IN HANDLE drvHandle,
IN PUCHAR source,
IN LONG size,
IN ULONG portAddr);

Description:

Writes an 8-bit value to the PCI bus with a PCI device using I/O bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the PCI bus;

� size defines the number of bytes you want to write to the PCI bus; and

� portAddr the starting I/O port address.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used in an IOP environment.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

/* Clear 0x64 bytes of PCI bus memory starting at location
 * 0xEF00 */
buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectPortMasterWriteChar(drvHandle,
 buff,
 BUFFER_SIZE,
 0xEF00
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-113

PlxDirectPortMasterReadShort

Syntax:

RETURN_CODE PlxDirectPortMasterReadShort(IN HANDLE drvHandle,
OUT PUSHORT destination,
IN LONG size,
IN ULONG portAddr);

Description:

Reads a 16-bit value from the PCI bus with a PCI device using I/O bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� size defines the number of shorts you want to read from the PCI bus; and

� portAddr the starting I/O port address.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used in an IOP environment.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
/* Read 0x64 shorts from PCI bus starting at location 0xEF00 */
PlxDirectPortMasterReadChar(drvHandle,
 buff,
 BUFFER_SIZE,
 0xEF00
);
PlxPrint((“1st short = 0x%x\n”, buff[0]);

3-114 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDirectPortMasterWriteShort

Syntax:

RETURN_CODE PlxDirectPortMasterWriteShort(IN HANDLE drvHandle,
IN PUSHORT source,
IN LONG size,
IN ULONG portAddr);

Description:

Writes a 16-bit value to the PCI bus with a PCI device using I/O bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the PCI bus;

� size defines the number of shorts you want to write to the PCI bus; and

� portAddr the starting I/O port address.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used in an IOP environment.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

/* Clear 0x64 shorts of PCI bus memory starting at location
 0xEF00 */
buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectPortMasterWriteChar(drvHandle,
 buff,
 BUFFER_SIZE,
 0xEF00
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-115

PlxDirectPortMasterReadLong

Syntax:

RETURN_CODE PlxDirectPortMasterReadLong(IN HANDLE drvHandle,
OUT PULONG destination,
IN LONG size,
IN ULONG portAddr);

Description:

Reads a 32-bit value from the PCI bus with a PCI device using I/O bus cycles.

� drvHandle is the handle of the PCI device;

� destination is a pointer to the storage location of the return value;

� size defines the number of longs you want to read from the PCI bus; and

� portAddr the starting I/O port address.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used in an IOP environment.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
/* Read 0x64 longs from PCI bus starting at location 0xEF00 */
PlxDirectPortMasterReadChar(drvHandle,
 buff,
 BUFFER_SIZE,
 0xEF00
);
PlxPrint((“1st long = 0x%x\n”, buff[0]);

3-116 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDirectPortMasterWriteLong

Syntax:

RETURN_CODE PlxDirectPortMasterWriteLong(IN HANDLE drvHandle,
IN PULONG source,
IN LONG size,
IN ULONG portAddr);

Description:

Writes a 32-bit value to the PCI bus with a PCI device using I/O bus cycles.

� drvHandle is the handle of the PCI device;

� source is a pointer to the buffer that holds the data to store on the PCI bus;

� size defines the number of longs you want to write to the PCI bus; and

� portAddr the starting I/O port address.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used in an IOP environment.

Usage:

#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

/*
 * Clear 0x64 longs of PCI bus memory starting at location 0xEF00
 */
buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

buff[i] = 0x0L;

PlxDirectPortMasterWriteChar(drvHandle,
 buff,
 BUFFER_SIZE,
 0xEF00
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-117

EEPROM Access Functions

PlxReadEepromBuffer

Syntax:

RETURN_CODE PlxReadEepromBuffer(IN HANDLE drvHandle,
OUT PUSHORT dest,
IN ULONG size);

Description:

Reads 16-bit values from the configuration EEPROM.

� drvHandle is the handle of the PCI device;

� dest is a pointer a buffer to store the data read; and

� size defines the number of shorts you want to read from the EEPROM.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 or IOP applications.

Usage:

#define BUFFER_SIZE 0x40

USHORT buf[BUFFER_SIZE];

PlxReadEepromBuffer(drvHandle, buff, BUFFER_SIZE);

3-118 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxWriteEepromBuffer

Syntax:

RETURN_CODE PlxWriteEepromBuffer(IN HANDLE drvHandle,
IN PUSHORT source,
IN ULONG size);

Description:

Writes 16-bit values to the configuration EEPROM.

� drvHandle is the handle of the PCI device;

� source is a pointer a buffer that holds the values to store; and

� size defines the number of shorts you want to write to the EEPROM.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 or IOP applications.

Usage:

#define BUFFER_SIZE 0x40

USHORT buf[BUFFER_SIZE];

/* clear EEPROM */
for (i=0; i < BUFFER_SIZE; i++)

buf[i] = 0x0;

PlxWriteEepromBuffer(drvHandle, buff, BUFFER_SIZE);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-119

Windows and IOP Device Driver Functions

PlxInitaializeAPI

Syntax:

RETURN_CODE PlxInitializeAPI(OUT PHANDLE pDrvHandle);

Description:

Initializes the PCI SDK API.

� pDrvHandle is the handle of the device driver that the API is using;

Note: This function should be used to get a handle to the device driver before any API calls can
be used. The handle returned by this API function should be closed using the PlxTerminateAPI()
API function before the user application exits.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

/* Init use of the PCI SDK API */
HANDLE PlxHandle;
PlxInitializeAPI(&PlxHandle);

 other code

/* Terminate use of the PCI SDK API */
PlxTerminateAPI(PlxHandle);

3-120 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxTerminateAPI

Syntax:

RETURN_CODE PlxTerminateAPI(IN HANDLE drvHandle);

Description:

Terminates use of the PCI SDK API.

� drvHandle is the handle of the device driver that was returned from PlxInitializeAPI().

Note: This function should be preceded by a call to PlxInitializeAPI() and should be used to
terminate use of the PCI SDK API before the application terminates.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

/* Init use of the PCI SDK API */
HANDLE PlxHandle;
PlxInitializeAPI(&PlxHandle);

 other code

/* Terminate use of the PCI SDK API */
PlxTerminateAPI(PlxHandle);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-121

PCI Device Functions

PlxReadConfigRegister

Syntax:

RETURN_CODE PlxReadConfigRegister(IN HANDLE drvHandle,
IN ULONG registerNumber,
OUT PULONG data,
IN ULONG bus,
IN ULONG slot);

Description:

Read a configuration register from a PCI device.

� drvHandle is the handle of the PCI device;

� registerNumber is the configuration register to read;

� data is a pointer to a buffer to store the register contents;

� bus is the PCI bus number of the device to read. If set to 0xFFFFFFFF the currently selected
device is used; and

� slot is the PCI slot number of the device to read. If set to 0xFFFFFFFF the currently
selected device is used.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 or IOP applications. This API function can be used with a
non-PLX device.

Usage:

HANDLE drvHandle;
ULONG data;

/* Read the Vendor and Device ID of the PCI device on Bus 0
 Slot 6 */
PlxReadConfigRegister(drvHandle, PCI9080_VENDOR_ID, &data,
 0x00, 0x06);
PlxPrint((“ Vendor ID & Device ID = 0x%x\n”, data);

3-122 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxWriteConfigRegister

Syntax:

RETURN_CODE PlxWriteConfigRegister(IN HANDLE drvHandle,
IN ULONG registerNumber,
IN PULONG data,
IN ULONG bus,
IN ULONG slot);

Description:

Writes data to a configuration register on a PCI device.

� drvHandle is the handle of the PCI device;

� registerNumber is the configuration register to write to;

� data is a pointer to the buffer that contains the data to write;

� bus is the PCI bus number of the device to write. If set to 0xFFFFFFFF the currently
selected device is used; and

� slot is the PCI slot number of the device to write. If set to 0xFFFFFFFF the currently
selected device is used.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 or IOP applications. This API function can be used with a
non-PCI 9080 device.

Usage:

HANDLE drvHandle;
ULONG data;

/* Write to the Vendor & Device ID of the PCI device on Bus 0
 Slot 6 */
data = (PLX_9080RDK_401_DEVICE_ID << 16) | PLX_VENDOR_ID;
PlxWriteConfigRegister(drvHandle,
 PCI9080_VENDOR_ID,
 &data,
 0x00,
 0x06
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-123

PlxSelectPciDevice

Syntax:

RETURN_CODE PlxSelectPciDevice(IN HANDLE drvHandle,
IN PDEVICE_LOCATION device);

Description:

Selects a PCI device as the current device given a combination of bus number, slot number,
vendor ID, and device ID.

� drvHandle is the handle of the PCI device; and

� device is a pointer to the device information.

Note: This function must proceed all other API functions that access PCI devices.

Device Location Structure

typedef struct _DEVICE_LOCATION
{
 ULONG deviceId;
 ULONG vendorId;
 ULONG busNumber;
 ULONG slotNumber;
 ULONG plxChipType;
}DEVICE_LOCATION, *PDEVICE_LOCATION;

Purpose

Structure used for passing data to and from the configuration registers of a PCI device and to
store information about a specific PCI device.

Members

deviceId
The device ID of the PCI device.

vendorId
The vendor ID of the PCI device.

busNumber
The bus number where the PCI device is located.

slotNumber
The slot number where the PCI device is located on the PCI bus mentioned above.

plxChipType
The registered PLX chip type for the PCI device. Possible values are
PLX_9080_DEVICE_ID and NO_DEVICE_ID.

3-124 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Comments

The device can be indicated using three methods:

� Method 1: Specify vendorId, and deviceId. Set busNumber and slotNumber to
0xFFFFFFFF;

� Method 2: Specify busNumber, and slotNumber. Set vendorId and deviceId to
0xFFFFFFFF.

� Method 3: Specify busNumber, slotNumber, vendorId and deviceId.

The plxChipType does not need to be set for any of these methods mentioned above.

When a PCI device has been selected, by calling the PlxSelectPciDevice(), the plxChipType is
filled for that device. Currently the only PLX chip type recognized is the PCI 9080.

Return Value:

On success, this function returns API_SUCCESS. The missing information in the
DEVICE_LOCATION structure is also filled with the proper values.

On error, this function returns API_FAILED. All information in the DEVICE_LOCATION
structure is set to 0xFFFFFFFF.

Portability:

This function can be used by Win32 or IOP applications. This API function can be used with a
non-PCI 9080 device.

Usage:

HANDLE drvHandle;
DEVICE_LOCATION device;

device.vendorId = PLX_VENDOR_ID;
device.deviceId = PLX_9080RDK_401_DEVICE_ID;
device.busNumber = 0xFFFFFFFF;
device.slotNumber = 0xFFFFFFFF;

PlxSelectPciDevice(drvHandle, &device);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-125

PlxFindPciDevice

Syntax:

RETURN_CODE PlxFindPciDevice(IN HANDLE drvHandle,
IN PDEVICE_LOCATION device);

Description:

Finds a PCI device in the computer system given a combination of bus number, slot number,
vendor ID, and device ID. This function stops at the first device that match’s the search criteria.

� drvHandle is the handle of the PCI device; and

� device is a pointer to the device information.

Device Location Structure

typedef struct _DEVICE_LOCATION
{
 ULONG deviceId;
 ULONG vendorId;
 ULONG busNumber;
 ULONG slotNumber;
 ULONG plxChipType;
}DEVICE_LOCATION, *PDEVICE_LOCATION;

Purpose

Structure used for passing data to and from the configuration registers of a PCI device and to
store information about a specific PCI device.

Members

deviceId
The device ID of the PCI device.

vendorId
The vendor ID of the PCI device.

busNumber
The bus number where the PCI device is located.

slotNumber
The slot number where the PCI device is located on the PCI bus mentioned above.

plxChipType
The registered PLX chip type for the PCI device. Possible values are
PLX_9080_DEVICE_ID and NO_DEVICE_ID.

3-126 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Comments

The device can be indicated using three methods:

� Method 1: Specify vendorId, and deviceId. Set busNumber and slotNumber to
0xFFFFFFFF;

� Method 2: Specify busNumber, and slotNumber. Set vendorId and deviceId to
0xFFFFFFFF.

� Method 3: Specify busNumber, slotNumber, vendorId and deviceId.

The plxChipType does not need to be set for any of these methods mentioned above.

When a PCI device has been selected, by calling the PlxSelectPciDevice(), the plxChipType is
filled for that device. Currently the only PLX chip type recognized is the PCI 9080.

Return Value:

On success, this function returns API_SUCCESS. The missing information in the
DEVICE_LOCATION structure is also filled with the proper values.

On error, this function returns API_FAILED. All information in the DEVICE_LOCATION
structure is set to 0xFFFFFFFF.

Portability:

This function can only be used by Win32 applications. This API function can be used with a non-
PCI 9080 device.

Usage:

HANDLE drvHandle;
DEVICE_LOCATION device;

device.vendorId = PLX_VENDOR_ID;
device.deviceId = PLX_9080RDK_401_DEVICE_ID;
device.busNumber = 0xFFFFFFFF;
device.slotNumber = 0xFFFFFFFF;

PlxFindPciDevice(drvHandle, &device);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-127

PlxGetBaseAddress

Syntax:

RETURN_CODE PlxGetBaseAddress(IN HANDLE drvHandle,
OUT PVIRTUAL_ADDRESSES virtAddr);

Description:

Gets the user virtual addresses for the Memory resources of the PCI device.

� drvHandle is the handle of the PCI device; and

� virtAddr is a pointer to the virtual address information. If this function is used by the IOP the
address returned is the physical PCI address instead of the virtual PCI address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Virtual Addresses Structure

typedef struct _VIRTUAL_ADDRESSES
{
 ULONG va0;
 ULONG va1;
 ULONG va2;
 ULONG va3;
 ULONG va4;
 ULONG va5;
 ULONG vaRom;
 ULONG dmaBufferAddr;
 ULONG dmaBufferAddrPhys;
 ULONG dmaBufferSize;
}VIRTUAL_ADDRESSES, *PVIRTUAL_ADDRESSES;

Purpose

Structure containing the user virtual addresses of the PCI base address registers for a PCI device.

Members

va0
The user virtual address for PCI base address 0. For the PCI 9080 chip, this corresponds
to the user virtual address of the Memory Mapped Runtime Registers.

va1
The user virtual address for PCI base address 1. For the PCI 9080 chip, this corresponds
to the user virtual address of the I/O Mapped Runtime Registers.

3-128 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

va2
The user virtual address for PCI base address 2. For the PCI 9080 chip, this corresponds
to the user virtual address of the Local Address Space 0.

va3
The user virtual address for PCI base address 3. For the PCI 9080 chip, this corresponds
to the user virtual address of the Local Address Space 1.

va4
The user virtual address for PCI base address 4. For the PCI 9080 chip, this value is
always 0.

va5
The user virtual address for PCI base address 5. For the PCI 9080 chip, this value is
always 0.

vaRom
The user virtual address for the Expansion ROM.

dmaBufferAddr
The user virtual address for the DMA buffer currently allocated in the device driver.

dmaBufferAddrPhys
The physical address for the DMA buffer above. This value is the value used to program
the DMA channel PCI Address Register of the PCI 9080.

dmaBufferSize
The size of the DMA buffer allocated.

Comments

The virtual address structure contains all the user virtual addresses for the various PCI base
addresses including the DMA buffer allocated in the device driver. This structure is filled by
calling the PlxGetBaseAddress() API call.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 or IOP applications. This API function can be used with a
non-PCI 9080 device, but using this API function may cause the windows system to crash.

Usage:

HANDLE drvHandle;
VIRTUAL_ADDRESSES virtAddr;

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-129

/* get virtual addresses for all card resources */
PlxGetBaseAddress(drvHandle, &virtAddr);
PlxPrint((“The user space virtual address for the mem mapped
registers = 0x%x”, virtAddr.va0);
PlxPrint((“The user space virtual address for the I/O mapped
registers = 0x%x”, virtAddr.va1);
PlxPrint((“The user space virtual address for Local Address Space
0 = 0x%x”, virtAddr.va2);

3-130 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

9080RDK-401, 9080RDK-960 and 9080RDK-860 Support
Functions

PlxResetEmbedded

Syntax:

RETURN_CODE PlxResetEmbedded(IN HANDLE drvHandle);

Description:

Resets the IOP software. This function should be used before downloading IOP software.

For the PCI 9080RDK-401:
This function sends a PLX_RESET_EMBED_INT doorbell interrupt to the IOP. This forces a
board reset within the PLXRom monitor program.

For the PCI 9080RDK-960 and the PCI 9080RDK-860:
Local address 0x80000000 is the PCI 9080RDK-960 reset address. This function first
writes 0x1 at reset address 0x80000000 and waits one second before it writes 0x0 at the
same address to reset the embedded microprocessor.

� drvHandle is the handle of the PCI device;

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

HANDLE drvHandle;

PlxResetEmbedded(drvHandle);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-131

PlxDownloadInit

Syntax:

RETURN_CODE PlxDownloadInit(IN HANDLE drvHandle,
IN PULONG destAddr);

Description:

This function programs Local Address Space 0 to point to the destination address of the IOP
software. This function should be used before IOP software is downloaded.

� drvHandle is the handle of the PCI device; and

� destAddr is a pointer to a buffer that contains the entry point of the IOP software.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BLOCK_SIZE 0x512

HANDLE drvHandle;
ULONG downloadAddr = 0x10000000, buffSize;
UCHAR buff[BLOCK_SIZE];
FILE *imageHandle;

/* open file as read only and binary */
imageHandle = fopen(fname, "rb");

/* read 0x512 bytes into buff */
buffSize = fread(buff, sizeof(UCHAR), BLOCK_SIZE, imageHandle);
/* Init the download */
PlxDownloadInit(drvHandle, buff);
/* download data */
PlxDownloadData (drvHandle, buff, BLOCK_SIZE);
/* start the IOP software */
PlxStartEmbedded (drvHandle, &downloadAddr);

3-132 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxDownloadData

Syntax:

RETURN_CODE PlxDownloadData (IN HANDLE drvHandle,
IN PULONG dataBuffer,
IN ULONG bufferSize);

Description:

This function downloads blocks of IOP software to the IOP location pointed to by dataBuffer.
This function uses 32-bit local bus Memory cycles.

� drvHandle is the handle of the PCI device;

� dataBuffer is a pointer to the start of the buffer that holds the data to download;

� bufferSize is the size in bytes of the amount of data you wish to download.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BLOCK_SIZE 0x512
HANDLE drvHandle;
ULONG downloadAddr = 0x10000000, buffSize;
UCHAR buff[BLOCK_SIZE];
FILE *imageHandle;

/* open file as read only and binary */
imageHandle = fopen(fname, "rb");
/* read 0x512 bytes into buff */
buffSize = fread(buff, sizeof(UCHAR), BLOCK_SIZE, imageHandle);
/* Init the download */
PlxDownloadInit(drvHandle, buff);
/* download data */
PlxDownloadData (drvHandle, buff, BLOCK_SIZE);
/* start the IOP software */
PlxStartEmbedded (drvHandle, &downloadAddr);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-133

PlxStartEmbedded

Syntax:

RETURN_CODE PlxStartEmbedded(IN HANDLE drvHandle,
IN PULONG downloadAddr);

Description:

For the PCI 9080RDK-401:
This function programs the IOP software’s entry point into the first ULONG location of
SRAM (local address 0x10000000). The function then programs the next ULONG location
with a non-zero value causing a jump on the IOP side to the IOP software’s entry point.

For the PCI 9080RDK-960 and the PCI 9080RDK-860:
This function programs the IOP software’s entry point into PCI9080_MAILBOX7 register
and then informs the IOP side to jump to the IOP software’s entry point by writing a constant
0x55555555 to the PCI9080_MAILBOX6 .

� drvHandle is the handle of the PCI device;

� downloadAddr is a pointer to a buffer that contains the entry point of the IOP software.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PlxSelectPciDevice().

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

#define BLOCK_SIZE 0x512
HANDLE drvHandle;
ULONG downloadAddr = 0x10000000, buffSize;
UCHAR buff[BLOCK_SIZE];
FILE *imageHandle;

/* open file as read only and binary */
imageHandle = fopen(fname, "rb");
/* read 0x512 bytes into buff */
buffSize = fread(buff, sizeof(UCHAR), BLOCK_SIZE, imageHandle);
/* Init the download */
PlxDownloadInit(drvHandle, buff);

3-134 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

/* download data */
PlxDownloadData (drvHandle, buff, BLOCK_SIZE);
/* start the IOP software */
PlxStartEmbedded (drvHandle, &downloadAddr);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-135

Miscellaneous Functions

PlxPrint

Syntax:

RETURN_CODE PlxPrint(IN format (...));

Description:

PlxPrint() is very similar to the ANSI C function printf(). All applications can use it the same as
printf(). Since some of the IOP applications have different print function names this function
provides a common print function for all IOP platforms that can be portable between all IOPs and
Win32 applications.

Portability:

This function can be used by Win32 or IOP applications.

Usage:

ULONG SecondValue = 2;

PlxPrint((“Hello World (%d)\n”, 1));
PlxPrint((“Hello World (%d)\n”, SecondValue));

3-136 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxSetIntrWait

Syntax:

RETURN_CODE PlxSetIntrWait(IN HANDLE drvHandle,
IN OVERLAPPED *ovl);

Description:

This function is used by Win32 applications when they need to wait for a doorbell interrupt to
occur. It will send an overlapped event structure to the device driver and wait until the event is
set. The driver will set the event when the interrupt occurs.

� drvHandle is the handle of the PCI device; and,

� ovl is a pointer to a structure containing an overlapped event.

Return Value:

On success, this function returns API_SUCCESS.

On error, this function returns API_FAILED.

Portability:

This function can only be used by Win32 applications.

Usage:

OVERLAPPED *ovl;
HANDLE drvHandle, intrEventHandle;

ovl = GlobalAlloc(GPTR, sizeof(OVERLAPPED));
intrEventHandle = CreateEvent(NULL, FALSE, FALSE, NULL);
ovl->hEvent = intrEventHandle;

/* wait until interrupt is complete */
PlxSetIntrWait(drvHandle, ovl);

/* continue after the interrupt has occurred ... */

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-137

PlxIsIntrActive

Syntax:

BOOLEAN PlxIsIntrActive(IN HANDLE drvHandle,
OUT PINTSTATUS statusPointer);

Description:

This function is used by applications to determine which interrupt of the PCI device is currently
active.

� drvHandle is the handle of the PCI device;

� statusPointer is the descriptor register that contains information detailing which interrupts are
active. Possible descriptors are:

� PCI_DOORBELL_INTR
� PCI_ABORT_INTR
� LOCAL_INTR
� LOCAL_DOORBELL_INTR
� DMA_CHANNEL0_INTR
� DMA_CHANNEL1_INTR
� BIST_INTR
� MAILBOX0_INTR
� MAILBOX1_INTR
� MAILBOX2_INTR
� MAILBOX3_INTR
� IP_FIFO_NOT_EMPTY_INTR
� OF_FIFO_FULL_INTR

Return Value:

If an interrupt is currently pending, this function returns TRUE.

If no interrupts are currently pending, this function returns FALSE.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
INTSTATUS status;

/* is an interrupt active */
if (PlxIsIntrActive(drvHandle, &status))
{

3-138 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

if (status & PCI_DOORBELL_INTR)
PlxPrint(“\n Doorbell Interrupt “);

if (status & MAILBOX0_INTR)
PlxPrint(“\n Mailbox 0 Interrupt “);

}

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-139

3.3.5 API Data Structures
This section contains a detailed description of each data structure and data type used within the
API. The structures used are as follows:

API Data Structures

Structure Name Purpose Page Number

IOCTL Data Structure Common structure for passing data to
and from the device driver.

3-141

Virtual Addresses Structure Structure containing the user virtual
addresses of the PCI base address
registers for a PCI device.

3-143

DMA Data Structure Structure containing the DMA data
used to program the PCI 9080 DMA
registers.

3-145

DMA Chain Structure Structure containing the common
DMA chain elements. This structure is
used for building DMA chains.

3-145

Buffer Data Structure Structure used for passing data to and
from the device driver.

3-147

Device Location Structure Structure used to store information
about a specific PCI device.

3-148

Local Bus Descriptor Structure Structure used to describe the local bus
characteristics.

3-149

Local Space Enum Data Type Enumerated type used to specify the
local space access.

3-151

PCI Space Enum Data Type Enumerated type used to specify the
PCI space bus cycle type.

3-152

PLX Operating System Enum Data Type Enumerated type used to define the
current operating system.

3-153

The following is an example of a data structure or data type definition.

Sample Data Structure
typedef struct _SAMPLE
{
 ULONG someNumber;
 ULONG someSize;
 ULONG someBuffer[SOME_BUFFER_SIZE];

Table 3-111 API Data Structures

3-140 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

}SAMPLE, *PSAMPLE;

Purpose
The reasons for using this structure.

Members
An explanation of the members contained within the structure. Possible values are given when
applicable.

Comments
Extra comments on how and when this structure is used.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-141

IOCTL Data Structure

typedef struct _IOCTLDATA
{
 union
 {
 DEVICE_LOCATION dlSelectedDevice;
 ULONG ulSerialNumber;
 }uDeviceData;

 union
 {
 ULONG regNumber;
 ULONG dmaChanNumber;
 ULONG downloadAddr;
 ULONG downloadDataSize;
 ULONG portAddr;
 }uData;

 union
 {
 ULONG value;
 VIRTUAL_ADDRESSES virtualAddresses;
 DMADATA dmaValues;
 BUFFERDATA bufferData;
 CONFIGDATA configData;
 DEVICE_LOCATION device;
 }uValue;
}IOCTLDATA, *PIOCTLDATA;

Purpose
Common structure for passing data to and from the device driver.

Members
uDeviceData

Data applicable to selected device only.

uDeviceData.dlSelectedDevice

Device data pertaining to the device selected.

uDeviceData.ulSerialNumber

Used in WinNT to assign registry values, in Win95 to index driver data structure.

uData
Union of data parameters.

3-142 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

uData.regNumber
The PCI 9080 register number for the request.

uData.dmaChanNumber
The DMA channel number for the request. Can be either DMA_CHANNEL0 or
DMA_CHANNEL1.

uData.downloadAddr
The starting local download address for the next block of data to download.

uData.downloadDataSize
The size of the current block of data for download.

uData.portAddr
The I/O port address for the request.

uValue
Union of value parameters.

uValue.value
A 32 bit data value.

uValue.virtualAddresses
The user virtual addresses structure.

uValue.dmaValues
The DMA data structure.

uValue.bufferData
The buffer data structure.

uValue.configData
The configuration data structure.

uValue.device
The device location structure.

Comments
The IOCTL data structure is used for passing all information and data to the device driver. The
uData member holds all the register and address information for reads or writes. The uValue
member holds the data that was read or written to the location described in the uData member.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-143

Virtual Addresses Structure

typedef struct _VIRTUAL_ADDRESSES
{
 ULONG va0;
 ULONG va1;
 ULONG va2;
 ULONG va3;
 ULONG va4;
 ULONG va5;
 ULONG vaRom;
 ULONG dmaBufferAddr;
 ULONG dmaBufferAddrPhys;
 ULONG dmaBufferSize;
}VIRTUAL_ADDRESSES, *PVIRTUAL_ADDRESSES;

Purpose
Structure containing the user virtual addresses of the PCI base address registers for a PCI device.

Members
va0

The user virtual address for PCI base address 0. For the PCI 9080 chip, this corresponds
to the user virtual address of the Memory Mapped Runtime Registers.

va1
The user virtual address for PCI base address 1. For the PCI 9080 chip, this corresponds
to the user virtual address of the I/O Mapped Runtime Registers.

va2
The user virtual address for PCI base address 2. For the PCI 9080 chip, this corresponds
to the user virtual address of the Local Address Space 0.

va3
The user virtual address for PCI base address 3. For the PCI 9080 chip, this corresponds
to the user virtual address of the Local Address Space 1.

va4
The user virtual address for PCI base address 4. For the PCI 9080 chip, this value is
always 0.

va5
The user virtual address for PCI base address 5. For the PCI 9080 chip, this value is
always 0.

vaRom
The user virtual address for the Expansion ROM.

dmaBufferAddr
The user virtual address for the DMA buffer currently allocated in the device driver.

3-144 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

dmaBufferAddrPhys
The physical address for the DMA buffer above. This value is the value used to program
the DMA channel PCI Address Register of the PCI 9080.

dmaBufferSize
The size of the DMA buffer allocated.

Comments
The virtual address structure contains all the user virtual addresses for the various PCI base
addresses including the DMA buffer allocated in the device driver. This structure is filled by
calling the PlxGetBaseAddress() API call.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-145

DMA Data Structure And DMA Chain Structure

typedef struct _DMADATA
{
 ULONG dmaMode;
 DMACHAIN dmaChain[1];
}DMADATA, *PDMADATA;

typedef struct _DMACHAIN
{
 ULONG pciAddr;
 ULONG localAddr;
 ULONG transferByteCount;
 ULONG descriptorPointer;
}DMACHAIN, *PDMACHAIN;

Purpose
Structure containing the DMA data used to program the PCI 9080 DMA registers.

Members
dmaMode

The DMA mode data used to program the PCI 9080 DMA Mode register for a given
DMA channel.

dmaChain
An array of DMA chain data structures.

dmaChain.pciAddr
The PCI buffer address for the DMA transfer. This value is used to program the PCI 9080
DMA PCI Address Register for a given DMA channel.

dmaChain.localAddr
The IOP buffer address for the DMA transfer. This value is used to program the PCI
9080 DMA Local Address Register for a given DMA channel.

dmaChain.transferByteCount
The number of bytes to be transferred. This value is used to program the PCI 9080 DMA
Transfer Byte Count Register for a given DMA channel.

dmaChain.descriptorPointer
The descriptor pointer that points to the next DMA chain element. This value is used to
program the PCI 9080 DMA Descriptor Pointer Register for a given DMA channel. The
lower four bits are used for programming this DMA transfer. Refer to the PCI 9080 Data
Sheet for more information.

3-146 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Comments
The DMA data structure is used to program the PCI 9080 DMA Registers.

For DMA transfers that use DMA chaining, the DMA chains need to be allocated and filled
before filling the DMA data structure. When the DMA chain is complete insert the address of the
first chain element into the dmaChain.descriptorPointer of the DMA data structure (with the
lower four bits programmed according to the PCI 9080 Data Sheet). Do not fill in the other chain
elements (dmaChain.pciAddr, dmaChain.localAddr and dmaChain.transferByteCount) of the
DMA chain structure element of the DMA data structure.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-147

Buffer Data Structure

typedef struct _BUFFERDATA
{
 ULONG size;
 UCHAR buffer[BUFFER_SIZE];
}BUFFERDATA, *PBUFFERDATA;

Purpose
Structure used for passing data to and from the device driver.

Members
size

The size of the data contained within the buffer that follows. The size can not be greater
than BUFFER_SIZE.

buffer
The data buffer.

Comments
The buffer data structure is used to pass data for reading or programming the EEPROM
connected to the PCI 9080. It is also used for passing data to and from the device with the I/O
port API calls, e.g. PlxDirectPortMasterReadChar() API call will fill this structure with data read
using PCI bus I/O cycles.

3-148 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Device Location Structure

typedef struct _DEVICE_LOCATION
{
 ULONG deviceId;
 ULONG vendorId;
 ULONG busNumber;
 ULONG slotNumber;
 ULONG plxChipType;
}DEVICE_LOCATION, *PDEVICE_LOCATION;

Purpose
Structure used for passing data to and from the configuration registers of a PCI device and to
store information about a specific PCI device.

Members
deviceId

The device ID of the PCI device.

vendorId
The vendor ID of the PCI device.

busNumber
The bus number where the PCI device is located.

slotNumber
The slot number where the PCI device is located on the PCI bus mentioned above.

plxChipType
The registered PLX chip type for the PCI device. Possible values are
PLX_9080_DEVICE_ID and NO_DEVICE_ID.

Comments
The device can be indicated using three methods:

� Method 1: Specify vendorId, and deviceId. Set busNumber and slotNumber to
0xFFFFFFFF;

� Method 2: Specify busNumber, and slotNumber. Set vendorId and deviceId to
0xFFFFFFFF.

� Method 3: Specify busNumber, slotNumber, vendorId and deviceId.

The plxChipType does not need to be set for any of these methods mentioned above.

When a PCI device has been selected, by calling the PlxSelectPciDevice(), the plxChipType is
filled for that device. Currently the only PLX chip type recognized is the PCI 9080.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-149

Local Bus Descriptor Structure

typedef struct _LOCAL_BUS_DESCRIPTOR
{
 unsigned long busWidth : 2;
 unsigned long dataToDataWaitStates : 4;
 unsigned long readyInputEnable : 1;
 unsigned long btermInputEnable : 1;
 unsigned long prefetchDisable : 1;
 unsigned long prefetchCountEnable : 1;
 unsigned long burstEnable : 1;
 unsigned long prefetchCounter : 4;
 unsigned long reserved : 17; /* Word-alignment */
} LOCAL_BUS_DESCRIPTOR, *PLOCAL_BUS_DESCRIPTOR;

Purpose
Structure used to describe the local bus characteristics.

Members
busWidth

The width of the local bus.

dataToDataWaitStates
The number of wait states inserted after the address is presented on the local bus until the
data is ready. The value must be between 0-15.

readyInputEnable
Enables or disables the Ready input.

btermInputEnable
Enables or disables the BTERM input.

prefetchDisable
Enables or disables prefetching when reading memory.

prefetchCountEnable
Enables or disables prefetching counter. If enabled the PCI 9080 reads up to the number
of ULONGs specified in the prefetch counter. If disabled the PCI 9080 ignores the
prefetch counter and reads continuously until terminated by the PCI bus.

burstEnable
Enables or disables bursting. If bursting is disabled then the PCI 9080 performs
continuous single cycle accesses for burst PCI read/write cycles.

prefetchCounter
Stores the number of ULONGs that can be prefetched. Up to 16 ULONGs can be
prefetched during memory read cycles.

3-150 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Comments
The local bus descriptor structure is used to describe the local bus characteristics.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-151

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{
 LocalSpace0,
 LocalSpace1,
 LocalSpace2,
 LocalSpace3,
 ExpansionRom
}LOCAL_SPACE;

Purpose
Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members
LocalSpace0

Use Local Space 0 base address register.

LocalSpace1
Use Local Space 1 base address register.

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments
The local space enumerated type is used to choose the local space base address register.

3-152 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PCI Space Enum Data Type

typedef enum _PCI_SPACE
{
 pciMemSpace,
 pciIoSpace
} PCI_SPACE;

Purpose
Enumerated type used for choosing the desired PCI Address Space access.

Members
pciMemSpace

Use PCI memory cycles when accessing the PCI bus.

pciIoSpace
Use PCI I/O cycles when accessing the PCI bus.

Comments
The local space enumerated type is used to select the type of bus cycles when accessing the PCI
bus.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-153

PLX Operating System Enum Data Type

typedef enum _PLX_OS
{
 PlxUnderterminedOs,
 PlxWindows95,
 PlxWindowsNt
} PLX_OS;

Purpose
Enumerated type used identifying the operating system.

Members
PlxUnderterminedOs

Current operating system is unknown or not recognizable.

PlxWindows95
Current operating system is Win95.

PlxWindowsNt
Current operating system is WinNT.

Comments
The PLX operating system enumerated type is used to choose the current operating system.

3-154 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

3.4 Windows Device Driver Design

3.4.1 Introduction
The design of the Windows device driver included in the PCI SDK can be used for various board
designs. The layout of the device driver is organized so that sections of the code can be reused in
new device drivers with little modification. The following sections contain details on the design
of the WinNT and Win95 device drivers provided.

The following descriptions assume that the reader has an understanding of Windows device
drivers.

3.4.2 Device Driver File Layout
The Windows device driver is a combination of files each with a specific responsibility. The
device driver is made up of four files:

� PLXxx.C : The Windows NT/95 specific device driver code
This code provides the necessary entry points to the driver for each operating system.
This file also includes the interface for passing user requests to the other files, such as
accesses to the PLX chip via the SERVICE.C file. This file is specific to WinNT or
Win95.

� INTR.C : The interrupt service code for the Windows device driver
This code provides support functions for the handling of interrupts in either WinNT
or Win95. This includes the interrupt service routine (ISR), operating system
registering of the interrupt, and others. Some parts of this file are generic for
Windows, while others are WinNT or Win95 specific.

� PLXPCI.C : The PCI specific device driver code
This code provides all the PCI procedures, such as configuring a PCI device, reading
the PCI configuration registers of a particular device, and more. This file is generic
for PCI devices in a Windows environment.

� SERVICE.C: The PLX Chip specific device driver code
This code provides access to the PLX chip, such as reading and writing to any
register, setting up DMA transfers, and more. This file is generic for any PLX PCI
bridge chip in any operating system.

For Win95 device drivers a few files were added:

� KE95FCN.C: The Win95 kernel support functions
This code provides functions that are normally supported under WinNT. This file
may not be needed when Microsoft provides a common device driver model for
Win95 and WinNT.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-155

� PLXCTRL.ASM: The PLX Win95 VxD device driver control procedure
This file contains the procedure that connects the entry points for the Win95 VxD
device driver to the Win95 kernel control codes. This file is written in assembly.

� PLX95.DEF : The PLX Win95 VxD device driver memory segment definitions
This file contains the memory segment definitions for the Win95 VxD device driver.

3.4.2.1 Functions Contained Within PLXxx.C

The PLXxx.C file contains six functions:

Note: For the Win95 VxD device driver the main entry points, DriverEntry(), DrvDispatch(),
DrvUnload(), and PlxWriteToRegistry(), have ‘WIN95_’ appended to the beginning of the
function name.

� DriverEntry(): This is the entry point for the device driver. It performs initialization
of the device driver. This function maps all addresses and interrupts to a driver data
structure.

� plxDrvDispatch(): This is the main dispatch routine. It handles all user requests for
open, close and I/O control calls. For each user request it processes the user call and
passes the call to other support routines if necessary. This routine provides the main
functionality of the driver.

� plxDrvUnload(): This is the device driver unload routine. All memory allocated
during the execution of the device driver is freed and the device object is deleted.
When the device driver is stopped the windows kernel calls this function.

� PlxWriteToRegistry(): This function establishes the registry information given the
registry key, subkey, and device information. The bus number, slot number, device,
and vendor ID are stored for driver use. This function is called when the device
objects are created. Different versions of this function exist for each operating
system.

� PlxCompleteIrp(): This is a routine to complete an IRP that was marked pending. It is
similar to the PlxCancelIrp() but this one is called when a pending IRP has completed
successfully.
This routine is currently used when the PLX_IOCTL_SET_INTR_WAIT control
code is received. When this control code is received by the PLX device driver’s
dispatch routine it marks the IRP as pending. When it receives a doorbell interrupt
from the local side, the doorbell DPC (Deferred Procedure Call) calls the
PlxCompleteIrp() to tell the user application, waiting on this call, that a doorbell
interrupt was received.

� PlxResetEmbedded(): This routine resets an IOP processor. Currently, it supports the
PCI 9080RDK-401, PCI 9080RDK-960 and PCI 9080RDK-860 evaluation boards.

� MapInUserSpace(): This function maps any kernel virtual address into the user’s
virtual address space, one at a time. This function requires that the physical address
of the kernel virtual address be passed to it.

3-156 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

� UnmapUserSpaceAddr(): This function unmaps a user virtual address that was
mapped using the MapInUserSpace() function call. This function requires that the
user virtual address be passed to it. This is a complement function to
MapInUserSpace().

� PlxDriverSleep(): This function relinquishes the device driver from the CPU for a
given time to allow other applications to run while the device driver is waiting.

� IsPlxPciDevice(): This function checks configuration registers to determine if the
device passed in contains the PLX bridge chip. It returns a Boolean value. This
function is found in both WinNT and Win95 version of the device driver.

� PlxCancelIrp(): This is the cancel routine for any IRP (I/O Request Packet) received
by the dispatch routine. In the event that the user application terminates abruptly, the
WinNT kernel will call this routine for each pending IRP.

For the WinNT device driver only:

� PlxCreateDeviceObject(): This function creates a single device object and links one
PLX device to it. This function in doing so performs the following tasks that are
necessary for initializing and controlling a PLX device in WinNT. (Initializes
interrupts, creates registry entries, and establishes local base addresses.)

� PlxDestroyDeviceObjects(): Called only when device is being unloaded, this function
unlinks all devices from their device objects. After this is done, the device instance is
removed from the Driver object.

� PlxMapLocalMemoryAddresses(): This function converts the local base addresses
found in the configuration registers and converts them into kernel memory address
space. It also assigns these values to the device object’s extension.

� PlxUnmapLocalMemoryAddresses(): This is the previous function’s compliment. Its
purpose is to remove the base addresses referenced in the extension for the selected
device object.

For the Win95 device driver only:

� PlxSetExtension(): This function checks the serial number assigned in the API, and
uses this to find the extension for the current device. This function is called for every
I/O operation. If the device is non-PLX, the function is not used.

3.4.2.2 Functions Contained Within INTR.C

The INTR.C file contains six functions:

� plxIntr(): This is the device driver’s ISR. The ISR should be as small and as quick as
possible. For WinNT, the ISR should only clear the interrupt bit that triggered it and
queue the appropriate DPC.

� plxDoorbellDpc(): This function handles all the PCI doorbell interrupts sent from the
IOP processor.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-157

� plxAbortDpc(): This function handles abort interrupts received from the PCI 9080
chip.

� plxOutboundDpc(): This function handles the outbound post FIFO interrupt (only on
the PCI 9080 chip).

� ConnectInterrupt(): This function registers the interrupt line with the operating
system and links it with the ISR (given by the PCI BIOS to the PLX bridge chip at
boot time).

� UnReportInterruptUsage(): This function unregisters the ISR from the operating
system. This is a complement function to ConnectInterrupt().

For the Win95 device driver:

� plxIsr(): This function is called by the Win95 kernel. This function calls the plxIntr()
with the proper parameters.

3.4.2.3 Functions Contained Within PLXPCI.C

The PLXPCI.C file contains nine functions:

Note: Device driver designers with little PCI experience should consult the PCI specification
before creating PCI compliant device drivers.

� FindADevice(): This function scans all the PCI buses for a device. The target device
can be given either using the bus number and slot number of the device, the device
ID and vendor ID of the device, or by using both methods. This function returns all
of the device location structure - the bus number, slot number, device ID, vendor ID
and the PLX chip type - if the device is found. It fills the device location structure
with 0xFFFFFFFF if the device was not found.

� SelectADevice(): This function retrieves the configuration information of the target
device if it is present on any of the PCI buses. It registers the device, maps all the
base addresses into system memory and allocates memory for any buffers that are
needed for this device. The device is selected using the same device location
structure as FindADevice(). This is a Win95 driver function.

� DeselectDevice(): This function unmaps the memory, unregisters the PLX device and
unreports the interrupt. This function serves as a complement to SelectADevice() .
This is a Win95 driver function.

� MapMemoryAddress(): This function maps the base addresses, found in the
configuration registers of a PCI device, into the system memory, one at a time.

� GetAddressRange(): This function retrieves the range of addressable locations for
each base address found in the configuration registers of a PCI device, one at a time.

� RegisterPlxDevice(): This function determines if the PCI bridge chip is a PLX PCI
bridge chip and the type of PLX chip. Depending on the type of PLX chip this
function will do specific initialization, memory allocation, and set the chip type in the
device structure contained within the device extension structure.

3-158 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

� UnregisterPlxDevice(): This function frees any memory allocated by
RegisterPlxDevice() and resets the chip type in the device structure within the device
extension structure. This is a complement function to RegisterPlxDevice().

� PciReadAllBaseAddresses(): This function reads all the local base addresses from the
device information given. This returns the values in a device extension object. This
function exists in WinNT.

3.4.2.4 Functions Contained Within SERVICE.C

The SERVICE.C file contains three functions:

� plxService(): This function provides the access to the PLX PCI bridge chip.

� EepromSendCmd(): This function sends a command to the EEPROM connected to
the PLX PCI bridge chip.

� EepromClock(): This function sends the clocking sequence to the EEPROM
connected to the PLX PCI bridge chip.

3.4.3 Windows Device Driver Design and Implementation

3.4.3.1 Device Driver Initialization

The initialization sequence for the PLX device driver supplied in this PCI SDK is described in
Table 3-122 The Device Driver Initialization Sequence. The associated API/driver calls are given
as a reference to the sequence used for initializing the device driver.

Device Driver Initialization Sequence

API/driver Call What The Device Driver Does

1. DLLMain() This function is automatically run on the first call to the API. It
first determines the operating system, maps the DMA buffer to
the user’s virtual address, and determines the number of PLX
devices on the system. It then uses the Win32 API CreateFile() to
open a handle to either the plx.sys device driver under
Windows NT or plx95.vxd virtual device driver under
Windows 95.

2. DriverEntry() All connection oriented processing is done in the driver entry.
This executes before any application attaches to the API’s DLL.

For WinNT:

1. The driver dispatch points are assigned. The WinNT
kernel calls the appropriate service routine when it

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-159

API/driver Call What The Device Driver Does

receives these calls from a user application. There are six
commonly used dispatch points:

IRP_MJ_CREATE: for the open routine.
IRP_MJ_CLOSE: for the close routine
IRP_MJ_DEVICE_CONTROL: for the I/O control
routine
IRP_MJ_CLEANUP: for the IRP clean up routine
IRP_MJ_READ: for the read routine
IRP_MJ_WRITE: for the write routine

The PLX device driver currently only connects the first
three. It also connects a driver unload function called
plxDrvUnload(). This routine is called when the driver is
stopped. It performs any clean up of the device driver
and frees all memory used by the device driver and
deletes the device object.

2. A FastMutex object is created. This allows for mutual
exclusion of processes during the driver’s processing of
IRPs (I/O Request Packets).

3. The driverEntry() routine is run at system start-up. It is
at this time the data structures are created. The first
device object is created for all non-PLX devices. It can
be used to Map PCI Base Address Registers and
Expansion ROM Base Address into the user memory. A
symbolic link is given to it so the Win32 subsystem can
recognize it. Users identify the device by the handle
returned by CreateFile().

4. By scanning the buses and slots, every PLX device is
given a device object and extension. After the device and
extension are initialized, functions are called which map
the kernel memory addresses to the base address
registers, the registry is updated, symbolic links
attached, and all interrupts and DPCs (more on DPCs
later) are connected. Note that non-PLX devices do not
have interrupts attached. All data linked to the PLX
device is stored in the extension.

5. The device extension is a structure used by the driver
where commonly used variables are stored. The device
extension is where global device driver variables should
be kept. The WinNT kernel guarantees that the device
extension will be in system memory during the
execution of the driver. If a variable is not in memory
when it is accessed a page fault will occur. If this

3-160 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

API/driver Call What The Device Driver Does

happens when the device driver is executing the WinNT
kernel crashes.

6. The individual DPCs (Deferred Procedure Calls) are
initialized. The DPCs are used with interrupt service
routines (ISR). To eliminate timing and priority
problems while interrupts are being serviced, the ISR
should only run for the shortest time possible. For this
reason, the ISR offloads most of the interrupt handling to
DPCs. The DPCs are queued and executed at a lower
priority than the ISR allow

7. ing other ISRs to be serviced.

8. Finally, the device driver allocates a contiguous block of
memory that will be used for DMA transfers to and from
the device. The location of this buffer is known to every
device extension.

For Win95:

1. A globally allocated device extension is created to hold
DMA buffer information. A global pointer to a device
extension is created. Its purpose will be explained later.
A global pointer to a mutex handle is created as well.
This will be used in the Win95_DeviceIoControl()
function to maintain mutual exclusion of processes.

2. After opening the PLX key in the registry, the driver
removes outdated registry information.

3. The DMA buffer is allocated and its location stored.

4. The buses are scanned for valid PLX devices. When one
is located, the registry is updated with device
information.

5. In the Win95 version of this driver, an extension object
exist for each PLX device on the system. At this time,
non-pagable locked memory is allocated for the
extension block. If this is successful, the
SelectADevice() is called which maps all memory
address registers and connects all interrupts if needed.

6. Lastly, the mutex object is created.

3. SelectADevice() This is a Windows 95 function only. It’s functionality
mirrors that of the Windows NT functions that initialize a
device object.

1. The function first searches the PCI bus for the target

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-161

API/driver Call What The Device Driver Does

device by using either the bus number and slot number
of the device, the device ID and vendor ID of the device,
or both (FindADevice() performs this action).

2. If the device is found, SelectADevice() function will
unreport any interrupt usage of a previously mapped
device and complete any outstanding IRPs. Next this
function unmaps any memory addresses for the previous
device and unregisters the device.

3. For the new device the SelectADevice() function will
first read its configuration registers to get the
configuration information of this device. The device is
checked to see if it uses a PLX PCI bridge chip and
performs any chip specific configuration (performed by
calling RegisterPlxDevice()). The device type is set in
the device structure of the device extension structure
(see section 3.4.4 Device Driver Structures for more
information).

4. The base addresses (for local bus slave accesses) in the
configuration registers are mapped into memory. The
steps involved are as follows:

� Determine if the base address maps into memory or
I/O space.

� Get the addressable range for this base address.

� Map the address into the kernel memory space by
translating the bus address found in the
configuration register (given by the PCI BIOS at
boot time).

� Create a user virtual address for this base address.
This will allow user applications to directly access
the local bus of the device.

The ISR is connected to the interrupt line given in the
configuration registers of the device.

4. CreateFile () The device driver dispatch routine, plxDrvDispatch(), is called by
this function. As this function is called by DLLMain(), there is no
need for this to be called.

For WinNT: The dispatch routine is passed IRP_MJ_CREATE.
This increases the counter to the number of threads on that
device.

For Win95: The dispatch routine is passed DIOC_OPEN. As all
initialization has been done at driver load time. Nothing is done.

3-162 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

API/driver Call What The Device Driver Does

5. PlxSelectPciDevice() The device driver dispatch routine is called by this function.

For WinNT: The dispatch routine is called with
IRP_MJ_DEVICE_CONTROL with the control code
PLX_IOCTL_SELECT_PCI_DEVICE. The dispatch
routine gets the pointer to the system buffer which contains
the user information, the input buffer length, and the output
buffer length. The system buffer is used for both input of
data from the user and output of data back. Therefore, it is
important to copy all data needed out of the buffer before
copying data into it.

1. Since the control code sent to the dispatch routine is
PLX_IOCTL_SELECT_PCI_DEVICE the dispatch
routine fills the buffer with the selected device
information, such as device and vendor IDs as well as
bus and slot positions.

2. The dispatch function then calls
PlxMapAllUserAddresses() to assign user virtual
addresses to the base address registers.

3. If the device is a non-PLX type, the function
PCIReadAllBaseAddresses() loads all the generic PCI
base address registers.

4. Note: The driver fills the device objects with the relevant
data. The API function PlxSelectPciDevice() is
responsible for the creation and removal of device
handles to objects.

For Win95: The dispatch routine is called with the control code
PLX_IOCTL_SELECT_PCI_DEVICE. Two separate
buffers are passed along with their sizes to the dispatch
routine. A system buffer similar to the WinNT system buffer
is allocated and the data contained within the input buffer is
copied into it. At the completion of the dispatch routine, the
system buffer is copied to the output buffer.

5. Since the control code sent to the dispatch routine is
PLX_IOCTL_SELECT_PCI_DEVICE the dispatch
routine calls SelectADevice() function for non-PLX
devices only. These devices all share one area of driver
memory. If the device is PLX, the virtual addresses are
written from the appropriate extension to the application.

Table 3-122 The Device Driver Initialization Sequence

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-163

3.4.3.2 Device Driver Termination

The termination sequence for the PLX device driver supplied in the PCI SDK is described in
Table 3-133 The device driver termination sequence. The associated API calls are given as a
reference to the sequence used for initializing the device driver.

Device Driver Termination Sequence

API Call What The Device Driver Does

1. DLLMain() When an application terminates, or ends a process that uses the API
DLL, this function is called with DLL_PROCESS_DETACH
passed in. Both the API and the driver work to remove all resources
allocated. Three separate driver dispatch functions are called. Note:
This terminates the driver data for this application. The data
structures and DMA will persist until the driver itself is unloaded.
This occurs at system shutdown.

For WinNT:

1. The dispatch routine is first called with
PLX_IOCTL_DESELECT_PCI_DEVICE. This serves
to unmap all virtual addresses used by the API.

2. The control code PLX_IOCTL_UNMAP_-
COMMON_DMA is sent. This clears the DMA
information stored in the virtual address structure of the
buffer.

3. The Win32 API function CloseHandle() is called with
the global device handle passed in. The
IRP_MJ_CLOSE is caught by the driver dispatch and
used to decrement the number of threads present
counter in the device extension.

For Win95:

1. PLX_IOCTL_DESELECT_PCI_DEVICE: This case is
present to allow congruity with the API. This returns
STATUS_SUCCESS.

2. PLX_IOCTL_UNMAP_COMMON_DMA: Again this
is performed at driver unload so this returns
STATUS_SUCCESS.

3. CloseHandle() causes DIOC_CLOSEHANDLE to be
passed to the dispatch routine. This removes the
memory owned by the IRP in the extension.

Table 3-133 The device driver termination sequence

3-164 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

3.4.4 Device Driver Structures
This section contains a detailed description of each structure used within the device driver. The
structures used are as follows:

Structure Name Purpose Page Number

Device Extension Structure Structure to store commonly used variables
within the device driver.

3-165

The following is an example of a structure definition.

Sample Data Structure
typedef struct _SAMPLE
{
 ULONG someNumber;
 ULONG someSize;
 ULONG someBuffer[SOME_BUFFER_SIZE];
}SAMPLE, *PSAMPLE;

Purpose
The reasons for using this structure.

Members
Explanation of the members contained within the structure. Possible values are given when
applicable.

Comments
Extra comments on how and when this structure is used.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-165

Device Extension Structure

typedef struct _DEVICE_EXTENSION

{

#ifdef HOST

 PCI_COMMON_CONFIG plxConfigReg;

ifdef WIN95

 LPOVERLAPPED myIrp;

 HIRQ IntrHandle;

 struct _DEVICE_EXTENSION *pNextExt;

endif /* WIN95 */

ifdef WINNT

 PDEVICE_OBJECT DeviceObject;

 PDRIVER_OBJECT DriverObject;

 PADAPTER_OBJECT AdapterObject;

 ULONG MapRegisterCount;

 PUNICODE_STRING RegistryPath;

 PIRP myIrp;

 KDPC plxDoorbellDpc, plxAbortDpc, plxOutboundDpc;

endif /* WINNT */

 PKINTERRUPT InterruptObject;

 DEVICE_LOCATION device;

 ULONG currDownloadAddr, doorbellIntr;

 PHYSICAL_ADDRESS plxMemBaseAddrPhys, plxIoBaseAddrPhys,

 plxLocalBaseAddrPhys, plxLocal1BaseAddrPhys,

 plxLocal2BaseAddrPhys, plxLocal3BaseAddrPhys,

 plxRomBaseAddrPhys;

 ULONG plxMemBaseAddrUser, plxIoBaseAddrUser,
 plxLocalBaseAddrUser, plxLocal1BaseAddrUser,
 plxLocal2BaseAddrUser, plxLocal3BaseAddrUser,

 plxRomBaseAddrUser;

 ULONG dmaBigBuffer, dmaBigBufferRange, dmaBigBufferUser;

 PHYSICAL_ADDRESS dmaBigBufferPhys;

#endif /* HOST */

3-166 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

 PUCHAR plxMemBaseAddr, plxIoBaseAddr,
 plxLocalBaseAddr, plxLocal1BaseAddr,
 plxLocal2BaseAddr, plxLocal3BaseAddr,
 plxRomBaseAddr;

 ULONG plxMemBaseRange, plxIoBaseRange,
 plxLocalBaseRange, plxLocal1BaseRange,
 plxLocal2BaseRange, plxLocal3BaseRange,
 plxRomBaseRange;

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

Purpose
Structure to store commonly used variables within the device driver.

Members
plxConfigReg

This structure stores a carbon copy of all the PCI configuration registers of the device
that is currently selected by the device driver function call, PlxSelectADevice(). This
structure is only available on the host device driver.

myIrp
This structure stores the handle for a user event. The event is used to signal the user
application that a doorbell interrupt has occurred. This structure is filled by the API call,
PlxSetIntrWait(). For Win95, this is a LPOVERLAPPED structure. For WinNT, it is a
PIRP structure. This structure is only available on the host device driver.

IntrHandle
This structure stores the handle for the ISR. This structure is only available to the Win95
device driver.

DeviceObject
This structure stores the pointer to the allocated device object. This structure is only
available to the WinNT device driver.

DriverObject
This structure stores the pointer to the allocated driver object. This structure is only
available to the WinNT device driver.

AdapterObject
This structure stores the pointer to the allocated adapter object. This structure is used for
allocating DMA buffers in WinNT. This structure is only available to the WinNT device
driver.

MapRegisterCount
This variable stores the maximum number of registers needed for the DMA buffer. Each
memory page that the DMA buffer occupies requires a register. The value stored within
this variable is the buffer size divided by the page size plus two. The reason for the
addition is that the first character and the last character of the DMA buffer may be on

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-167

separate memory pages. Therefore, the worst case scenario is to have two extra map
registers one for each of the memory page containing only one character. This structure is
only available to the WinNT device driver.

RegistryPath
This structure stores the pointer to the WinNT registry. This structure is only available to
the WinNT device driver.

plxDoorbellDpc
This structure stores the pointer to the plxDoorbellDpc function. This structure is only
available to the WinNT device driver.

plxAbortDpc
This structure stores the pointer to the plxAbortDpc function. This structure is only
available to the WinNT device driver.

plxOutboundDpc
This structure stores the pointer to the plxOutboundDpc function. This structure is only
available to the WinNT device driver.

InterruptObject
This structure stores the pointer to the interrupt object. For Win95, this points to a buffer
allocated at initialization which stores information about the interrupt and the ISR. For
WinNT, it points to a interrupt object that is received from the WinNT kernel when the
ISR is registered. This structure is only available to the host device driver.

device
This structure stores information about the currently selected device. This structure is
filled when SelectADevice() device driver function call is performed. This structure is
only available to the host device driver.

currDownloadAddr
This variable stores the current local download address. This value holds the kernel
virtual address for the Local Space 0 base address and the download address offset from
the Local Base Address (Re-map) register. This variable is only available to the host
device driver.

doorbellIntr
This variable stores the last doorbell interrupt value. This variable is only available to the
host device driver.

plxMemBaseAddrPhys
This variable stores the physical address of the PCI base register 0. For the PCI 9080, this
corresponds to the PCI Base Address for Memory Mapped Runtime Registers. This
variable is only available to the host device driver.

plxIoBaseAddrPhys
This variable stores the physical address of the PCI base register 1. For the PCI 9080, this
corresponds to the PCI Base Address for I/O Mapped Runtime Registers. This variable is
only available to the host device driver.

plxLocalBaseAddrPhys
This variable stores the physical address of the PCI base register 2. For the PCI 9080, this

3-168 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

corresponds to the PCI Base Address for Local Address Space 0. This variable is only
available to the host device driver.

plxLocal1BaseAddrPhys
This variable stores the physical address of the PCI base register 3. For the PCI 9080, this
corresponds to the PCI Base Address for Local Address Space 1. This variable is only
available to the host device driver.

plxLocal2BaseAddrPhys
This variable stores the physical address of the PCI base register 4. For the PCI 9080, this
value is 0x0. This variable is only available to the host device driver.

plxLocal3BaseAddrPhys
This variable stores the physical address of the PCI base register 5. For the PCI 9080, this
value is 0x0. This variable is only available to the host device driver.

plxRomBaseAddrPhys
This variable stores the physical address of the Expansion ROM base address. For the
PCI 9080, this corresponds to the PCI Base Address for Expansion ROM. This variable is
only available to the host device driver.

plxMemBaseAddrUser
This variable stores the user virtual address of the PCI base register 0. For the PCI 9080,
this corresponds to the PCI Base Address for Memory Mapped Runtime Registers. This
variable is only available to the host device driver.

plxIoBaseAddrUser
This variable stores the user virtual address of the PCI base register 1. For the PCI 9080,
this corresponds to the PCI Base Address for I/O Mapped Runtime Registers. This
variable is only available to the host device driver.

plxLocalBaseAddrUser
This variable stores the user virtual address of the PCI base register 2. For the PCI 9080,
this corresponds to the PCI Base Address for Local Address Space 0. This variable is
only available to the host device driver.

plxLocal1BaseAddrUser
This variable stores the user virtual address of the PCI base register 3. For the PCI 9080,
this corresponds to the PCI Base Address for Local Address Space 1. This variable is
only available to the host device driver.

plxLocal2BaseAddrUser
This variable stores the user virtual address of the PCI base register 4. For the PCI 9080,
this value is 0x0. This variable is only available to the host device driver.

plxLocal3BaseAddrUser
This variable stores the user virtual address of the PCI base register 5. For the PCI 9080,
this value is 0x0. This variable is only available to the host device driver.

plxRomBaseAddrUser
This variable stores the user virtual address of the Expansion ROM base register. For the
PCI 9080, this corresponds to the PCI Base Address for Expansion ROM. This variable is
only available to the host device driver.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-169

dmaBigBuffer
This variable stores a pointer to the DMA buffer.

dmaBigBufferRange
This variable stores size of the DMA buffer.

dmaBigBufferUser
This variable stores the user virtual address of the DMA buffer.

dmaBigBufferPhys
This variable stores the physical address of DMA buffer.

plxMemBaseAddr
This variable stores the kernel virtual address of the PCI base register 0. For the PCI
9080, this corresponds to the PCI Base Address for Memory Mapped Runtime Registers.

plxIoBaseAddr
This variable stores the kernel virtual address of the PCI base register 1. For the PCI
9080, this corresponds to the PCI Base Address for I/O Mapped Runtime Registers.

plxLocalBaseAddr
This variable stores the kernel virtual address of the PCI base register 2. For the PCI
9080, this corresponds to the PCI Base Address for Local Address Space 0. For IOP
device drivers this is the IOP memory mapping for Local Address Space 0.

plxLocal1BaseAddr
This variable stores the kernel virtual address of the PCI base register 3. For the PCI
9080, this corresponds to the PCI Base Address for Local Address Space 1. For IOP
device drivers this is the IOP memory mapping for Local Address Space 1.

plxLocal2BaseAddr
This variable stores the kernel virtual address of the PCI base register 4. For the PCI
9080, this value is 0x0.

plxLocal3BaseAddr
This variable stores the kernel virtual address of the PCI base register 5. For the PCI
9080, this value is 0x0.

plxRomBaseAddr
This variable stores the kernel virtual address of the Expansion ROM base register. For
the PCI 9080, this corresponds to the PCI Base Address for Expansion ROM.

plxMemBaseRange
This variable stores the addressable range of the PCI base register 0. For the PCI 9080,
this corresponds to the PCI Base Address for Memory Mapped Runtime Registers
addressable range.

plxIoBaseRange
This variable stores the addressable range of the PCI base register 1. For the PCI 9080,
this corresponds to the PCI Base Address for I/O Mapped Runtime Registers addressable
range.

plxLocalBaseRange
This variable stores the addressable range of the PCI base register 2. For the PCI 9080,
this corresponds to the PCI Base Address for Local Address Space 0 addressable range.

3-170 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

plxLocal1BaseRange
This variable stores the addressable range of the PCI base register 3. For the PCI 9080,
this corresponds to the PCI Base Address for Local Address Space 1 addressable range.

plxLocal2BaseRange
This variable stores the addressable range of the PCI base register 4. For the PCI 9080,
this value is 0x0.

plxLocal3BaseRange
This variable stores the addressable range of the PCI base register 5. For the PCI 9080,
this value is 0x0.

plxRomBaseRange
This variable stores the addressable range of the Expansion ROM. For the PCI 9080, this
corresponds to the PCI Base Address for Expansion ROM addressable range.

Mutex, FastMutex

A mutex is a synchronization object used to claim ownership of a critical section of code
(usable by only one thread). An object cannot claim the mutex if it is already taken by
itself or others.

Comments
The device extension structure is used to store frequently used variables within the device driver.
For WinNT the device extension structure also contains all the global variables for the device
driver.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-171

3.4.5 PLX Device Driver Build Environment
The following section explains the environment used to build the WinNT plx.sys, and the Win95
plx95.vxd driver files as well as a short installation procedure.

Note: To compile a custom copy of the driver, the Microsoft Device Developer Kit for NT
version 4.0 and the Microsoft Device Driver Kit for Windows 95 should be installed. If
any a deeper understanding of the build process is desired, information is available in
the DDK documentation.

3.4.5.1 The WinNT Device Driver

After the PCI SDK software is installed on your system, your source code directory should be in
the following location, with the files shown present.

Directory: c:\plx\pcisdk\drivers\WinNT

Note: The directory provided above should be replaced by the installation directory of the PCI
SDK.

Files included:

� plxnt.c
� plxpci.c
� intr.c
� service.c
� makefile
� sources

All compiling under WinNT is executed by using the ‘build ’ command. Checked and free
builds are provided. The makefile should not be edited to add, delete or modify files in the
build environment. The sources file contains the paths, preprocessor definitions, and source
files needed to compile the device driver. After a successful build, the new device driver is
located in the c:\plx\pcisdk\drivers\winnt\i386\checked or
c:\plx\pcisdk\drivers\winnt\i386\free subdirectories. These files must be
installed to be effective.

Note: The directories provided above should be replaced by the installation directories of the
PCI SDK.

To install the WinNT PLX device driver:

Note: Before installing a new PLX device driver make sure that all PLX applications are
terminated including any application using the PLX API and PLX device driver.

1. To start the new PLX device driver, first execute the ‘net stop plx ’ command. This will
unload the current device driver.

2. Copy the plx.sys file from the local directory listed above to the
c:\winnt\system32\drivers directory.

Note: The directory provided above should be replaced by the WinNT directory.

3-172 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

3. Execute the command ‘net start plx ’. Your driver will be loaded.

3.4.5.2 The Win95 Device Driver

After the PCI SDK software is installed on your system, your source code directory should be in
the following location, with the files shown present.

Directory: c:\plx\pcisdk\drivers\Win95

Note: The directory provided above should be replaced by the installation directory of the PCI
SDK.

Files included:

� plx95.c
� plxpci.c
� ke95fcn.c
� plx95.def
� plxctrl.asm
� intr.c
� service.c
� makefile
� makefile.rel

Before compiling, the correct environment variables must be set. Use the win32.bat file found
in the DDK. Once this is done, compiling is performed using the ‘nmake’ command. After a
successful compile, the resultant plx95.vxd file is located in the
c:\plx\pcisdk\drivers\Win95\checked or
c:\plx\pcisdk\drivers\Win95\free subdirectories. These files must be installed to be
effective.

Note: The directories provided above should be replaced by the installation directories of the
PCI SDK.

To install the WinNT PLX device driver:

Note: Before installing a new PLX device driver make sure that all PLX applications are
terminated including any application using the PLX API and PLX device driver.

1. Copy the plx95.vxd file to the c:\windows\system directory.

Note: The directory provided above should be replaced by the Win95 directory.

2. Restart the system to load the new driver.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-173

3.5 PLX Loader Application

3.5.1 Introduction
The PLX Loader application (PlxLdr) included with the PCI SDK is used to download IOP
applications to the evaluation board. PlxLdr has been generated to run as a Win32 application and
it uses the API. Designers may wish to consult the source code for a better understanding of API
functionality.

3.5.2 Using PLX Loader
Users should consult the PCI SDK User’s Manual to learn how to use PlxLdr.

3.5.3 Design
PlxLdr is a simple Win32 application that downloads an image file to the evaluation board.
Below is the design algorithm followed by PlxLdr:

3.5.3.1 PlxLdr Program Algorithm:

1. Read start-up parameters. If “-401r”, “-960r” or “-860r” is given, the program only resets the
board and DOES NOT download the image file even if the image file is given.

� Four start-up parameters are allowed: The first parameter is used to tell what kind of
board to target, being either -401, -960 or -860. The board must be reset before new
software is allowed to be downloaded. Reset is done by using the PlxResetEmbedded()
function (go to page 3-130 for more information on the PlxResetEmbedded() API
function). The second parameter can be either ‘-f’, to download a FLASH image to the
board, ‘-fr’ to read the FLASH, or the image name, which specifies the image file to
download. The image file must be in the COFF file format. The third and fourth
parameters are used when accessing the FLASH only. The third parameter states the
starting FLASH address offset for the access. The fourth parameter is the FLASH image
filename that will be downloaded into the FLASH or will store the data read from the
FLASH.

2. Initialize download;

� Initialization is accomplished by using the PlxDownloadInit() API function. This
function informs the device driver of the start location of the IOP software in local bus
memory and programs Local Address Space 0 of the PLX device to point to the base
offset of local memory which contains the start of the download.

3. Download blocks until the end of file is reached;

� The PlxDownloadData() API function is now used to download the rest of the IOP
software.

3-174 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

4. Start the IOP software.

� After all IOP software has been downloaded, the PlxStartEmbedded() API function is
called (go to page 3-133 for more information on the PlxStartEmbedded () API function).

3.6 IOP Applications

3.6.1 Introduction
The IOP application, IopApp, contains the user application, the API and the driver. It currently
works as a stand-alone application with no operating system.

3.6.2 Design of the PCI 9080RDK-401 IOP application
The IOP application is a combination of files each with a specific responsibility. The application
is made up of five files:

� IOPMAIN.C : The main IOP application code
This code contains the main function of the IOP application.

� EMBED.C: The IBM 401 board specific code
This code is specific for the IBM 401 board. It contains initialization code and I/O
processing code.

� PLXAPI.C : The PLX API code
This code contains the same function calls as plxapi.dlI that is used for Win32
applications. The difference with this code is the way the API calls are passed to the
IOP device driver.

� SERVICE.C: The PLX chip set specific code
This code is the same code that is contained within the WinNT and Win95 device
drivers service.c file, used for accessing the PLX bridge chips.

� EMBEDINT.C: The IOP application interrupt handling code
This code contains the interrupt service routine for the IOP device driver.

3.6.2.1 Functions Contained Within IOPMAIN.C

The IOPMAIN.C file contains twelve or thirteen functions:

� getRegisterInfo(): This function requests register information from the user such as
register number for access, read or write access to this register, and for a write the
value to write to the register.

� initializeMemory(): This function initializes a memory range either with all zeros or
with values that increment by one starting at zero.

� Plx9080InitFifo(): This function sets up the FIFO structure for the embedded
microprocessor.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-175

� PlxPrintBuffer(): This function prints out a buffer or data structure for the length of
bytes passed by the calling function. The output is in one of three formats: UCHAR,
USHORT, and ULONG.

� TestDirectMasterMem(): This routine is used to access all the six direct memory API
function calls (PlxDirectMasterReadChar(), PlxDirectMasterWriteChar(),
PlxDirectMasterReadShort(), PlxDirectMasterWriteShort(),
PlxDirectMasterReadLong(), and PlxDirectMasterWriteLong()).

� TestDirectMasterIO(): This function is used to access all the six direct I/O API
function calls (PlxDirectPortMasterReadChar(), PlxDirectPortMasterWriteChar(),
PlxDirectPortMasterReadShort(), PlxDirectPortMasterWriteShort(),
PlxDirectPortMasterReadLong(), and PlxDirectPortMasterWriteLong()).

� TestRegisters(): This routine is used to read from or write to a register.

� TestDMA(): This function provides all the routines for accessing DMA related API
calls. DMA can be set up and tested.

� AccessLocalMemory(): This function is used to read from or write to local memory
locations.

� AllRegisters(): This function is used to read from a register group such as Local
Configuration Registers.

� TestEProm(): This function is used to test API calls for reading from or writing to
EEPROM.

� DebugTest(): If the IopApp is compiled with DB_DEBUG option, this function will
be functional. Otherwise, it does not exist in the IopApp. It provides three debug
routines: 1). test PCI memory from local; 2). test SRAM memory; 3). Fill memory.

� main(): This is the main function of the IOP application.

3.6.2.2 Functions Contained Within EMBED.C

The EMBED.C file contains eight functions:

� plxGetValue(): This function retrieves data, either a character, a decimal number or a
hex-decimal number from the user. This function can be processor independent and
can be used with Win32 applications. To use it with Win32 applications or with other
processors replace the I/O calls with the relative Win32 call or processor specific
call.

� init401(): This function initializes the IBM 401 processor. This will be explained in
more detail in section 3.6.3.3.

� embedInit(): This function initializes the device extension structure on the IOP side
and enables the interrupts on the PLX bridge chip that the IOP application currently
handles.

� resetEmbed(): This function resets the IBM 401 processor.

� plxGetValue(): This function gets a value of a specific type from the serial terminal.

3-176 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

3.6.2.3 Functions Contained Within PLXAPI.C

The PLXAPI.C file is similar to the Win32 file. See section 3.3 for more information.

3.6.2.4 Functions Contained Within SERVICE.C

The SERVICE.C file is similar to the WinNT device driver file. See section 3.4.2.4 for more
information.

3.6.2.5 Functions Contained Within EMBEDINT.C

The EMBEDINT.C file contains eight functions:

� setup_int(): This function connects the interrupt pin to the ISR.

� plxIntHandler(): This function processes all PLX chip interrupts.

3.6.3 Design of the PCI 9080RDK-960 IOP application
The IOP application is a combination of files each with a specific responsibility. The application
is made up of five files:

� IOPMAIN.C : The main IOP application code
This code contains the main function of the IOP application.

� EMBED.C: The PCI 9080RDK-960 board specific code
This code is specific for the evaluation board. It contains initialization code and I/O
processing code.

� PLXAPI.C : The PLX API code
This code contains almost the same function calls as plxapi.dll that is used for Win32
applications. The difference with this code is the way the API calls are passed to the
IOP device driver.

� SERVICE.C: The PLX chip set specific code
This code is the same code that is contained within the WinNT and Win95 device
drivers service.c file, used for accessing the PLX bridge chips.

� EMBEDINT.C: The IOP application interrupt handling code
This code contains the interrupt service routine for the IOP device driver.

� 16552.C : The UART input/output handling code

 This code contains the routines for processing I/O and interrupts from the UART. It is
specific for the PCI9080RDK-960 board.

� CHAR_IO.C: The I/O handling code

 This code contains some routines for processing I/O such as s2printf.

� INT960.C : The routines handling i960 interrupts.

 This code contains routines handling Intel 960-specific interrupts.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-177

� INTS9080.C: The routines handling 9080 board interrupts.

 This code contains routines handling 9080-specific interrupts.

� WIN32SUP.C: The routine mimicking Win32 API FillMemory call.

 This code only contains a FillMemory routine.

3.6.3.1 Functions Contained Within IOPMAIN.C

The IOPMAIN.C file contains twelve or thirteen functions:

� getRegisterInfo(): This function requests register information from the user such as
register number for access, read or write access to this register, and for a write the
value to write to the register.

� initializeMemory(): This function initializes a memory range either with all zeros or
with values that increment by one starting at zero.

� Plx9080InitFifo(): This function sets up the FIFO structure for the embedded
microprocessor.

� PlxPrintBuffer(): This function prints out a buffer or data structure for the length of
bytes passed by the calling function. The output is in one of three formats: UCHAR,
USHORT, and ULONG.

� TestDirectMasterMem(): This routine is used to access all the six direct memory API
function calls (PlxDirectMasterReadChar(), PlxDirectMasterWriteChar(),
PlxDirectMasterReadShort(), PlxDirectMasterWriteShort(),
PlxDirectMasterReadLong(), and PlxDirectMasterWriteLong()).

� TestDirectMasterIO(): This function is used to access all the six direct I/O API
function calls (PlxDirectPortMasterReadChar(), PlxDirectPortMasterWriteChar(),
PlxDirectPortMasterReadShort(), PlxDirectPortMasterWriteShort(),
PlxDirectPortMasterReadLong(), and PlxDirectPortMasterWriteLong()).

� TestRegisters(): This routine is used to read from or write to a register.

� TestDMA(): This function provides all the routines for accessing DMA related API
calls. DMA can be set up and tested.

� AccessLocalMemory(): This function is used to read from or write to local memory
locations.

� AllRegisters(): This function is used to read from a register group such as Local
Configuration Registers.

� TestEProm(): This function is used to test API calls for reading from or writing to
EEPROM.

� DebugTest(): If the IopApp is compiled with DB_DEBUG option, this function will
be functional. Otherwise, it does not exist in the IopApp. It provides three debug
routines: 1). test PCI memory from local; 2). test SRAM memory; 3). Fill memory.

� main(): This is the main function of the IOP application.

3-178 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

3.6.3.2 Functions Contained Within EMBED.C

The EMBED.C file contains eight functions:

� plxGetValue(): This function retrieves data, either a character or a hex-decimal
number from the user. This function is processor independent and can be used with
Win32 applications. To use it with Win32 applications or with other processors,
replace the I/O calls with the relative Win32 call or processor specific call.

� initi960(): This function initializes the Intel i960 processor. This will be explained in
more detail in section 3.6.3.3.

� embedInit(): This function initializes the device extension structure on the IOP side
and enables the interrupts on the PLX bridge chip that the IOP application currently
handles.

� s2flush(): This function flushes the input buffer of the Intel i960 processor.

� s2gethex(): This function retrieves a hex-decimal value from a hex string located in
the input buffer of the Intel 960 processor.

� s2getstr(): This function retrieves a string terminated by a carriage return located in
the input buffer of the Intel 960 processor.

� s2gethexstr(): This function retrieves a hex string terminated by a carriage return
located in the input buffer of the Intel 960 processor.

� Sleep(): This function does a busy wait loop for 100 times the loop value provided by
the calling function.

3.6.3.3 Functions Contained Within PLXAPI.C

The PLXAPI.C file is similar to the Win32 file. See section 3.3 for more information.

3.6.3.4 Functions Contained Within SERVICE.C

The SERVICE.C file is similar to the WinNT device driver file. See section 3.4.2.4 for more
information.

3.6.3.5 Functions Contained Within EMBEDINT.C

The EMBEDINT.C file contains two functions:

� resetEmbed(): This function resets the IOP processor by setting the instruction
pointer to point to the first instruction executed at boot time (memory location
0xFFFFFFFC).

� plxIntHandler(): This function processes all PLX chip interrupts.

3.6.3.6 Functions Contained Within 16552.C

The 16552.C file contains ten functions:

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-179

� serialChkchar(): This function checks whether there is a received character. If a
character is available, it returns TRUE. Otherwise, it returns FLASE.

� serialGetchar(): This function reads a received character if one is available.
Otherwise, it returns -1.

� serialPutchar(): This function outputs a character.

� serial_set(): This function sets the baud rate.

� serial_init(): This function initializes the 16552 UART.

� serialIntr(): This function is called when there is an interrupt from the serial port. It is
the interrupt-handling routine for the serial port.

� serialLoopback(): This function is used to put the UART in loopback mode.

� delay(): This function guarantees the required recovery time between cycles to the
16552.

� inreg(): This function reads from the registers of the 16552.

� outreg(): This function writes to the registers of the 16552.

3.6.3.7 Functions Contained Within CHAR_IO.C

The CHAR_IO.C file contains seven functions:

� mux_getchar(): This function returns a received character if one is available.
Otherwise, it returns -1.

� mux_putchar(): This function outputs a character through the serial port.

� chkchar(): This function is the same as serialChkchar() in 16552.c file.

� charOut(): This function is the same as mux_putchar() in this module.

� charIn(): This function keeps on trying to get a character until a character is available.

� out_hex(): This function outputs hex number.

� s2printf(): This function is a simplified equivalent of the printf function.

3.6.3.8 Functions Contained Within INT960.C

The INT960.C file contains fifteen functions:

� i960GetVect(): This function retrieves an interrupt handling procedure pointer from
the Interrupt Table.

� i960SetVect(): This function sets up an interrupt handling routine for a specific
interrupt number in the Interrupt Table.

� SetICON(): This function sets a new value for the Interrupt Control (ICON) register.

� GetICON(): This function gets the Interrupt Control (ICON) register value.

3-180 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

� SetIMAPVector(): This function sets the IMAP (Interrupt Mapping) register bits to
assign vectors to particular external interrupt pins.

� SetPriority(): This function changes the priority of the current process.

� GetPriority(): This function returns the priority of the current process.

� GetPRCB(): This function returns a pointer to the PRCB (Process Control Block)
structure.

� SetPRCB(): This function sets up a new PRCB structure.

� GetSF0(): This function returns the IPND (Interrupt Pending) register value.

� SetSF0(): This function sets the IPND register value.

� GetSF1(): This function returns the IMSK (Interrupt Mask) register value.

� SetSF1(): This function sets the IMSK register value.

� ModifyPC(): This function modifies the process control register.

� Sysctl(): This function issues a system control call.

3.6.3.9 Functions Contained Within INTS9080.C

The INTS9080.C file contains seven functions:

� Isr_UART(): This function disables the UART interrupt.

� DoorbellIsr(): This function is the routine for handling doorbell interrupts.

� DMA_Isr(): This function handles the DMA-generated interrupts.

� Isr_9080(): This function is the dispatch routine for all the interrupts generated by the
PCI9080 chip.

� InitUART_Ints(): This routine sets up the interrupt-handling routine for UART.

� Init9080_Ints(): This function sets up the interrupt-handling routine for the PCI9080
chip.

� Init960_Ints(): This function sets up the interrupt-handling routine for the Intel
i960HA processor.

3.6.3.10 Functions Contained Within WIN32SUP.C

The WIN32SUP.C file contains only one function:

� FillMemory(): This function mimics the function call implemented in Win32 API. It
fills a block of memory with a specified value.

3.6.4 Microprocessor Initialization
The procedure for initializing the IBM 401 microprocessor is as follows:

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-181

1. Declare a global variable the IOP application for the stack pointer:

int _first_stack_pointer = 0x007FFF00;

2. Declare a variable for storing the device extension information and point the
drvHandle to point to the structure:

DEVICE_EXTENSION extension;
HANDLE drvHandle;

drvHandle = &extension;

3. Call InitRdk() which calls init401(), s1init(), embedInit(), and setup_int(). The
s1init() function initializes the serial I/O software that allows communication with the
IOP application via a terminal package connected to the serial port of the IBM 401
board.

4. The embedInit() function initializes the device extension structure and enables the
PLX bridge chip interrupts that are serviced by the interrupt service routine. The
function embedInit() currently initializes the base addresses and their respective
ranges contained within the device extension. It also enables the following interrupts:

- PCI interrupt enable
- PCI doorbell interrupt enable
- Local interrupt output enable
- Local doorbell interrupt enable
- Local DMA channel 0 interrupt enable
- Local DMA channel 1 interrupt enable

5. Connect the interrupt service routine to the interrupt line of the processor by calling
setup_int().

The procedure for initializing the Intel i960 microprocessor is as follows:

1. Declare a variable for storing the device extension information and a pointer
drvHandle to point to the structure:

DEVICE_EXTENSION extension;
HANDLE drvHandle;

drvHandle = &extension;

2. Call InitRdk() which calls init960() to run all the initialization routines needed before
the embedded code starts. The init960() function calls the following initialization
routines:

� Call _LL_init() to initialize the low-level library. This function, included in
the board-specific low-level libraries from the Intel i960 Processor
Development Tools kit, performs all necessary chip and board initialization
functions.

3-182 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

� Call _HL_init() to initialize high level library. This function, included in the
architecture-specific libcxx.a high-level libraries from the Intel i960
Processor Development Tools kit, initializes all the necessary high-level
library.

� Set (_stdio_ptr())-> _stdout._size to 1 to make standard output unbuffered
so that the printf library routine can work properly.

� Call serial_init() to initialize the serial I/O software that allows
communication with the IOP application via a terminal package connected to
the serial port of the evaluation board.

� Call embedInit() to initialize the device extension structure and enable the
PLX bridge chip interrupts that are serviced by the interrupt service routine.
The function embedInit() currently initializes the base addresses and their
respective ranges contained within the device extension. It also initializes the
Direct Master to PCI Memory or I/O Registers with board-specific values. It
also enables the following interrupts:

- PCI interrupt enable
- PCI doorbell interrupt enable
- Local interrupt output enable
- Local doorbell interrupt enable
- Local DMA channel 0 interrupt enable
- Local DMA channel 1 interrupt enable

� Connect the interrupt service routine to the interrupt line of the processor by
calling Init960_Ints().

3.6.5 Design of the Generic IOP application
The PCI SDK contains a version of the IOP application that is processor independent. This
generic version can be used as a starting point for developing IOP applications with other
microprocessors. The design is very similar to the previous two IOP applications described
above, and therefore it is not described in this manual. It is recommended that designers consult
the source code, which contains comments in sections that need processor dependent code

3.7 Messaging FIFO
Refer to the PLX PCI 9080 documentation for more information on the messaging FIFOs.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 4-1

4. Creating Applications Using The
PLX API

4.1 Win32 Applications
An example Win32 application using the PLX API will be presented along with the design
descriptions. The steps for creating a Win32 application will be described into two sections being:

� Creating A MS Developer’s Studio Workspace File, which describes the steps
involved in creating a workspace file and the environment setup.

� Hello World Design Skeleton, which describes the steps for building the Hello World
program.

4.1.1 Creating A MS Developer’s Studio Workspace File
The Hello World application will be a console application that will use the PLX API.

The main steps to creating a new workspace file are as follows:

1. Create a new workspace file.

2. Choose a Console Application workspace file from the New Project wizard.

3. Choose a project name and destination location for the project.

4. Setup the project environment.

� Under the Build menu of Developer Studio, choose Settings... This brings up the project
settings dialog box.

� Choose the C/C++ tab.

� Change the Category type to Preprocessor.

� In the Preprocessor definitions window add the following entries:

� PLX_9080

� HOST

� PLX_API

� In the Additional include directories add a path to the PLX SDK include directory.
Note: It is recommended that a relative path from the workspace project directory to the
PLX SDK include directory be given if both the include directory and the workspace
project are located on the same logical Windows Drive. This makes the workspace
project more compatible between various Windows Systems and Windows Drive
Mappings.

5. Create the application that will use the PLX API.

4-2 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

6. Include all the source files into the workspace project. Copy the PlxApi.lib file in the
PLX SDK directory into the workspace project directory. Include the PlxApi.lib file into
the workspace project files.

7. Build the application.

4.1.2 Hello World Design Skeleton
This section will explain the Hello World application design. The Hello World is a simple
example application that uses the PLX API. The application determines which PLX 9080RDKs
are present in the system and attempts to select one of them.

Hello.c File:

#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include "plxapi.h"

/*---*/
/* MAIN PROGRAM */
/*---*/

void main(int argc, char * argv[])
{
 HANDLE plxHandle;
 RETURN_CODE rc;
 DEVICE_LOCATION device, dev;
 ULONG ven, logbus, logdev, temp;
 BOOLEAN RDKFound = FALSE;

 /* Initialize the PLX API */
 if (PlxInitializeAPI(&plxHandle) == API_FAILED) �

 {
 printf(("**** PLX Device Driver Was Not Opened!!! "
 "****\n")); �

 exit(1);
 }

 /* Search for 9080RDK-401 boards in system */ �

 for (logbus = 0; logbus < MAX_PCI_BUS; logbus++)
 {
 for (logdev = 0; logdev < MAX_PCI_DEV; logdev++)
 {
 /* reset variable */

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 4-3

 ven = 0xFFFFFFFF;

 /* Read the Vendor/Device ID register */
 PlxReadConfigRegister(plxHandle,
 CFG_VENDOR_ID,
 &ven,
 logbus,
 logdev
); �

 if (ven != 0xFFFFFFFF)
 {
 /* Found a PCI board, determine if it is a
 * PLX RDK board
 */
 switch (ven & 0xFFFF)
 {
 case (PLX_VENDOR_ID):
 PlxReadConfigRegister(plxHandle,
 PCI9080_SUB_VENDOR_ID,
 &temp,
 logbus,
 logdev
);
 if (temp == ((PLX_9080_DEVICE_ID << 16)
 | PLX_VENDOR_ID))
 PlxPrint(("Hello, the PLX 9080RDK-%x is”
 "present!!\n",
 ven >> 16
));
 else
 PlxPrint(("Hello, the PLX %x Board is present!!\n",
 ven >> 16
));

 /* Keep a copy of last device found */ �

 RDKFound = TRUE;
 device.busNumber = logbus;
 device.slotNumber = logdev;
 device.vendorId = 0xFFFFFFFF;
 device.deviceId = 0xFFFFFFFF;
 break;

 case (IBM_VENDOR_ID):
 PlxReadConfigRegister(plxHandle,
 PCI9080_SUB_VENDOR_ID,
 &temp,
 logbus,
 logdev

4-4 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

);
 if (temp == ((PLX_9080_DEVICE_ID << 16)
 | PLX_VENDOR_ID))
 {
 PlxPrint(("Hello, the PLX 9080RDK-%x is present!!",
 ven >> 16
));
 /* Keep a copy of last device found */ �

 RDKFound = TRUE;
 device.busNumber = logbus;
 device.slotNumber = logdev;
 device.vendorId = 0xFFFFFFFF;
 device.deviceId = 0xFFFFFFFF;
 break;
 }
 /* else not a PLX RDK board, so fall in default */

 default:
 break;
 }
 }
 }
 }

 /* Check if a PLX RDK board was found */
 if (!RDKFound)
 {
 PlxPrint(("**** Could not find PLX RDK boards in system!!!”
 "****\n"));
 }
 else
 {
 /* Make a copy of the device information used as reference
later */
 dev = device;

 /* Select the last device found */
 rc = PlxSelectPciDevice(plxHandle, &device); �

 if (rc == API_SUCCESS)
 PlxPrint(("PLX device selected properly, "
 "PLX IC type is %x\n",
 device.plxChipType
));
 else
 PlxPrint(("Board on Bus #%d, Slot #%d was not selected "
 "properly!\n",
 dev.busNumber,
 dev.slotNumber

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 4-5

));
 }

 while(!_kbhit());

 /* Terminate the PLX API */
 PlxTerminateAPI(plxHandle); �

 exit (0);
}

� The first step in creating an application that uses the PLX API is to initialize the PLX API.
This function takes a pointer to a handle variable and returns a valid API handle.

� Because the initialization of the PLX API failed PlxPrint() cannot be used to print an
error message on the console screen. For Win32 applications the printf() function can be
used. This function may not be defined for IOP applications.

� The Hello World application will begin by searching for all know PLX boards by checking
every PCI bus and slot. When it finds a PLX board, it prints a hello message to the console
screen.

� This function can access the PCI configuration registers of any PCI device on any PCI bus.
To find a board on any PCI bus scan through the PCI buses and slots, read the vendor ID and
device ID of the board present in that slot and compare it with the desired board’s vendor ID
and device ID.

� Keep a copy of a valid PLX board into the device location variable to use later in selecting a
PCI device.

� Before accessing a PLX board, and using most of the PLX API functions, it is necessary to
select a PCI device. There are three methods for selecting a device:

� Method 1: Specify device.vendorId, and device.deviceId. Set device.busNumber and
device.slotNumber to 0xFFFFFFFF.

� Method 2: Specify device.busNumber, and device.slotNumber. Set device.vendorId
and device.deviceId to 0xFFFFFFFF.

� Method 3: Specify device.busNumber, device.slotNumber, device.vendorId and
device.deviceId.

� Before terminating an application, it is necessary to terminate the PLX API.

4.2 9080RDK Applications
Building 9080RDK applications are similar to building Win32 applications. Most Win32
applications built with the PLX API are portable to the 9080RDK with few modifications. This
section will present a similar Hello World application presented in the previous section and will
show the differences between the Win32 application and the 9080RDK application.

The IOP API and device driver are separated into three libraries:

4-6 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

� The IOP API Library: This library contains all the interface code used by applications to
communicate to the device driver. This library is similar to the Win32 PLX API. The code
contained within the library is common for all IOP platforms however it must be compiled
separately for each IOP processor’s compiler suite.

� The IOP Device Driver Library: This library contains the common device driver code for all
IOP platforms. The code contained within the library is common for all IOP platforms
however it must be compiled separately for each IOP processor’s compiler suite.

� The IOP Specific Device Driver Library: This library contains the IOP specific device driver
code. The code contained within the library is specific to each IOP and should not be
compiled for other platforms.
Note: Though some of the functions within this library may be similar to others for other IOP
platforms these functions should only be used for reference purposes when working with new
IOP platforms. The IOP specific device driver libraries should only be compiled and linked to
applications destined for that specific IOP only.

The steps involved in creating an IOP application using the PLX API are:

1. Recompile each of the IOP API and device driver libraries for the desired PCI 9080RDK
platform for the application (if necessary).

2. Create a directory for the new application and copy the IOP API and device driver libraries
for the desired PCI 9080RDK platform into it.

3. Create the necessary application source files using the PLX API functions.

4. Create a make directives file for the application. This file facilitates the building of the
application.
Note: It may be more convenient to copy a makefile from one of the desired PCI 9080RDK
platform sample programs into the application directory and modify it for the application
and the IOP processor’s compiler and linker environments.

5. When all application files are created build the application executable, download the
executable to the PCI 9080RDK and test.

Hello.c File:

#include <stdlib.h>
#include <stdio.h>
#include "plxapi.h"
#include "plxrdk.h" �

/*---*/
/* MAIN PROGRAM */
/*---*/

void main(int argc, char * argv[])
{
 HANDLE plxHandle;
 RETURN_CODE rc;

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 4-7

 ULONG ven, logbus, logdev, temp, VendorDeviceId;
 BOOLEAN RDKFound = FALSE;

 /* Initialize the PLX API */
 if (PlxInitializeAPI(&plxHandle) == API_FAILED) �

 {
 printf("**** PLX API was not initialized properly !!! "
 "****\n");
 resetEmbed();
 exit(1); /* should not reach here */
 }

 /* machine-specific initialization routine */
 InitRdk(plxHandle); �

 /* Search for 9080RDK boards in system */ �

 for (logbus = 0; logbus < 1; logbus++)
 {
 for (logdev = 0; logdev < MAX_PCI_DEV; logdev++)
 {
 /* reset variable */
 ven = 0xFFFFFFFF;

 /* Read the Vendor/Device ID register */
 PlxReadConfigRegister(plxHandle,
 PCI9080_VENDOR_ID,
 &ven,
 logbus,
 logdev
);
 if (ven != 0xFFFFFFFF)
 {
 /*
 * Found a PCI board, determine if it is
 * a PLX RDK board
 */
 switch (ven & 0xFFFF)
 {
 case (PLX_VENDOR_ID):
 PlxReadConfigRegister(plxHandle,
 PCI9080_SUB_VENDOR_ID,
 &temp,
 logbus,
 logdev
); �

 if (temp == ((PLX_9080_DEVICE_ID << 16)
 | PLX_VENDOR_ID))

4-8 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

 PlxPrint(("Hello, the PLX 9080RDK-%x"
 " is present!!\n",
 ven >> 16
));
 else
 PlxPrint(("Hello, the PLX %x Board"
 " is present!!\n",
 ven >> 16
));

 /* Keep a copy of last device found */
 RDKFound = TRUE;
 break;

 case (IBM_VENDOR_ID):
 PlxReadConfigRegister(plxHandle,
 PCI9080_SUB_VENDOR_ID,
 &temp,
 logbus,
 logdev
);
 if (temp == ((PLX_9080_DEVICE_ID << 16)
 | PLX_VENDOR_ID))
 {
 PlxPrint(("Hello, the PLX 9080RDK-%x"
 " is present!!\n",
 ven >> 16
));
 /* Keep a copy of last device found*/
 RDKFound = TRUE;
 break;
 }
 /*
 * else not a PLX RDK board, so fall in
 * default
 */

 default:
 break;
 }
 }
 }
 }

 /* Check if a PLX RDK board was found */
 if (!RDKFound)
 {
 PlxPrint(("**** Could not find any other PLX RDK boards"
 " in system!!! ****\n"));

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 4-9

 }

 /* Show this board's information */
 rc = PlxReadRegister(plxHandle,
 PCI9080_VENDOR_ID,
 &VendorDeviceId
); �

 if (rc == API_SUCCESS)
 PlxPrint(("PLX vendor id is %x, device id is %x\n",
 VendorDeviceId & 0xFFFF,
 VendorDeviceId >> 16
));
 else
 PlxPrint(("Could not read the vendor/device id register"
 " properly\n"));

 /* Terminate the PLX API */
 PlxTerminateAPI(plxHandle);

 PlxPrint(("\n!! Ending program and resetting the embedded"
 " processor!!\n"));
 resetEmbed(); �

 exit(0); /* should not reach here */
}

� For the 9080RDK IOP applications an extra header is needed, plxrdk.h . This header
contains some definitions needed for all 9080RDKs.

� As mentioned for the Win32 application the first thing an application needs to do is initialize
the PLX API.

� All IOP applications need to initialize the 9080RDK board and setup some board specific
variables. Though each 9080RDK is different in configuration only one common call is
needed to perform the PCI 9080RDK board initialization, InitRdk() . This function calls
the appropriate initialization function depending on the PCI 9080RDK board type.

� Again, the Hello World will search the PCI bus for other 9080RDK boards.

� Currently the PlxReadConfigRegister() and PlxWriteConfigRegister()
functions can only scan the PCI bus that the 9080RDK is currently on. Future releases of the
PCI 9080 SDK will include capabilities to scan other PCI buses.

� To read the PCI configuration registers of the PCI 9080 IC connected to the 9080RDK board
use PlxReadRegister() and PlxWriteRegister() instead of
PlxReadConfigRegister() and PlxWriteConfigRegister() since these
functions perform specialized transactions on the PCI bus to access the PCI registers of other
PCI devices that are not applicable to the local PCI 9080 IC.

� Once the application has terminated, reset the IOP by calling resetEmbed() .

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 5-1

5. Common PLX Questions
This chapter contains some common questions that can help in understanding how the PLX API
and device driver react in the given situations. This chapter is provided a general understanding of
the PLX API and device driver.

1. How does the driver deal with non-PLX devices?

Non PLX devices can be supported with the PLX API (and device driver). The features provided
by the PLX API’s limited.

What is supported for non-PLX devices:

� No interrupts of any sort can be connected to the driver;

� DMA buffer is allocated within the device driver; and,

� Only the PCI registers can be read. No other access to any other registers is permitted.

Limiting the access to non-PLX devices ensures proper operation of the device driver.

2. What happens if the PLX device does have an interrupt line but the device driver’s
ISR/DPC can't be mapped?

If a device has a valid interrupt line the driver will attempt to connect to it. If the connection fails,
the device driver initialization fails as well. This failure will occur when the device driver is
loaded (normally at system initialization).

3. What happens if the PLX device does NOT have an interrupt line?

If the device does not have an interrupt line, no interrupt connection will be attempted. All other
services will still be available.

4. What happens if two applications/processes connect to the same devices?

For WinNT:

As each application is created, each one is given its own copy off the PLX API. Each copy of the
PLX API has global structures, which are local to the PLX API. When applications selects a
device, the process’ virtual address structure is filled with user addresses specific to each
application. All physical base addresses for the device are mapped into kernel memory when the
device driver is loaded. When an application is started, the virtual addresses are obtained from the
device driver. If an application selects another device, new user virtual addresses are calculated.

When two applications select the same board, they may have the same virtual addresses, but they
are exclusive. The virtual addresses that each application uses refer to the same location in kernel
space. If an application is terminated, only the virtual addresses assigned to that application are
unreferenced. All other applications are not affected.

5-2 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

For Win95:

When the device driver is initialized the device driver maps all physical registers into the kernel
memory space (if it is PLX) and creates the virtual addresses needed for the user application. Due
to the flat memory model that Win95 employs both the kernel addresses and the user virtual
addresses are identical. The device extension is a linked list that contains the device information
for each PCI device present. When the application selects a device the device information
(contained within the device extension linked list) is copied into the application’s copy of the
PLX API. Every time the device is changed the information stored within the PLX API is updated
with the new device’s information.

5. What happens if two applications are using different devices?

If applications connect to different devices, they are mutually exclusive with different device and
virtual address information.

6. How many simultaneous devices does this support?

The driver has been designed to follow the PCI specifications. Depending on the development
system, any number of devices can be supported if the development system has enough PCI slots
available and has enough available memory storage to hold all the information for the devices.
Currently, no more than eight cards simultaneously have been tested.

7. How many simultaneous applications can be supported?

The device driver is application independent. The only restriction on number of applications is
the amount of available memory on the system.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 6-1

6. Recommendations For Custom
Design
All source code has purposely been written for clarity and to allow for custom design.
Specifically, the device drivers are designed to allow for easy porting to other operating systems.
To aid designers in porting the driver, most operating system specific function calls are grouped
together in separate files. Furthermore, the use of the driver service routine that contains no
operating specific functions will ease the task of porting. It is recommended that designers
continue to adopt this design principle.

A major design goal for the PCI SDK is ease of development time. Therefore, we have chosen to
trade-off design finesse in favor of design clarity. It is likely that designers will wish to change
the architecture of the code to customize it towards their own goals. We encourage this and hope
that our PCI SDK has met its goal of being a simple to learn, yet complete, software tool for
designers to implement in their own designs.

This software design kit has been developed and tested by Vitana Corporation.
For more information regarding SDK and RDK designs, please contact:

Vitana Corporation
Tel: 613-749-4445
Email: rdk@vitana.com
Web: www.vitana.com

For technical support questions, please contact PLX Customer Support.

