PCI SDK Programmer’s Reference Manual

Release 1.2, initial publishing December 11, 1997.
Copyright © 1997, PLX Technology, Inc.. All rights reserved.

This document contains proprietary and confidential information of PLX Technology Inc. (PLX).
The contents of this document may not be copied nor duplicated in any form, in whole or in part,
without prior written consent from PLX.

PLX provides the information and data included in this document for your benefit, but it is not
possible for us to entirely verify and test all of this information in all circumstances, particularly
information relating to non-PLX manufactured products. PLX makes no warranties or
representations relating to the quality, content or adequacy of this information. Every effort has
been made to ensure the accuracy of this manual, however, PLX assumes no responsibility for
any errors or omissions in this document. PLX shall not be liable for any errors or for incidental
or consequential damages in connection with the furnishing, performance, or use of this manual
or the examples herein. PLX assumes no responsibility for any damage or loss resulting from the
use of this manual; for any loss or claims by third parties which may arise through the use of this
SDK; for any loss or claims by third parties which may arise through the use of this SDK; and for
any damage or loss caused by deletion of data as a result of malfunction or repair. The
information in this document is subject to change without notice.

Product and Company names are trademarks or registered trademarks of their respective owners.

Document number: sdkprog.doc

1.

Table of Contents

INTRODUCTION 1-1
1.1 ADOUL THIS MANUALuuueiiiiiiee e e e e e e e e e eeeeeeaeeeeaaaaaaaeeeeeeee il 1
1.2 Where ToO GO FrOM HEIEcooiiiee e 11
GENERAL INFORMATION 2-1
P22 A [1 £ o 18 ox 1T o TP SO 2:1..
2.2 CONVENTIONS ...eeeiiiee ettt e ettt e e e e e e e sttt e e e e e e s s bbb et e e e e e e e e e et 2:1....
2.2.1 Windows Programming CONVENLIONSceiviiiiiiiiiiiiiieiiieieeieeeiieeieeeeeeeeeeeeeneenennnnes 2-1
2.3 TEIMINOIOGY ...eeiiieieiiieeee ettt e e e e e e e e e e e e e e e s e a b e e e e e e e e e e nes 2-1....
2.4 Development REQUIFEIMENTS. e aeees 2-1
SOFTWARE DESIGN 3-1
i1 OVBIVIBW..ceiiiieiiiiit ettt ettt e e e e ettt e e e e e e e s ettt e et et e e e e e e s e a bbbt e e e eeeees 3-1.
I B 1] (= Tod (o] VS 1 U ol (1] - S 3:-1......
R T = 05 Y = PP 3:-3..
1 70 700 R [0 i oo [7o 4o o I G T 3
3.3.2 API DBSION e T 3-
3.3.2.1 Win32 Dynamic LinK Librarycccccoeieiiie e 3-3
3.3.2.2 1OP StatiC LIDrariesuuviiiiiiiiiiiiiiiieieee et 3-4
3.3.2.3 DESIgN DELaAIIS. ..ot 3-4
3.3.2.4 PLX APl ASSUMPLIONScutiiiiiiieeeiiiiiiitiee et e e e e e s st e e e e e s r e e e e e e e e aanne 3-5
3.3.3 Function QUICK RefEreNCe LIStuuuuuuuiiiiiiiiii e 3-5
3.3.4 APIFUNCHONS DELAIISuuiiiiiiiieiii it 3-11
Register ACCESS FUNCHONSuiiiiiiiiiiiiiiiiiiiiie e a e e e e 3-13
PIXREQISIEIREAU ...t 3-13
o D =T T (=T AT 1 (=P 3-14
PIXREAAREGISIET ...ttt e e e e as 3-15
PIXWITEEREGISTE ...t e e e e e e e e eeeas 3-16
PIXREAAMAUIDOXeeeiiiieiiiiiee e e e e e e e e aees 3-17
PIXWIEEMAIIDOX ...ttt e e e e e e e s 3-18
[D= T= 1o |3 0 To 5 o = 3-19
PIXWIItEDOOIDEI ... 3-20
PIXREAAAIIREGISIEIScoieiiiieeeieeieeeeeeee it e s e e e e e e a e e e e aeeas 3-21
PIXReadAllILOCAIREJISIENScocuiiiiiiiiiii i 3-22
PIXReadAlIRUNIMEREGISIEIS.......coiiiiiiieeeie e 3-23

PIXReadAIIDMAREISIEIS........cccieeiiieeiieeeeee ettt aannane 3-24

PIXReadAlICONfIGREJISIENScoi et 3-25
PIXReadAlIMESSAGINGREGISIEIScceiiiiiiiiiiiiie ettt e e e 3-26
PC1 9080 Configuration FUNCHONS...........cccoiiiiiiiiiiii i 3-27
PIXCONfIgLOCAIAIDITrAtION.......ciiiiiiiieeiie e 3-27
PIXCONfIGLOCAISPACEccoe e ————— 3-29
PIXCONFIGBIGENGIANoevveeiiiiiieiiiiiiieiie s e e e e e e e 3-32
PIXCoNfigBIGENIANBYIELANEccviiiiiiiiiiiiiiiee et 3-33
PIXCONFIGLItHEENTIAN.eeiiiiieieeee ettt e e 3-34
PIxReloadConfiguratioNREQISIEIScccoeeeiiee i 3-35
PIXCoNfIgVENdOIrDEVICEIMuieiiiiieeeeiiiee et e e 3-36
PIXCONFIGCIASSCOUE ...ttt 3-37
PIXINIEDONE ...ttt e e e e ettt e e e e e e e et e e e e e e e e e e nnnbbeeeeees 3-38
PIXSEIUSEIOULceiiiieeeiiiiiiee ettt e e st e e e e e e e s e e e e e e e e e e annnbeneees 3-39
[(O =TT (U ST 1 | 3-40
PIXGEIBAIRANGE ... et e e e e e e 3-41
PIXSetDireCtSIavVEREMAPccooiiiiiiiei e —————— 3-42
PIXSEtDIreCtSIAVERENGEoeeiiiiiieiiiiiiieii e e e 3-44
PIXSetDIreCtMASIEIREMEDvviiiiiiieeeeiiiiiiie et e e e e e e e e e e e e e nnnes 3-46
PIXSetDireCtMasterBasSEAUUIESS.cccuuiiiiiiiiiee e e e e e e e e nnaeeeeees 3-48
[N T o 1o P EPR PSS 3-50
PIXSetupDmMAaTranSIerccocee i, 3-50
PIxDisableDmaChannel ... 3-53
PIXStartDmMaCRanNel oo 3-54
PIXStopDMACRNANNELuuieeeeeee e, 3-55
PIXADOMDMACKNANNEN ... e e e e e 3-57
PIXClearDmaChannellINtr e s e e e e e e e e e e e e e e e e e e e aaeaeeees 3-59
PIxQueryDmaChannelDOoNEe...........coooiiiiiiiii e 3-60
PIxXDmaChannelAvailableoooiiiiiiii e 3-61
MeESSAGING FUNCLONScooiiiiiiiiiii e e e e e e e e e e e e e e e e e snbeeeees 3-62
PIXREAAINDOUNAPOIcoiiiieiiiiiieeee et e e e e e e e e e e e e aaans 3-62
L D TAT L1 (=[] 0T 1T | o] o PP 3-63
PIXReadOUIDOUNUPOI.t e e e e 3-64

PIXWIHEEOUIDOUNAPOITttt e et e e e e e e et e e e reeaas 3-65

PIxGetinboundFreeMfa.............ccccoiiiiiiiiiiii i 3-66
PIXPutlnboundPoStMfa ... 3-67
PIXINItMESSAQEFIfOSoooiiiiiiii 3-68
Bus Memory and 1/O FUNCHONScccociriiiiiin i 3-69
PIXDireCtSIaVeREAACKNA ... e e e e 3-69
PIXDireCtSIaveWITECNAIuuiiiiiiiie et 3-71
PIXDirectSIaveReadSNOrtuuiiiiiiiiii 3-73
PIXDireCtSIaveWTItESNOI ..o 3-75
PIXDireCtSIaveREAALONGcevviieiiiiiiiiiiiiiiiiiii s a e e 3-77
PIXDireCtSIaVEWITIELONGeeeieiiiiiiiiii ettt e e e 3-79
PIxDirectSlaveRemapReACRNANcccuuiiiiiiiieee e 3-81
PIXDirectSIaveRemMapWIIECNAT............vvviiiiiiiiiiiiiii e 3-83
PIXDirectSIaveRemMapREaAUSNOI............viiiiiiiiiiiiii s 3-85
PIXDirectSIaveRemMapWIItESNOITuuiiiiiieiiiiee e 3-87
PIxDirectSlaveRemapReadLONGccuuiiiiiiiiiee e 3-89
PIxDirectSlaveRemapWriteLoNngooooeiiiiiiii e, 3-91
PIXDirectMasterReadCRar............coivviiiiiiiiiiiiieeee e 3-93
PIXDireCtMasterWHLECNA e 3-94
PIXDireCtMasterREaASNON............uuiiiiiiieieeiiec e e 3-95
PIXDireCtMasterWItESNOIT.oiiiiiii e 3-96
PIXDireCtMasterREAALONGuuuiiiiiiieeeiiii it a e e 3-97
PIXDireCtMasterWIELONGooviiiiiiiiieeieieeeeeeeieee e e 3-98
PIxDirectMasterRemapReadCharccccceeeiiiiiie 3-99
PIxDirectMasterRemapWIItECNArc.uuiiiiiieieeee e 3-100
PIxDirectMasterRemapReadShOrtc.uuiiiiiiiiiii e 3-101
PIxDirectMasterRemapWriteShortccccc e, 3-102
PIxDirectMasterRemapReadLONG...........oiiuiiiiiiiiiie e 3-103
PIxDirectMasterRemMapWIItELONG........uuuuriiiiieeiiiiiiiiie e e e 3-104
PIXDirectPortSIaveReadCNArccuiiiiiiiiiiieie e 3-105
PIXDirectPortSIaveWHtECRNAveiiiiiiee e 3-106
PIXDirectPortSIaveReadShoOrtcovviiiiiiiiiiieeeieeeeeeeeee e 3-107
PIXDireCtPortSIaveWHIESNOIooiiie e 3-108

PIXDirectPortSIaveReadLongcoooiiiiiiiiiiieeeeeeeeeeeeeeeee e 3-109

PIXDirectPortSIaveWrteLoNg........cccooeieiiiiii e, 3-110
PIxDirectPortMasterReadChar...........ooooooiiiii e 3-111
PIXDirectPortMasterWHIECNATuuiiiiiiiiiiiiiiieii e 3-112
PIXDirectPortMasterReadSNONToviiiiiiiiiiiiiee e 3-113
PIxDirectPortMasterWrteShort ... 3-114
PIXDirectPortMasterREaAALONGccuiiiiiiiieiee e 3-115
PIXDirectPortMasterWrteLoNgccoooeeiiiiiiii e 3-116
EEPROM ACCESS FUNCLIONScueiiiiiiiiiiiiiiiiiiiee ettt e e e eeee s 3-117
PIXREaAdEEPrOMBUTTETuiiiiiiiii e 3-117
PIXWIItEEEPIOMBUTTENeeiiieiiiee e 3-118
Windows and IOP Device Driver FUNCLIONSovviiiiiiieiiiiiiiiiiiiiiiiinniinnennneennnnnnnnnnns 3-119
PIXINTAIBNZEAP] ... 3-119
o D =1 0 1T = L= A 3-120
PCl DEVICE FUNCLIONSeiiiiieeiiiiiiiiieeee e e e e e e sttt e e e e e e e ettt e e e e e e e s s ssnbbbeeeeeeeeeeaaanes 3-121
PIXReadConfigREQISIENccoe oot 3-121
PIXWIite CONFIGREGISTEN ...t e e e e e e 3-122
L D ST [= o | od | BT o SR 3-123
PIXFINAPCIDEVICEcevveeiieeeiieiiiieiiieiiiitae s a s s s e e na e e e e annaaeeas 3-125
PIXGEtBASEAUUINESS ...ttt e et e e e e e e e s s e e e e e e e e e e nnnreees 3-127
9080RDK-401, 9080RDK-960 and 9080RDK-860 Support Functions...................... 3-130
PIXRESEIEMDEAUEM.ci it e e e e e e 3-130
L D T 1YY 1 o T= T | L RSP 3-131
[(B o1V (o= To | T | - 3-132
[DS = 1 =1 0] o =T [0 =T o SRR 3-133
MiISCEIlANEOUS FUNCLIONSeeiiiiiieeeiiiiiiiiiei ettt e e e e e e st e e e e e e e e s s eeeeeeas 3-135
[T] 1 PP PEEEPP P 35...3-1
PIXSEUNIIWAIL ... 3-136
PIXISINITACLVE ...ttt reenrees 3-137
3.3.5 API DAa SIIUCIUIES ..ottt e e e e e e e eeenees 3-139
IOCTL DAt SIUCTUIE ...vei ettt e e e et s e e e e e e e etbban e e e aeeenenes 3-141
Virtual AddreSSES StIUCTUE.......uveiiiiiieie e e ittt e e e e e s e e e e e e e eeeeeeeeanans 3-143
DMA Data Structure And DMA Chain Structureccccoeeeeeeeeeeeee e, 3-145
Buffer Data SIIUCLUIEcoieiiiieiiee ettt nrrnnnennnnnnnes 3-147

DEVICE LOCALION StUCTUIEeueieeieiee e eei et e et e et e et e et e et e e ea e e een e eestaeesarestaresanrees 3-148

Local BUS DESCHPLON StIUCKUIEuuvvuviiiiiiiieeiee s s s e s s e e n s e e n e e e e e e e eaaaaas 3-149
Local Space ENUM Data TYPEceeviiieiiiiiiiiiiiiiiiiiiinnieiii e e e e e e e e e e e e eeeas 3-151
PCIl Space ENUM Data TYPE....cveevirieeieieiieeiiieiiiennien s 3-152
PLX Operating System Enum Data TYPE ..ccooeeveeiiiiiii e, 3-153
3.4 WINdOWS DeVICe DIiVEI DESIGNueiiiiiiiiiiiiiiiiiie ittt e e 3-154
G 70 3t R [Yo [T o o 3-154
3.4.2 Device Driver File LayOULccocoiiieiiiiii e, 3-154
3.4.2.1 Functions Contained WIthHRLXXX.Ccoiiiiiiiiiiiiiiin e e 3-155
3.4.2.2 Functions Contained WithiINTR.C ..o e, 3-156
3.4.2.3 Functions Contained WitHRLXPCI.Cccccc, 3-157
3.4.2.4 Functions Contained Wit BERVICE.Ccoovvvviiviiiiiiiiivieiviviiiiiins 3-158
3.4.3 Windows Device Driver Design and Implementationcccccvvviiiiieenneeenn. 3-158
3.4.3.1 Device Driver INtializationuuuiiiiiiiiiiiiiisss e 3-158
3.4.3.2 Device Driver Termination...........ccccoeeeeeee e, 3-163
3.4.4 DEeVICE DIIVEI SITUCIUIES......ceviieiiieeiieeeeeeeereeiieerrererrererernrre e aeas 3-164
The Device EXIENSION SITUCLUIEuuuiii et e e e e e e 3-165
3.4.5 PLX Device Driver Build Environment...........ccccooeeeieiiiiieeeeee 3-171
3.4.5.1 The WINNT DEVICE DIIVENccceiiiiii ittt e e e e e 3-171
3.4.5.2 The WIN95 DEVICE DIIVELiii et e e ee e e e e eeaanns 3-172
3.5 PLX Loader APPICALION.........uuiiiiiiieeieiiiii et e e e e e 3-173
3.5. 1 INFOAUCHION ... 3-173
3.5.2 USING PLX LOAUELvviiiiiiiiiiiiiiiii s s s s s s a s s e e e a e e e e e e e e e e e e e e e e e aaaaaaaaaaaaaaas 3-173
ST B B =T [0] o [P P R PPPPPPPPPPPPPPPPPP 73...3-1
3.5.3.1 PIXLdr Program AlGOrithm:..........ouiiiiiiieiiiiiiee e 3-173
3.6 |OP APPIICALIONSeeieiiiiiieeeiiiei ettt e e e e e e s eaeeeeas 74..3-1
G 70 700 R [Yo [T 4o o 3-174
3.6.2 Design of the PCI 9080RDK-401 IOP applicationuvvvvvvermeeennninnnnnnnnnnnns 3-174
3.6.2.1 Functions Contained WitHI®@PMAIN.Ccoiiiiiiiiiireiicen e, 3-174
3.6.2.2 Functions Contained WitHEMBED.C............cccooooiiriiiiiiiin e 3-175
3.6.2.3 Functions Contained WitHRLXAPLC ..., 3-176
3.6.2.4 Functions Contained WItRBERVICE.Ccoovvvviiiiiiiiiiiinviiiiiiinnns 3-176
3.6.2.5 Functions Contained WitHEMBEDINT.C............uuuuiiiiiiiiiiieeeseees e, 3-176
3.6.3 Design of the PCI 9080RDK-960 IOP application............cccuveveeeeeeriiiiiiiiieeeeeennn 3-176
3.6.3.1 Functions Contained WitH@PMAIN.Coovvrriiiieiiieiiiiriiiniiiinnniiinnnnnn, 3-177
3.6.3.2 Functions Contained WitHHMBED.C................ccoooei e, 3-178
3.6.3.3 Functions Contained WitHRLXAPLC ..., 3-178

3.6.3.4 Functions Contained WItHBERVICE.Ccoooiiii e 3-178

3.6.3.5 Functions Contained WitHHMBEDINT.C...........uuuuruimiiiiieaaeeeee e 3-178
3.6.3.6 Functions Contained Withlil8552.Cccooiiiiiiii e 3-178
3.6.3.7 Functions Contained WithBHAR _1O0.Ccooiiiiiiii e, 3-179
3.6.3.8 Functions Contained WIitHiINTO60.Ccoeviiiiiiiiiiiiiiiiiiieee e 3-179
3.6.3.9 Functions Contained WitHiINTS9080.Ccccevviiiiieiiiiiiiiiiiieeee e 3-180
3.6.3.10 Functions Contained WitAMIN32SUP.C.........cccccooiiiiiiiiiiiiieeeeie 3-180
3.6.4 Microprocessor INItializationouveiiiiiiiiei e 3-180
3.6.5 Design of the Generic IOP appliCationuuuiiiiiiiiiiiiiieese e 3-182
3.7 MeSSAQING FIFO ... 2....3-18
4. CREATING APPLICATIONS USING THE PLX API 4-1
4.1 WIN32 APPIICALIONScciiiiiiiiiiieeeeeeeeeeeeeeee 1o 4
4.1.1 Creating A MS Developer’'s Studio Workspace Fileccccvveivieiiiiiiiiiiiiieeeeen 4-1
4.1.2 Hello World Design SKEIELONociiiiiiiiiiiiie e 4-2
4.2 9080RDK APPIICALIONS ... cee e 4-5
5. CoMMON PLX QUESTIONS 5-1
6. RECOMMENDATIONS FOR CUSTOM DESIGN 6-1

Vi

List of Figures

Figure 3.1 SOftWare DESIGNccoiiiiiiiiiiiee ettt e e e e e e eeeas 3-1...
Figure 3.2 Software layout diagramcccooooooiioii e 3-3........

List of Tables

Table 3-1 Register ACCESS FUNCHONS.oiiiiiiiiiiieee et e e 36.........
Table 3-2 PCI1 9080 Configuration FUNCHONS...........oooiiiiiiiiieieee et 3-7
Table 3-3 DMA FUNCHONS ...ttt eeeeeeees 3-8...

Table 3-4 Messaging FUNCHONS........iiiiiiiiie e 3:8.......
Table 3-5 Bus Memory and 1/O FUNCHONSooviiiiiiiiiiiiiiieieeeeeeesee s 3-10
Table 3-6 Serial EEPROM FUNCHONS.........iiie e 3-10
Table 3-7 AP SUPPOIt FUNCHIONS ...t -10...... 3
Table 3-8 PCI DeVICE FUNCLONS.........uuiiiiiiieiiiiiiiii ittt e e 3-10......
Table 3-9 9080RDK-401, 9080RDK-960 and 9080RDK-860 Support Functions..................... 3-11
Table 3-10 Miscellaneous FUNCLIONSuuuiiiiiiieiiiiiiii e 1. 3-1
Table 3-11 APl Data StruCturesS..........oooeeeeeeiee 2139000003
Table 3-12 The Device Driver Initialization SEQUENCEc.uviiiiiiiiieeeeie e 3-162
Table 3-13 The device driver termination SEQUENCEuuuuuciiiiieiiiieeeeeeeeeee e e e 3-163

Vi

—
Y 4 —
TECHNINOLOGY

PLX SOFTWARE LICENSE AGREEMENT

THIS SOFTWARE DESIGN KIT INCLUDES PLX SOFTWARE THAT IS LICENSED TO YOU UNDER SPECIFIC TERMS
AND CONDITIONS. CAREFULLY READ THE TERMS AND CONDITIONS PRIOR TO USING THIS DESIGN KIT. BY
OPENING THIS PACKAGE OR INITIAL USE OF THIS SOFTWARE DESIGN KIT INDICATES YOUR ACCEPTANCE OF
THE TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD RETURN THE ENTIRE
SOFTWARE DESIGN KIT TO PLX.

LICENSE Copyright (c) 1997 PLX Technology, Inc.

This PLX Software License agreement is a legal agreement between you and PLX Technology, Inc. for the PLX Software
Design Kit(*"SOFTWARE PRODUCT”) which is provided on the enclosed PLX diskettes, or may be recorded on other media
included in this Software Design Kit. PLX Technology owns this SOFTWARE PRODUCT. The SOFTWARE PRODUCT is
protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties, arsl
licensed, not sold. If you are a rightful possessor of the Software Design Kit, PLX grants you a license to use the SOFTWARE
PRODUCT as part of or in conjunction with a PLX chip on a per project basis. PLX grants this permission provided that the
above copyright notice appears in all copies and derivatives of the SOFTWARE PRODUCT. Use of any supplied runtime
object modules or derivatives from the included source code in any product without a PLX Technology, Inc. chip is strictly
prohibited. You obtain no rights other than those granted to you under this license. You may copy the SOFTWARE
PRODUCT for backup or archival purposes. You are not authorized to use, merge, copy, display, adapt, modify, execute,
distribute or transfer, reverse assemble, reverse compile, decode, or translate the SOFTWARE PRODUCT except to the
extent permitted by law.

GENERAL

If you do not agree to the terms and conditions of this PLX Software License Agreement, do not install or use the Sofjwaci¢ Desi

and promptly return the entire unused SOFTWARE PRODUCT to PLX Technology, Inc. You may terminate your license at any time.
PLX Technology may terminate your license if you fail to comply with the terms and conditions of this License Agreemkat. In eit
event, you must destroy all your copies of this SOFTWARE PRODUCT. Any attempt to sub-license, rent, lease, assign ar to transfe
the Software Design Kit except as expressly provided by this license, is hereby rendered null and void.

WARRANTY

PLX Technology, Inc. provides this SOFTWARE PRODUCT AS IS, WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTIBILITY OR FITNESS FOR A PARTICULAR
PURPOSE. PLX makes no guarantee or representations regarding the use of, or the results based on the use of the software and
documentation in terms of correctness, or otherwise; and that you rely on the software, documentation, and resultsusaey at yo
risk. In no event shall PLX be liable for any loss of use, loss of business, loss of profits, incidental, special or, tahdaqueges

of any kind. In no event shall PLX’s total liability exceed the sum paid to PLX for the product licensed hereunder.

viii

1. Introduction

1.1 About This Manual

This manual provides detailed design information on the devices drivers, Application
Programmer’s Interface (API), and user applications that are supplied with the PCI SDK.

Designers should use this manual as a reference for all API functions.

1.2 Where To Go From Here
The following is a brief summary of the chapters to help guide your reading of this manual:

Chapter 2, General Information, is an overview of the Programmer’s Manual, and contains
conventions and terminology used throughout this manual.

Chapter 3, Software Design, describes the Application Programmer’s Interface, Windows NT and
Windows 95 device drivers, PIxLdr, and IOP applications included with the PCI SDK.

Chapter 4, Creating Applications Using The PLX API, demonstrates how to build applications
using the PLX API.

Chapter 5, Common PLX Questions, provides some answers to frequently asked questions.

Chapter 6, Recommendations For Custom Design, provides additional information that software
designers may find useful during their own designs.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 1-1

2. General Information

2.1 Introduction

The PCI SDK included in the development package is a powerful aide to software designers. The
PCI SDK comes complete with a powerful Application Programmer’s Interface (API), device
drivers for Windows NT and Windows 95, and sample IOP applications. We are confident that
with the PCI SDK, your designs will be brought to market faster and more efficiently.

2.2 Conventions
Please note:
e jtalics are used to represent variables, and program names;

e courier is used to represent source code given as examples.

2.2.1 Windows Programming Conventions

Some designers may not be familiar with Windows programming conventions. Therefore, a few
conventions have been noted below:

e PULONG datais analogous tdLONG *dataor unsigned long *dataand

e IN andOUT are used to distinguish between parameters that are being passed into API
functions and parameters that are being returned by API functions.

2.3 Terminology

All references to Windows NT assume Windows NT 4.0 or higher and may be denoted as
WInNT. Similarly, references to Windows 95 may be denoted as Win95.

Win32 references are used throughout this manual to mean any application that is compatible
with either Windows NT or Windows 95.

All references to IOP software is software that runs on the evaluation board (either a PCI
9080RDK-401, a PCI 9080RDK-960, a PCI 9080RDK-860 or a generic IOP).

All references to Intel i960 always refer to the Intel iI960HA processor.

2.4 Development Requirements
The PCI SDK was developed for Window NT 4.0 and Windows 95 operating systems.

PLXMon97 was developed using Microsoft Developer Studio, supplied with the Microsoft
Visual C++ 4.2 and the Microsoft Win32 Software Development Kit for Windows NT 3.51 and
Windows 95.

The API was developed using Microsoft Developer Studio, supplied with Microsoft Visual C++
4.2 and the Microsoft Win32 Software Development Kit for Windows NT 3.51 and Windows 95.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 2-1

The WInNT device driver was developed using the Microsoft Windows NT DDK, version 4.0
and Microsoft Visual C++ 4.2.

The Win95 device driver was developed using the Microsoft Windows 95 DDK and the
Microsoft Visual C++4.2.

Development tools needed for the PCI SDK that are not supplied:

e Microsoft Visual C++ 4.2, with Microsoft Developer Studio;

e Microsoft Win32 Software Development Kit for Windows NT 3.51 and Windows 95;
e Microsoft Windows NT Device Driver Kit, version 4.0;

e Microsoft Windows 95 Device Driver Kit;

e IBM 401 Processor Development Tools.

e Intel i960 Processor Development Tools;

e Asys Diab and DriveWay Tools for the Motorola 860.

2-2 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

3. Software Design

3.1 Overview

The PCI SDK software can be broken into three separate sections: Customer Code, API, and
Device Driver (Figure 3.1 Software Design). The customer code and API reside in user space of
the operating system, and the device driver resides in kernel space of the operating system. The
API has two purposes: To act as a translator between the customer code and the device driver;
and to decrease development time by providing a powerful library of functions to control the
hardware.

Host PC IOP Device

Customer Code

Customer Code

:

:

Host API

IOP API

:

:

Host
Device Driver

10P
Device Driver

\/

PLX PCI 9080

Figure 3.1 Software Design

3.2 Directory Structure

The PCI SDK has been installed on your system using the following directory structure:
o <InstallPath> - is the root directory for all software;

¢ <InstallPath>\apps - is the root directory for all Win32 applications;

¢ <InstallPath>\apps\pIxIdr - contains all source code for the IOP loader application;
¢ <InstallPath>\drivers - is the root directory for all device driver source code;

e <InstallPath>\drivers\winnt - contains the source code for the WIinNT device driver;

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-1

e <InstallPath>\drivers\win95 - contains the source code for the Win95 device driver;
e <InstallPath>\inc - contains all include files for Win32 and IOP source code;

e <InstallPath>\iop - contains all IOP files;

¢ <InstallPath>\iop\apps - is the root directory for all the IOP applications files;

o <InstallPath>\iop\apps\40L1 - is the root directory for the PCI 9080RDK-401 IOP application
software;

e <InstallPath>\iop\apps\960 - is the root directory for the PCI 9080RDK-960 IOP application
software;

e <InstallPath>\iop\drivers - is the root directory for all IOP device driver source code;

e <InstallPath>\iop\drivers\401drv - is the root directory for the PClI 9080RDK-401 IOP device
driver source code;

o <InstallPath>\iop\drivers\960drv - is the root directory for the PCl 9080RDK-960 IOP device
driver source code;

o <InstallPath>\iop\drivers\860drv - is the root directory for the PCl 9080RDK-860 IOP device
driver source code;

e <InstallPath>\iop\drivers\iopdrv - is the root directory for the IOP device driver source code;
e <InstallPath>\iop\hw - is the root directory for all IOP hardware;

e <InstallPath>\iop\hw\401 - is the root directory for all PCl 9080RDK-401 IOP hardware;

e <InstallPath>\iop\hw\960 - is the root directory for all PCl 9080RDK-960 IOP hardware;

e <InstallPath>\iop\iopapi - contains all source code for the IOP API;

e <InstallPath>\iop\PIxRom - contains the PLX IOP ROM Monitor software;

e <InstallPath>\iop\PIxRom\401 - contains the PCI 9080RDK-401 IOP ROM Monitor

software;

¢ <InstallPath>\iop\PIXRom\960 - contains the PCI 9080RDK-960 IOP ROM Monitor
software;

¢ <InstallPath>\iop\PIXRom\860 - contains the PCI 9080RDK-860 IOP ROM Monitor
software;

e <InstallPath>\plxapi - contains all source code for the Win32 API; and

e <|nstallPath>\bin - contains binaries of PIxMon97 and PIxLdr.

3-2 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

A layout diagram of the software provided in the PCI SDK is shown in Figure 3.2.

Host Software
Host CPU Host - PLXMon97.exe
(Pentium) Memor - PIxLdr.exe
y - Sample Programs
Programs
- PIxApi.dll
- PIx.sys
- PIx95.vxd
A 4 v
| PCI BUS
A
N
PCI 9080
IOP Software
- lopApp
- IOP Samples
Programs
- lopApi.a
HP - lopDrv.a
- RdkDrv.a
Figure 3.2 Software layout diagram
3.3 PLX API

3.3.1 Introduction

The API included in this PCI SDK provides a PCI 9080 custom library that can be used by either
a Windows application or an IOP application. This section of the manual details the API design,
and provides a reference of all API functions.

3.3.2 API Design

3.3.2.1 Win32 Dynamic Link Library

The Win32 API has been designed as a Win32 Dynamic Link Library (DLL). DLLs are used in
Windows operating systems to reduce the size of applications that share library routines and to
allow greater flexibility during application upgrades. Instead of linking a static library into each
application, a single common library is shared by multiple applications. This library model not
only reduces the physical size of applications, but also offers greater flexibility in updates to

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-3

applications. When a library function is updated, only the DLL has to be updated instead of every
application that used the function.

Designers should be aware that the development files for the DLL included in the PCI SDK have
been generated using Microsoft Visual C++ 4.2 (MSVC 4.2). The DLL can be generated with
other compiler suites but compatibility is not guaranteed. Designers should &efpieoroject

file to load the DLL source code into Developer Studio (supplied with MSVC 4.2). Furthermore,
the DLL should always be located in the WIinNT System32 directory or the Win95 System
directory.

Two different versions of the API can be generated using the Developer Studio workspace file.
They are as follows:

1. Releaseversion, which is used under normal circumstances; and,
2. Debugversion, which is used during debugging of the APl and user applications.

ThereleaseanddebugDLL versions work only with PCI 9080 devices. Both contain a 9080
verification routine that causes most API routines to return an error if a PCI 9080 device is not
present.

3.3.2.2 10P Static Libraries

The IOP API and device driver included in the PCI SDK have been designed as standard link
libraries that should be familiar to most designers. No special linking instructions are required as
it should be linked into IOP applications similar to other static libraries.

The IOP API and device driver are separated into three libraries:

e The IOP API Library: This library contains all the interface code used by applications to
communicate to the device driver. This library is similar to the Win32 PLX API. The code
contained within the library is common for all IOP platforms however it must be compiled
separately for each IOP processor’'s compiler suite.

e The IOP Device Driver Library: This library contains the common device driver code for all
IOP platforms. The code contained within the library is common for all IOP platforms
however it must be compiled separately for each IOP processor’'s compiler suite.

¢ The IOP Specific Device Driver Library: This library contains the IOP specific device driver
code. The code contained within the library is specific to each IOP and should not be
compiled for other platforms.
Note: Though some of the functions within this library may be similar to others for other IOP
platforms these functions should only be used for reference purposes when working with new
IOP platforms. The IOP specific device driver libraries should only be compiled and linked to
applications destined for that specific IOP only.

3.3.2.3 Design Details

Both the Win32 and IOP APIs have similar source code, and most library functions can be used
by either platform. Section 3.3.3 summarizes each function and its availability to each platform.

The PLX API has been designed to be the middle layer between user applications and the device
drivers. All communications between the device drivers and applications are done through the

3-4 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PLX API. The PLX API simply translates application calls into device driver compatible calls.
Therefore, designers should consult Section 3.4.2 for details on how each PLX API function
carries out its purpose since the device driver does the actual work.

3.3.2.4 PLX API Assumptions
The PLX APl assumes:

e The PLX device’s registers are mapped into kernel memory space using PCl Base Address 0
(PCI Configuration Registdx10).

e That all PLX devices have the following Vendor ID and Device ID (PCI Configuration
RegisterOx00):

» The PCI 9080RDK-401 Vendor ID 8x1014 and Device ID i9x0401 ;
» The PCI 9080RDK-960 Vendor ID 8x10B5 and Device ID i$x0960 ;
» The PCI 9080RDK-860 Vendor ID 8x10B5 and Device ID i$x0860 ;
e All other devices (other than those listed previously) will be considered non-PLX devices;

e All PLX devices will have the Subsystem Vendor ID and Subsystem ID (PCI Configuration
RegistelOx2C) set toOx10B5 and0x9080 , respectively; and,

e The PLX API is compatible only with devices that use the PCI 9080 IC.

3.3.3 Function Quick Reference List

Presented below is a quick reference of all PLX API functions grouped in the following
categories:

e Register Access Functions (Table 3-1);

e PCI19080 Configuration Functions (Table 3-2);
e DMA Functions (Table 3-3);

e Messaging Functions (Table 3-4);

e Bus Memory and I/O Functions (Table 3-5);

e Serial EEPROM Functions (Table 3-6);

e API Support Functions (Table 3-7);

o PCI Device Functions (Table 3-8);

e PCI9080RDK-401, PCI 9080RDK-960 and PCIl 9080RDK-860 Support Functions (Table
3-9); and

e Miscellaneous Functions (Table 3-10).

Designers should consult Section 3.3.4 for a detailed description of each API function.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-5

Register Access Functions

Function Name Purpose Availability | Page Number

PIxRegisterRead Read any register (returns Win32/I0P | 3-13
register value)

PIxRegisterWrite Write any register (takes valug Win32/IOP | 3-14
directly)

PIxReadRegister Read any register (returned infoNin32/I0P | 3-15
a buffer)

PIxWriteRegister Write any register (value is Win32/IOP | 3-16
stored in a buffer)

PIxReadMailbox Read any mailbox register Win32/I0R 3-17

PIxWriteMailbox Write any mailbox register Win32/I0P, 3-18

PIxReadDoorbell Read any doorbell register Win32/I0pP 3-19

PIxWriteDoorbell Write any doorbell register wWin32/I0H 3-20

PIxReadAllRegisters Read multiple registers given a Win32/I0OP | 3-21
range

PIxReadAllLocalRegisters Read all Local Configuration | Win32/IOP | 3-22
registers

PIxReadAllIRuntimeRegisters Read all Runtime registers Win32/IOFP 3-23

PIxReadAllDmaRegisters Read all DMA registers Win32/I0P| 3-24

PIxReadAllConfigRegisters Read all PCI Configuration Win32/IOP | 3-25
registers

PIxReadAllMessagingRegisters Read all Messaging Unit Win32/IOP | 3-26
registers

Table 3-1 Register Access Functions
PCI 9080 Configuration Functions

Function Name Purpose Availability | Page Number

PIxConfigLocalArbitration Configures the local bus Win32/I0P | 3-27
Arbitration registers

PIxConfigLocalSpace Configures the local space Win32/I0P | 3-29
descriptor registers

PIxConfigBigEndian Configures big endian mode Win32/I0p 3-32

PIxConfigBigEndianByteLane Configures big endian byte Win32/IOP | 3-33
lanes

3-6

© PLX Technology, Inc., 1997

PCI SDK Programmer’s Reference Manual

TecmNotoeYy”

Function Name Purpose Availability | Page Number

PIxConfigLittleEndian Configures little endian mode Win32/I0OR 3-34

PIxReloadConfigurationRegisters Reloads configuration Win32/I0P | 3-35
EEPROM values

PIxConfigVendorDeviceld Program the device vendor andOP 3-36
device ID’s

PIxConfigClassCode Configures the devices PCI | IOP 3-37
class code

PIxInitDone Allows external PCI masters | IOP 3-38
access to PCI device

PIxSetUserOut Sets USERO pin Win32/10P| 3-39

PIxClearUserOut Clears USERO pin Win32/10P| 3-40

PIxGetBarRange Retrieves PCl Base Address | Win32/IOP | 3-41
Range

PIxSetDirectSlaveRemap Configures direct slave remap| IOP 3-42
register

PIxSetDirectSlaveRange Configures direct slave range | IOP 3-44
register

PIxSetDirectMasterRemap Configures direct master remgpNin32/I0P | 3-46
register

PIxSetDirectMasterBaseAddress Configures direct master base Win32/IOP | 3-48
address

Table 3-2 PCI 9080 Configuration Functions
DMA Functions
Function Name Purpose Availability | Page Number

PIxSetupDmaTransfer Setup device for a DMA Win32/I0OP | 3-50
Transfer

PIxDisableDmaChannel Disable a DMA channel Win32/I0P| 3-53

PixStartDmaChannel Start a DMA transfer Win32/I0P| 3-54

PIxStopDmaChannel Stop a DMA transfer (pause a| Win32/I0OP | 3-55
transfer)

PIxAbortDmaChannel Terminates a DMA transfer Win32/I0P | 3-57
(non resumeable)

PIxClearDmaChannelintr Clears a DMA interrupt IOP 3-59

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-7

Function Name Purpose Availability | Page Number
PIxQueryDmaChannelDone Checks DMA Done Status Win32/IOR 3-60
PIxDmaChannelAvailable Checks for first available DMA Win32/I0P | 3-61
channel.
Table 3-3 DMA Functions
Messaging Functions
Function Name Purpose Availability | Page Number

PIxReadInboundPort Read Inbound Port Win32/I0P, 3-62

PIxWriteInboundPort Write Inbound Port Win32/IOP| 3-63

PIxReadOutboundPort Read Outbound Port Win32/I0OR 3-64

PIxWriteOutboundPort Write Outbound Port Win32/IOP| 3-65

PIxGetinboundFreeMfa Get a message frame from the IOP 3-66
Inbound Free FIFO

PIxPutinboundPostMfa Put a message frame into the | IOP 3-67
Inbound Post FIFO

PIxInitMessageFifos Configures messaging unit. IOP 3-68

Table 3-4 Messaging Functions
Bus Memory and I/O Functions

Function Name Purpose Availability | Page Number

PIxDirectSlaveReadChar 8-bit Memory cycle Read Win32 3-69

PIxDirectSlaveWriteChar 8-bit Memory cycle Write Win32 3-71

PIxDirectSlaveReadShort 16-bit Memory cycle Read Win32 3-73

PIxDirectSlaveWriteShort 16-bit Memory cycle Write Win32 3-75

PIxDirectSlaveReadLong 32-bit Memory cycle Read Win32 3-77

PIxDirectSlaveWriteLong 32-bit Memory cycle Write Win32 3-79

PIxDirectSlaveRemapReadChar 8-bit Memory cycle Read (with Win32 3-81
remap)

PIxDirectSlaveRemapWriteChar 8-bit Memory cycle Write (with Win32 3-83
remap)

PIxDirectSlaveRemapReadShort 16-bit Memory cycle Read Win32 3-85
(with remap)

PIxDirectSlaveRemapWriteShort 16-bit Memory cycle Write Win32 3-87

3-8

© PLX Technology, Inc., 1997

PCI SDK Programmer’s Reference Manual

Function Name

Purpose

Availability

Page Number

(with remap)

PIxDirectSlaveRemapReadlLong 32-bit Memory cycle Read Win32 3-89
(with remap)

PIxDirectSlaveRemapWriteLong 32-bit Memory cycle Write Win32 3-91
(with remap)

PIxDirectMasterReadChar 8-bit Memory cycle Read IOP 3-93

PIxDirectMasterWriteChar 8-bit Memory cycle Write IOP 3-94

PIxDirectMasterReadShort 16-bit Memory cycle Read IOP 3-95

PIxDirectMasterWriteShort 16-bit Memory cycle Write IOP 3-96

PIxDirectMasterReadlLong 32-bit Memory cycle Read IOP 3-97

PIxDirectMasterWriteLong 32-bit Memory cycle Write IOP 3-98

PIxDirectMasterRemapReadChar 8-bit Memory cycle Read (with IOP 3-99
remap)

PIxDirectMasterRemapWriteChar 8-bit Memory cycle Write (with IOP 3-100
remap)

PIxDirectMasterRemapReadShort 16-bit Memory cycle Read IOP 3-101
(with remap)

PIxDirectMasterRemapWriteShort 16-bit Memory cycle Write IOP 3-102
(with remap)

PIxDirectMasterRemapReadLong 32-bit Memory cycle Read IOP 3-103
(with remap)

PIxDirectMasterRemapWriteLong 32-bit Memory cycle Write IOP 3-104
(with remap)

PIxDirectPortSlaveReadChar 8-bit 1/0 cycle Read Win32 3-105

PIxDirectPortSlaveWriteChar 8-bit I/O cycle Write Win32 3-106

PIxDirectPortSlaveReadShort 16-bit I/0 cycle Read Win32 3-107

PIxDirectPortSlaveWriteShort 16-bit I/0O cycle Write Win32 3-108

PIxDirectPortSlaveReadlLong 32-bit I/O cycle Read Win32 3-109

PIxDirectPortSlaveWriteLong 32-bit I/O cycle Write Win32 3-110

PIxDirectPortMasterReadChar 8-bit 1/0 cycle Read IOP 3-111

PIxDirectPortMasterWriteChar 8-bit I/O cycle Write IOP 3-112

PIxDirectPortMasterReadShort 16-bit /0 cycle Read IOP 3-113

PIxDirectPortMasterWriteShort 16-bit /0O cycle Write IOP 3-114

PCI SDK Programmer’s Reference Manual ~ © PLX Technology, Inc., 1997 3-9

Function Name Purpose Availability | Page Number
PIxDirectPortMasterReadLong 32-bit I/O cycle Read IOP 3-115
PIxDirectPortMasterWriteLong 32-bit I/O cycle Write IOP 3-116
Table 3-5 Bus Memory and 1/O Functions
Serial EEPROM Functions
Function Name Purpose Availability | Page Number
PIxReadEepromBuffer Read the contents of the Win32/I0P | 3-117
EEPROM
PIxWriteEepromBuffer Change the contents of the Win32/IOP | 3-118
EEPROM
Table 3-6 Serial EEPROM Functions
API Support Functions
Function Name Purpose Availability | Page Number
PixInitaialize API Initializes the API Win32/I0P | 3-119
PIxTerminateAPI Terminates the API Win32/I0P| 3-120
Table 3-7 API Support Functions
PCI Device Functions
Function Name Purpose Availability | Page Number
PIxReadConfigRegister Read a PCI Configuration Win32/I0P | 3-121
register
PIxWriteConfigRegister Write to a PCI Configuration | Win32/I0P | 3-122
register
PIxSelectPciDevice Select a PCI device given Bus| Win32/I0P | 3-123
Number, Slot Number, Device
ID, and Vendor ID.
PIxFindPciDevice Find a PCI device given Bus | Win32 3-125
Number, Slot Number, Device
ID, and Vendor ID.
PIxGetBaseAddress Get the user virtual addresses| Win32/IOP | 3-127
(for use by Windows
applications) for a PCI device.
Table 3-8 PCI Device Functions
3-10 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

A A
9080RDK-401, 9080RDK-960 and 9080RDK-860 Support Functions

Function Name Purpose Availability | Page Number
PIxResetEmbedded Reset the evaluation board Win32 3-130
PIxDownloadInit Initialize the device driver for | Win32 3-131

an IOP download
PIxDownloadData Download a block of IOP Win32 3-132

software
PIxStartEmbedded Start IOP software Win32 3-133

Table 3-9 9080RDK-401, 9080RDK-960 and 9080RDK-860 Support Functions

Miscellaneous Support Functions

Function Name Purpose Availability | Page Number
PIxPrint Print a formatted string Win32/I0P 3-135
PIxSetintrWait Pass a doorbell interrupt wait | Win32 3-136

event handle to the device

driver
PlIxlIsIntrActive Retrieves interrupt information| Win32/I0R 3-137

3.3.4 API Functions Details

Table 3-10 Miscellaneous Functions

This section contains a detailed description of each function in the API. The functions are listed

by category.

The following sample entry lists each entry section and describes the information therein.

Note: Devices supported by PCI SDK Version 1.2: PCI 9080

Sample Function Entry

Syntax:

function(modifierparametey,...]);

This gives the declaration syntax for each function. Each paramétgicized

Description:

Summary of the function’s purpose followed by the parameters it takes. Also includes any
relevant information pertaining to the function.

PCI SDK Programmer’s Reference Manual

© PLX Technology, Inc., 1997

3-11

Return Value:
The value returned by the function.

Portability:
States whether this function can be used with Win32, IOP applications or both.

Usage:
A sample is provided to demonstrate the function’s use.

3-12 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Register Access Functions

PIxRegisterRead

Syntax:
ULONG PIxRegisterRead(IN HANDLErvHandle

IN ULONG registerNumbe);
Description:
Reads any register on the currently selected PCI device.
e drvHandleis the handle of the PCI device; and
e registerNumbeis the register number.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
This function returns the data value read from regisgisterNumber

This function does not return any error code.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerNumber;

/* Read register PCI9080_MAILBOXO of the currently selected PCI
device */
registerNumber = PCI9080_MAILBOXO;

PIxPrint((\nValue at register 0x%x = 0x%x \n”,
registerNumber,
PIxRegisterRead(drvHandle, registerNumber)

);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-13

PIxRegisterWrite

Syntax:

RETURN_CODE PIxWriteRegister(IN HANDLHrvHandle
IN ULONG registerNumber
IN ULONG data);

Description:

Writes a value to any register on a PCI device.

e drvHandleis the handle of the PCI device;

e registerNumbers the register number; and

e datais a ULONG value to store in the register.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.

If the register number is out of range, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerNumber;

/* Modify the contents of Register PCI9080_MAILBOXO */
registerNumber = PCI9080_MAILBOXO;
PIxRegisterWrite(drvHandle,
registerNumber,
PIxRegisterRead(drvHandle, registerNumber)
|| 0x80
)i

3-14 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxReadRegister

Syntax:

RETURN_CODE PIxReadRegister(IN HANDLdtvHandle
IN ULONG registerNumber
OUT PULONGdata);

Description:

Reads any register on the currently selected PCI device.

e drvHandleis the handle of the PCI device;

e registerNumbers the register number; and

e datais a pointer to a buffer to store the register contents.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected

using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.

If the register number is out of range, this function returns API_FAILEDdataicontains

OXFFFFFFFF,

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerNumber, data;

/* Read register PCI9080_MAILBOXO of the currently selected PCI

device */
registerNumber = PCI9080_MAILBOXO;
PIxReadRegister(drvHandle, registerNumber, &data);
PIxPrint((\nValue at register 0x%x = 0x%x \n”,
registerNumber,
data

)

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997

3-15

PIxWriteRegister

Syntax:

RETURN_CODE PIxWriteRegister(IN HANDLHrvHandle
IN ULONG registerNumber
IN PULONGdata);

Description:

Writes a value to any register on a PCI device.

e drvHandleis the handle of the PCI device;

e registerNumbers the register number; and

e datais a ULONG pointer to the value to store in the register.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.

If the register number is out of range, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerNumber, data;

/*

* Write 0x123456 to register PCI19080 MAILBOXO of the currently
selected

* PCI device

*/

registerNumber = PCI9080_MAILBOXO;

data = 0x123456;

PIxWriteRegister(drvHandle, registerNumber, &data);

3-16 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxReadMailbox

Syntax:

RETURN_CODE PIxReadMailbox(IN HANDLHErvHandle
IN ULONG mailboxNumber
OUT PULONGdata);

Description:

Reads any mailbox register on the currently selected PCI device.
e drvHandleis the handle of the PCI device;

e mailboxNumbers the mailbox register number; and

e datais a pointer to a buffer to store the register contents.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.

If the register number is out of range, this function returns API_FAILEDdataicontains
OXFFFFFFFF.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG mailboxNumber;
ULONG data;

/*
* Read mailbox register PCI9080_MAILBOXO of the currently
* selected PCI device
*/
mailboxNumber = PCI9080_MAILBOXO;
PIxReadMailbox(drvHandle, mailboxNumber, &data);
PIxPrint((\nValue at mailbox register 0x%x = 0x%x \n”,
mailboxNumber,
data

)

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-17

PIxWriteMailbox

Syntax:

RETURN_CODE PIxWriteMailbox(IN HANDLEIrvHandle
IN ULONG mailboxNumber
IN PULONG data);

Description:

Writes a value to any mailbox register on a PCI device.

e drvHandleis the handle of the PCI device;

e mailboxNumbers the register number; and

e datais a ULONG pointer to the value to store in the register.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
If the mailbox register number is out of range, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG mailboxNumber;
ULONG data;

/*

* Write 0x123456 to Mailbox register PCI9080_ MAILBOXO of the
* currently selected PCI device

*/

mailboxNumber = PCI9080_MAILBOXO;

data = 0x123456;

PIxWriteMailbox(drvHandle, mailboxNumber, &data);

3-18 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxReadDoorbell

Syntax:

RETURN_CODE PIxReadDoorbell(IN HANDL&rvHandle
IN ULONG doorbellNumber
OUT PULONGdata);

Description:

Reads any doorbell register on the currently selected PCI device.
¢ drvHandleis the handle of the PCI device;

e doorbellNumberis the register number; and

e datais a pointer to a buffer to store the register contents.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.

If the doorbell register number is out of range, this function returns AP|_FAILEDatad
contains OXFFFFFFFF.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG doorbellNumber;
ULONG data;

/*
* Read doorbell register PCI9080_LOCAL_DOORBELL of the currently
* selected PCI device
*/
doorbellNumber = PCI9080_LOCAL_DOORBELL;
PIxReadDoorbell(drvHandle, doorbellNumber, &data);
PIxPrint((\nValue at doorbell register 0x%x = 0x%x \n”,
doorbellNumber,
data

);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-19

PIxWriteDoorbell

Syntax:

RETURN_CODE PIxWriteDoorbell(IN HANDLErvHandle
IN ULONG doorbellNumber
IN PULONGdata);

Description:

Writes a value to any doorbell register on a PCI device.

¢ drvHandleis the handle of the PCI device;

e doorbellNumberis the register number; and

e datais a ULONG pointer to the value to store in the register.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
If the doorbell register number is out of range, this function returns APl_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG doorbellNumber;
ULONG data;

/*
* Write 0x2 to doorbell register PCI9080 LOCAL_DOORBELL of the
* currently selected PCI device

*/
doorbellNumber = PCI9080_LOCAL DOORBELL;
data = Ox2;

PIxWriteDoorbell(drvHandle, doorbellNumber, &data);

3-20 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxReadAllRegisters

Syntax:

RETURN_CODE PIxReadAllRegisters(IN HANDL&vHandle
OUT PULONGtregisterList
IN ULONG regStartOffset
IN ULONG regRangg

Description:

Reads multiple registers on a PCI device.

e drvHandleis the handle of the PCI device;

e registerListis the storage location for the register values;

o regStartOffseis the register offset to start reading at; and

¢ regRangds the number of bytes to read starting at regStartOffset.

Note:regRange is the number lojtesto read. Usually registers on PCI devices are 32-bits,
therefore this parameter is usually divided byéfore this function can be used in a Win32
environment, a PCI device must be selected using PIxSelectPciDevice(). This function will not
read the PCI configuration registers from the Win32 side (For Win32: use
PIxReadAllConfigRegisters())

Return Value:
On success, this function returns APlI_SUCCESS.

If any register number is out of range, this function returns APl_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerListftMAX_NUMBER_OF_REGISTERS];

/* Read 2 32-bit registers starting at register 0x00 */
PIxReadAllRegisters(drvHandle, ®isterList[0], 0x00, 0x08);
PIxPrint((“ registerList[1] (Register 0x04) = 0x%08x\n”,
registerList[1]
);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-21

PIxReadAllLocalRegisters

Syntax:

RETURN_CODE PIxReadAllLocalRegisters(IN HANDLdtvHandle
OUT PULONGtregisterLis};

Description:

Reads all Local Configuration registers on a PCI device.

e drvHandleis the handle of the PCI device; and

e registerListis the storage location for the register values.

Note: registerList MUST be already allocated and must hold enough room for all Local
Configuration registersBefore this function can be used in a Win32 environment, a PCI device
must be selected using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerListftMAX_NUMBER_OF_REGISTERS];

/* Read all Local Configuration registers */
PIxReadAllLocalRegisters(drvHandle, ®isterList[0]);
PIxPrint((“ registerList[1] (PCI 0x04, IOP 0x84) = 0x%08x\n",
registerList[1]
)

3-22 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxReadAllRuntimeRegisters

Syntax:

RETURN_CODE PIxReadAllRuntimeRegisters(IN HANDdE/Handle
OUT PULONGregisterLis};

Description:

Reads all Runtime registers on a PCI device.

e drvHandleis the handle of the PCI device; and

e registerListis the storage location for the register values;

Note: registerList MUST be already allocated and must hold enough room for all Runtime
registers Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns APl_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerListftMAX_NUMBER_OF_REGISTERS];

/* Read all Runtime registers */
PIxReadAllRuntimeRegisters(drvHandle, ®isterList[0]);
PIxPrint((“ registerList[1] (PCI 0x44, IOP 0xC4) = 0x%08x\n",
registerList[1]
)

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-23

PIxReadAllDmaRegisters

Syntax:

RETURN_CODE PIxReadAllDmaRegisters(IN HANDIdEvHandle
OUT PULONGregisterLis};

Description:

Reads all DMA registers on a PCI device.

e drvHandleis the handle of the PCI device; and

e registerListis the storage location for the register values.

Note: registerList MUST already be allocated and must hold enough room for all DMA registers.
Before this function can be used in a Win32 environment, a PCI device must be selected using
PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns APl_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerListftMAX_NUMBER_OF_REGISTERS];

/* Read all DMA registers */
PIxReadAllIDmaRegisters(drvHandle, ®isterList[0]);
PIxPrint((“ registerList[1] (PCI 0x84, IOP 0x104) = 0x%08x\n",
registerList[1]
)

3-24 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxReadAllConfigRegisters

Syntax:

RETURN_CODE PIxReadAllConfigRegisters(IN HANDLdfvHandle
OUT PULONGtregisterLis};

Description:

Reads all PCI Configuration registers on a PCI device.

e drvHandleis the handle of the PCI device; and

e registerListis the storage location for the register values.

Note:registerList MUST be already allocated and must hold enough room for all PCI
Configuration registersBefore this function can be used in a Win32 environment, a PCI device
must be selected using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerListftMAX_NUMBER_OF_REGISTERS];

/* Read all PCI Configuration registers */
PIxReadAllConfigRegisters(drvHandle, ®isterList[0]);
PIxPrint((“ registerList[1] (PCI CFG 0x04, IOP 0x84) = 0x%08x\n",
registerList[1]
)

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-25

PIxReadAllMessagingRegisters

Syntax:

RETURN_CODE PIxReadAllMessagingRegisters(IN HANDilivHandle
OUT PULONGtregisterLis};

Description:

Reads all Messaging registers on a PCI device.

e drvHandleis the handle of the PCI device; and

e registerListis the storage location for the register values.

Note: registerList MUST already be allocated and must hold enough room for all Messaging
registers.Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns APl_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG registerListftMAX_NUMBER_OF_REGISTERS];

/* Read all messaging registers */
PIxReadAllMessagingRegisters(drvHandle, ®isterList[0]);
PIxPrint((“ registerList[1] (PCI CFG 0x04, IOP 0x84) = 0x%08x\n",
registerList[1]
)

3-26 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PCI 9080 Configuration Functions

PIxConfigLocalArbitration

Syntax:

RETURN_CODE PIxConfigLocalArbitration(IN HANDLErvHandle
IN ULONG modeEnableDescriptor
IN UCHAR localBusLatencyTimer
IN UCHAR localBusPauseTimer
IN ULONG dmaChannelPriority;

Description:

Configures the Local bus arbitration registers.

e drvHandleis the handle of the PCI device;

¢ modeEnableDescriptds the descriptor value that enables or disables local arbitration
features. Possible descriptors that should be OR’ed together are:

> LOCAL_BUS_LATENCY_TIMER_ENABLE
LOCAL_BUS_PAUSE_TIMER_ENABLE
LOCAL_BUS_BREQ_ENABLE

LOCAL_BUS_DIRECT _SLAVE_GIVE_UP_BUS_ENABLE
DIRECT_SLAVE_LLOCKO_ENABLE

PC|_REQUEST _MODE_ENABLE
PCI_REV21_MODE_ENABLE
PCI_READ_NO_WRITE_MODE_ENABLE
PCI_READ_WRITE_FLUSH_MODE_ENABLE
GATE_LOCAL_BUS_LATENCY_TIMER_BREQ _ENABLE
PCI_READ_NO_FLUSH_MODE_ENABLE
PCI_DEVICE_VENDOR_ID_SWITCH_ENABLE

e |ocalBusLatencyTimes the number of bus clocks the PCI device maintains ownership of the
local bus after finishing a bus transaction;

YV V.V V V V V V V VY

A\

¢ localBusPauseTimas the number of bus clocks the PCI device waits before requesting
ownership of the local bus after having finished a bus transaction; and

e dmaChannelPrioritys the DMA priority scheme.

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-27

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;

ULONG modeEnableDescriptor, modeEnableDescriptor,
dmaChannelPriority = 0x0;

UCHAR localBusLatencyTimer = 0x0, localBusPauseTimer = 0x0;

modeEnableDescriptor = LOCAL_BUS_BREQ_ENABLE
| PCI_REV21_MODE_ENABLE;

PIxConfigLocalArbitration(drvHandle,
modeEnableDescriptor,
localBusLatencyTimer,
localBusPauseTimer,

dmaChannelPriority

);

3-28 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxConfigLocalSpace

Syntax:
RETURN_CODE PIxConfigLocalSpace (IN HANDL&EvHandle
IN LOCAL_SPACEIlocalSpace
IN PLOCAL_BUS_ DESCRIPTORDescriptod;
Description:
Configures the Local Space descriptor registers.
e drvHandleis the handle of the PCI device;
e localSpaces the specific PCI device local space; and
e pDescriptoris a pointer to the local space descriptor variable.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice()

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpaceO,
LocalSpacel,
LocalSpace2,
LocalSpaces,
ExpansionRom
JLOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-29

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Local bus descriptor data type:
typedef struct _LOCAL_BUS_DESCRIPTOR

{
unsigned long busWidth : 2
unsigned long dataToDataWaitStates : 4;
unsigned long readylnputEnable 01
unsigned long bterminputEnable 1
unsigned long prefetchDisable 1
unsigned long prefetchCountEnable : 1;
unsigned long burstEnable :1;
unsigned long prefetchCounter 2 4;
unsigned long reserved : 17; /* Word-alignment */

} LOCAL_BUS_DESCRIPTOR, *PLOCAL_BUS_DESCRIPTOR;

Purpose:
Structure used to describe the local bus characteristics.

Members:

busWidth
The width of the local bus.

dataToDataWaitStates
The number of wait states inserted after the address is presented on the local bus until the
data is ready. The value must be between 0-15.

readylnputEnable
Enables or disables the Ready input.

bterminputEnable
Enables or disables the BTERM input.

prefetchDisable
Enables or disables prefetching when reading memory.

prefetchCountEnable
Enables or disables prefetching counter. If enabled the PCI 9080 reads up to the number
of ULONGs specified in the prefetch counter. If disabled the PCI 9080 ignores the
prefetch counter and reads continuously until terminated by the PCI bus.

3-30 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

burstEnable
Enables or disables bursting. If bursting is disabled then the PCI 9080 performs
continuous single cycle accesses for burst PCI read/write cycles.

prefetchCounter
Stores the number of ULONGSs that can be prefetched. Up to 16 ULONGSs can be
prefetched during memory read cycles.

Comments:

The local bus descriptor structure is used to describe the local bus characteristics.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
LOCAL_BUS DESCRIPTOR pDescriptor = 0x0;

pDescriptor.busWith = 0x3; /* 32 bit */
pDescriptor.dataToDataWaitSates = 0x00; /* 0 wait states */
pDescriptor.readylnputEnable = 0x01; /* ready enabled */
pDescriptor.bterminputEnable = 0x00; /* bterm disable */
pDescriptor.prefetchDisable = 0x00; /* prefetch enabled */
pDescriptor.prefetchCountEnable = 0x00; /* ignore count */
pDescriptor.burstEnable = 0x01; /*enable bursting */

/* Config Local Space 0 */
PIxConfigLocalSpace (drvHandle, LocalSpace0, &pDescriptor);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-31

PIxConfigBigEndian

Syntax:
RETURN_CODE PIxConfigBigendian (IN HANDLHrvHandle
IN ULONG endianDescriptoy,
Description:
Configures the PCI device for Big Endian operation.
e drvHandleis the handle of the PCI device; and

e endianDescriptois the descriptor register that enables Big Endian byte swapping. Possible
descriptors that should be OR’ed together are:

> CONFIGURATION_ENDIAN_MODE
DIRECT_MASTER_ENDIAN_MODE
DIRECT_SLAVE_SPACEO_ENDIAN_MODE
DIRECT_SLAVE_EROM_ENDIAN_MODE
DIRECT_SLAVE_SPACE1_ENDIAN_MODE
DMA_CHANNEL1_ENDIAN_MODE

> DMA_CHANNELO_ENDIAN_MODE

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

YV V V V V

Return Value:
On success, this function returns API_SUCCESS.

If any register number is out of range, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG endianDescriptor;

/* Enable Big endian mode for direct master accesses */

endianDescriptor = DIRECT_MASTER_ENDIAN_MODE
PIxConfigBigEndian(drvHandle, endianDescriptor);

3-32 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxConfigBigEndianByteLane

Syntax:

RETURN_CODE PIxConfigBigEndianByteLane (IN HANDLd&vHandle
IN ULONG endianLaneDescriptdr

Description:
Configures the PCI device byte lanes for Big Endian operation in 8 or 16 bit local buses.
e drvHandleis the handle of the PCI device; and

e endianLaneDescriptas the descriptor that determines Big Endian byte lanes for 8 or 16 bit
local buses only. Possible descriptors that should be OR’ed together are:

> UPPER_BYTE_LANE_ENDIAN_MODE
> LOWER_BYTE_LANE_ENDIAN_MODE

Note: This function only has meaning if Big Endian operation is enabled. Before this function can
be used in a Win32 environment, a PCI device must be selected using PIxSelectPciDevice().

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG endianLaneDescriptor;

endianLaneDescriptor = UPPPER_BYTE_LANE_ENDIAN_MODE;
PIxConfigBigEndianByteLane(drvHandle, endianLaneDescriptor);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-33

PIxConfigLittleEndian

Syntax:

RETURN_CODE PIxConfigLittleEndian(IN HANDLErvHandle
IN ULONG endianDescriptoy,

Description:
Configures the PCI device for Little Endian operation.
e drvHandleis the handle of the PCI device; and

e endianDescriptors the descriptor register that enables Little Endian operation. Possible
descriptors that should be OR’ed together are:

> CONFIGURATION_ENDIAN_MODE
DIRECT_MASTER_ENDIAN_MODE
DIRECT_SLAVE_SPACEO_ENDIAN_MODE
DIRECT_SLAVE_EROM_ENDIAN_MODE
DIRECT_SLAVE_SPACE1_ENDIAN_MODE
DMA_CHANNEL1_ENDIAN_MODE

> DMA_CHANNELO_ENDIAN_MODE

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

YV V V V V

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG endianDescriptor;

/* Enable Little endian mode for direct master accesses */

endianDescriptor = DIRECT_MASTER_ENDIAN_MODE
PIxConfigLittleEndian(drvHandle, endianDescriptor);

3-34 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxReloadConfigurationRegisters

Syntax:
RETURN_CODE PIxReloadConfigurationRegisters(IN HANDilivHandle;

Description:
Initiates the PCI device to reload the PCI configuration registers from its serial EEPROM.
e drvHandleis the handle of the PCI device.

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
If any register number is out of range, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:
HANDLE drvHandle;

PIxReloadConfigurationRegisters(drvHandle);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-35

PIxConfigVendorDeviceld

Syntax:

RETURN_CODE PIxConfigVendorDeviceld(IN HANDL&vHandle,
IN USHORTvendorld
IN USHORTdevicelq;
Description:

Programs the PCI device's Vendor and Device IDs .

e drvHandleis the handle of the PCI device;
¢ vendorldis the vendor specific identification number distributed by the PCI SIG; and

¢ deviceldis the device specific identification number.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by IOP applications.

Usage:
HANDLE drvHandle;

PIxConfigVendorDeviceld(drvHandle,
PLX_VENDOR_ID,
PLX_9080RDK_960_DEVICE_ID

);

3-36 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxConfigClassCode

Syntax:

RETURN_CODE PIxConfigClassCode(IN HANDLdvHandle,
IN UCHAR registerLevel
IN UCHAR subClass,
IN UCHAR baseClasg

Description:

Programs the PCI device’'s Register Level Programming Interface, SubClass code, and Base Class
code.

¢ drvHandleis the handle of the PCI device;

e registerLevels an application specific identification number identifying programming
interface;

e subClass is an application specific identification number identifying type of adapter; and

e DbaseClass is an application specific identification number identifying type of adapter.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns AP1_FAILED.

Portability:

This function can be used by IOP applications.

Usage:
HANDLE drvHandle;

PIxConfigClassCode(drvHandle,
PLX9080_120_RLPI,
PLX9080_120_SUBCLASS,

PLX9080_120_BASE_CLASS

);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-37

PIxInitDone

Syntax:
RETURN_CODE PIxInitDone(IN HANDLEIrvHandlé;

Description:
Signals PCI device to allow external PCI masters (i.e. PCI BIOS) access to the PCI device.
e drvHandleis the handle of the PCI device.

Note: Upon completion of initialization by the IOP processor, this function must be called in
order to give access to external PCl masters to the PCI device. Failure to do so will result in
system hang.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by IOP applications.

Usage:
HANDLE drvHandle;
ULONG data;

[* Configure the IOP processor and the PLX PCI9080 */
data = 0x10000000;
PIxSetDirectSlaveRemap(drvHandle, pciMemSpace ,&data);

data = 0xfO0O00000;
PIxSetDirectSlaveRange(drvHandle, pciMemSpace ,&data);

data = 0x10000000;
PIxSetDirectMasterRemap(drvHandle, pciMemSpace ,&data);

data = 0x40000000; /* local address for DM is 0x40000000 */
PIxSetDirectMasterBaseAddress(drvHandle, pciMemSpace ,&data);

/* Now let PCI masters access us */
PiIxInitDone(drvHandle);

3-38 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxSetUserOut

Syntax:
RETURN_CODE PIxSetUserOut(IN HANDL&rvHandlé;

Description:
Sets the PCI device’s USERO pin.
e drvHandleis the handle of the PCI device.

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
If any register number is out of range, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:
HANDLE drvHandle;

PIxSetUserOut(drvHandle);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-39

PIxClearUserOut

Syntax:
RETURN_CODE PIxClearUserOut(IN HANDL&vHandle;

Description:
Clears the PCI device’'s USERO pin.
e drvHandleis the handle of the PCI device.

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:
HANDLE drvHandle;

PIxClearUserOut(drvHandle);

3-40 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxGetBarRange

Syntax:
RETURN_CODE PIxGetBarRange(IN HANDLdivHandle

IN ULONG barRegisterNumber
OUT PULONGdata,

IN ULONG bus

IN ULONG slof);

Description:

Retrieves the range of any PCI base address register.

drvHandleis the handle of the PCI device;

barRegisterNumbeis the base address register number;

datais a pointer to a buffer that stores the range;

busis the PCI bus number containing the device to read, for current bOgRSEFFFFF;

slotis the PCI slot number containing the device to read, for current slOkBEEEFFFFF.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns AP1_FAILED.

Portability:

This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG data;

/* read range of BARO on device 11, bus 0 */
PIxGetBarRange(drvHandle, PCI9080_RTR_BASE, &data, 0x0, 0x11);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-41

PIxSetDirectSlaveRemap

Syntax:

RETURN_CODE PIxSetDirectSlaveRemap(IN HANDdOE/Handle
IN LOCAL_SPACElocalSpace
IN ULONG data);

Description:

Configures the remap register for Direct Slave accesses

e drvHandleis the handle of the PCI device;

¢ localSpacealefines which local space is to be configured; and,

e datais a pointer to a buffer that contains the configuration information.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpace0,
LocalSpacel,
LocalSpace2,
LocalSpaces,
ExpansionRom
JLOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

3-42 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Comments

The local space enumerated type is used to select the type of bus cycles when accessing the PCI
bus.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by IOP applications.

Usage:
HANDLE drvHandle;
ULONG data;

/* Configure the IOP processor and the PLX PCI9080 */
data = 0x10000000;
PIxSetDirectSlaveRemap(drvHandle, LocalSpace0 ,&data);

data = 0xf0000000;
PIxSetDirectSlaveRange(drvHandle, LocalSpace0 ,&data);

data = 0x30000000;
PIxSetDirectMasterRemap(drvHandle, pciMemSpace ,&data);

data = 0x40000000; /* local address for DM is 0x40000000 */
PIxSetDirectMasterBaseAddress(drvHandle, pciMemSpace ,&data);

/* Now let PCI masters access us */
PlIxInitDone(drvHandle);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-43

PIxSetDirectSlaveRange

Syntax:

RETURN_CODE PIxSetDirectSlaveRange(IN HANDOE/Handlg
IN LOCAL_SPACElocalSpace
IN ULONG data);

Description:

Configures the range register for Direct Slave accesses

e drvHandleis the handle of the PCI device;

¢ localSpacealefines which local space is to be configured; and,

e datais a pointer to a buffer that contains the configuration information.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpace0,
LocalSpacel,
LocalSpace2,
LocalSpaces,
ExpansionRom
JLOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

3-44 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Comments

The local space enumerated type is used to select the type of bus cycles when accessing the PCI
bus.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by IOP applications.

Usage:
HANDLE drvHandle;
ULONG data;

/* Configure the IOP processor and the PLX PCI9080 */
data = 0x10000000;
PIxSetDirectSlaveRemap(drvHandle, LocalSpace0 ,&data);

data = 0xf0000000;
PIxSetDirectSlaveRange(drvHandle, LocalSpace0 ,&data);

data = 0x30000000;
PIxSetDirectMasterRemap(drvHandle, pciMemSpace ,&data);

data = 0x40000000; /* local address for DM is 0x40000000 */
PIxSetDirectMasterBaseAddress(drvHandle, pciMemSpace ,&data);

/* Now let PCI masters access us */
PlIxInitDone(drvHandle);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-45

PIxSetDirectMasterRemap

Syntax:
RETURN_CODE PIxSetDirectMasterRemap(IN HANDHE/Handle
IN PCI_SPACEpciSpace
IN ULONG data);
Description:
Configures the remap register for Direct Master I/O accesses
e drvHandleis the handle of the PCI device;
e pciSpacalefines which PCI space is to be configured (Memory or 1/0); and,
e datais a pointer to a buffer that contains the configuration information.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

PCI Space Enum Data Type

typedef enum _PCI_SPACE
{

pciMemSpace,
pciloSpace
} PCI_SPACE;

Purpose
Enumerated type used for choosing the desired PCI Address Space access.

Members

pciMemSpace
Use PCI memory cycles when accessing the PCI bus.

pciloSpace
Use PCI I/O cycles when accessing the PCI bus.

Comments

The local space enumerated type is used to select the type of bus cycles when accessing the PCI
bus.

Return Value:
On success, this function returns API_SUCCESS.

3-46 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

On error, this function returns AP1_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:
HANDLE drvHandle;
ULONG data;

/* Configure the IOP processor and the PLX PCI9080 */
data = 0x10000000;
PIxSetDirectSlaveRemap(drvHandle, pciMemSpace ,&data);

data = 0xf0O000000;
PIxSetDirectSlaveRange(drvHandle, pciMemSpace ,&data);

data = 0x30000000;
PIxSetDirectMasterRemap(drvHandle, pciMemSpace ,&data);

data = 0x40000000; /* local address for DM is 0x40000000 */
PIxSetDirectMasterBaseAddress(drvHandle, pciMemSpace ,&data);

/* Now let PCI masters access us */
PIxInitDone(drvHandle);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-47

PIxSetDirectMasterBaseAddress

Syntax:
RETURN_CODE PIxSetDirectMasterBaseAddress(IN HANDirizHandle
IN PCI_SPACHEpciSpace
IN ULONG data);
Description:
Defines the base address Direct Master accesses
o drvHandleis the handle of the PCI device;
e pciSpacealefines which PCI space is to be configured (Memory or I/O); and,
e datais a pointer to a buffer that contains the base address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

PCI Space Enum Data Type

typedef enum _PCI_SPACE
{

pciMemSpace,
pciloSpace
} PCI_SPACE;

Purpose
Enumerated type used for choosing the desired PCI Address Space access.

Members

pciMemSpace
Use PCI memory cycles when accessing the PCI bus.

pciloSpace
Use PCI I/O cycles when accessing the PCI bus.

Comments

The local space enumerated type is used to select the type of bus cycles when accessing the PCI
bus.

Return Value:
On success, this function returns API_SUCCESS.

3-48 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

On error, this function returns AP1_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:
HANDLE drvHandle;
ULONG data;

/* Configure the IOP processor and the PLX PCI9080 */
data = 0x10000000;
PIxSetDirectSlaveRemap(drvHandle, pciMemSpace ,&data);

data = 0xf0O000000;
PIxSetDirectSlaveRange(drvHandle, pciMemSpace ,&data);

data = 0x30000000;
PIxSetDirectMasterRemap(drvHandle, pciMemSpace ,&data);

data = 0x40000000; /* local address for DM is 0x40000000 */
PIxSetDirectMasterBaseAddress(drvHandle, pciMemSpace ,&data);

/* Now let PCI masters access us */
PIxInitDone(drvHandle);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-49

DMA Functions

PIxSetupDmaTransfer

Syntax:

RETURN_CODE PIxSetupDmaTransfer (IN HANDIdEvHandle
IN ULONG channelNumber
IN PDMADATA dmabDatg;

Description:
Configures the PCI device for a DMA transfer.
¢ drvHandleis the handle of the PCI device;

¢ channelNumbeis the DMA channel to setup (either DMA_CHANNELDO, or
DMA_CHANNEL1); and

e dmabDatais a structure that contains the DMA setup information.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

DMA Data Structure And DMA Chain Structure
typedef struct _DMADATA
ULONG dmaMode;

DMACHAIN dmaChain[1];
}DMADATA, *PDMADATA;

typedef struct DMACHAIN

ULONG pciAddr;

ULONG localAddr;

ULONG transferByteCount;

ULONG descriptorPointer;
}DMACHAIN, *PDMACHAIN;

Purpose
Structure containing the DMA data used to program the PCI 9080 DMA registers.

Members

dmaMode
The DMA mode data used to program the PCI 9080 DMA Mode register for a given
DMA channel.

3-50 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

dmaChain
An array of DMA chain data structures.

dmacChain.pciAddr
The PCI buffer address for the DMA transfer. This value is used to program the PCI 9080
DMA PCI Address Register for a given DMA channel.

dmacChain.localAddr
The I0P buffer address for the DMA transfer. This value is used to program the PCI
9080 DMA Local Address Register for a given DMA channel.

dmacChain.transferByteCount
The number of bytes to be transferred. This value is used to program the PCI 9080 DMA
Transfer Byte Count Register for a given DMA channel.

dmacChain.descriptorPointer
The descriptor pointer that points to the next DMA chain element. This value is used to
program the PCIl 9080 DMA Descriptor Pointer Register for a given DMA channel. The
lower four bits are used for programming this DMA transfer. Refer to the PCI 9080 Data
Sheet for more information.

Comments
The DMA data structure is used to program the PCI 9080 DMA Registers.

For DMA transfers that use DMA chaining, the DMA chains need to be allocated and filled
before filling the DMA data structure. When the DMA chain is complete insert the address of the
first chain element into themaChain.descriptorPointesf the DMA data structure (with the

lower four bits programmed according to the PCI 9080 Data Sheet). Do not fill in the other chain
elementsdmaChain.pciAddrdmaChain.localAddanddmaChain.transferByteCoyrf the

DMA chain structure element of the DMA data structure.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;
DMADATA data;
DMACHAIN myChain[2];

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-51

/* Setup a DMA transfer on Channel 0 as a Read, without chaining,

and with interrupts */

channelNumber = DMA_CHANNELO;

data.dmaMode = PCI_DMA MODE_DEFAULT | PCI_DMA _INTR_ENABLE_BIT;
data.dmaChain.pciAddr = 0xF4000000;

data.dmaChain.localAddr = 0x00001000;

data.dmaChain.transferByteCount = 1024;

data.dmaChain.descriptorPointer = Ox0 | PCI_DMA_DESCR_READ;
PIxSetupDmaTransfer(drvHandle, channelNumber, &data);

/* Setup a DMA transfer on Channel 1 as a Read then a Write, with
chaining, and with interrupts */

myChain[0].pciAddr = 0xF4000000;

myChain[0].localAddr = 0x00001000;
myChain[0].transferByteCount = 1024;
myChain[0].descriptorPointer = &myChain[1] & OxFFFFFFFO;
myChain[0].descriptorPointer |= PCI_DMA_DESCR_READ;

myChain[1].pciAddr = 0xF8000000;

myChain[1].localAddr = 0x00005000;

myChain[1].transferByteCount = 1024;

myChain[1].descriptorPointer = 0x0 | PCI_DMA_DESCR_WRITE |
PCI_DMA_DESCR_CHAIN_END;

channelNumber = DMA_CHANNEL1;

data.dmaMode = PCI_DMA_MODE_DEFAULT | PCI_DMA_INTR_ENABLE_BIT]|
PCI_DMA_CHAIN_ENABLE;

data.dmaChain.pciAddr = 0x0;

data.dmaChain.localAddr = 0xO0;

data.dmaChain.transferByteCount = 0x0;

data.dmaChain.descriptorPointer = &myChain[0] & OXFFFFFFFO;

PIxSetupDmaTransfer(drvHandle, channelNumber, &data);

3-52 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDisableDmaChannel

Syntax:
RETURN_CODE PIxDisableDmaChannel(IN HANDIdfvHandle
IN ULONG channelNumbér
Description:
Disables a DMA channel on a PCI device.
e drvHandleis the handle of the PCI device; and

e channelNumbeis the DMA channel to enable (either DMA_CHANNELO, or
DMA_CHANNEL1);

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;

/* Disable DMA Channel 0 */

channelNumber = DMA_CHANNELO;
PIxDisableDmaChannel(drvHandle, channelNumber);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-53

PIxStartDmaChannel

Syntax:

RETURN_CODE PIxStartDmaChannel(IN HANDIdfvHandle
IN ULONG channelNumbeér

Description:
Starts a DMA transfer on a PCI device.
e drvHandleis the handle of the PCI device; and,

e channelNumbeis the DMA channel to enable (either DMA_CHANNELO, or
DMA_CHANNEL1).

Note: For this function to succeed, the DMA channel must be setup using PIxSetupDmaTransfer.
This function enables the DMA channel before it starts the tra&déore this function can be
used in a Win32 environment, a PCI device must be selected using PIxSelectPciDevice().

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;
DMADATA data;

/* Setup a DMA transfer on Channel 0 as a Read, without chaining,

and with interrupts */

channelNumber = DMA_CHANNELO;

data.dmaMode = PCI_DMA_MODE_DEFAULT | PCI_DMA_INTR_ENABLE_BIT;
data.dmaChain.pciAddr = 0xF4000000;

data.dmacChain.localAddr = 0x00001000;

data.dmaChain.transferByteCount = 0x1024;

data.dmaChain.descriptorPointer = 0x0 | PCI_DMA_DESCR_READ;
PIxSetupDmaChannel(drvHandle, channelNumber, &data);

[* Start a DMA transfer */
PIxStartDmaChannel(drvHandle, channelNumber);

3-54 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxStopDmaChannel

Syntax:

RETURN_CODE PIxStopDmaChannel(IN HANDLdtvHandle
IN ULONG channelNumbeér

Description:
Stops a DMA transfer on a PCI device.
e drvHandleis the handle of the PCI device; and

e channelNumbeis the DMA channel to enable (either DMA_CHANNELO, or
DMA_CHANNEL1).

Note: This function pauses the current DMA transfer. Also, see PIxAbortDmaTransfer. Before
this function can be used in a Win32 environment, a PCIl device must be selected using
PIxSelectPciDevice().

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;
DMADATA data;

/* Setup a DMA transfer on Channel 0 as a Read, without chaining,

and with interrupts */

channelNumber = DMA_CHANNELO;

data.dmaMode = PCI_DMA_MODE_DEFAULT | PCI_DMA_INTR_ENABLE_BIT;
data.dmaChain.pciAddr = 0xF4000000;

data.dmacChain.localAddr = 0x00001000;

data.dmaChain.transferByteCount = 0x1024;

data.dmaChain.descriptorPointer = 0x0 | PCI_DMA_DESCR_READ;

PIxSetupDmaChannel(drvHandle, channelNumber, &data);
[* Start a DMA transfer */
PIxStartDmaChannel(drvHandle, channelNumber);

/* Pause the DMA transfer */

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-55

AX_

ccmNoLoaY”

-<I|

PIxStopDmaChannel(drvHandle, channelNumber);
..... * service other code */

/* Start the transfer again */
PIxStartDmaChannel(drvHandle, channelNumber);

3-56 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxAbortDmaChannel

Syntax:

RETURN_CODE PIxAbortbmaChannel(IN HANDL&vHandle
IN ULONG channelNumbeér

Description:
Aborts a DMA transfer on a PCI device.
e drvHandleis the handle of the PCI device; and

e channelNumbeis the DMA channel to enable (either DMA_CHANNELO, or
DMA_CHANNEL1).

Note: This function permanently stops the current DMA transfer. The transfer cannot be
restarted using PIxStartDmaTransfer after this function is used. Also, see PIxStopDmaTransfer().
Before this function can be used in a Win32 environment, a PCI device must be selected using
PIxSelectPciDevice().

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;
DMADATA data;

[* Setup a DMA transfer on Channel O as a Read, without chaining,

and with interrupts */

channelNumber = DMA_CHANNELO;

data.dmaMode = PCI_DMA_MODE_DEFAULT | PCI_DMA_INTR_ENABLE_BIT;
data.dmaChain.pciAddr = 0xF4000000;

data.dmaChain.localAddr = 0x00001000;

data.dmaChain.transferByteCount = 0x1024;

data.dmaChain.descriptorPointer = 0x0 | PCI_DMA_ DESCR_READ;

PIxSetupDmaChannel(drvHandle, channelNumber, &data);

/* Start a DMA transfer */
PIxStartDmaChannel(drvHandle, channelNumbery);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-57

[* Pause the DMA transfer */
PIxStopDmaChannel(drvHandle, channelNumber);

/* Abort the transfer */
PIxAbortDmaChannel(drvHandle, channelNumber);

3-58 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxClearDmaChannelintr

Syntax:

RETURN_CODE PIxClearDmaChannelintr(IN HANDIldfvHandle
IN ULONG channelNumbeér

Description:
Clears a DMA channel interrupt.
e drvHandleis the handle of the PCI device; and

e channelNumbeis the DMA channel to clear (either DMA_CHANNELDO, or
DMA_CHANNELZ1).

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;

[k |OP CODE SAMPLE ONLY itttk

/* Clear DMA Interrupt on Channel 0 */
channelNumber = DMA_CHANNELO;
PIxClearDmaChannelintr(drvHandle, channelNumber);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-59

PIxQueryDmaChannelDone

Syntax:

RETURN_CODE PIxQueryDmaChannelDone(IN HANDOE/Handle
IN ULONG channelNumber
OUT PULONGchannelStatys

Description:
Queries if a DMA transfer is done.
e drvHandleis the handle of the PCI device;

e channelNumbeis the DMA channel to query(either DMA_CHANNELDO, or
DMA_CHANNEL1); and

¢ channelStatuseturns the status flag of the DMA channel. A value greater than zero is
returned if the DMA transfer is complete. A value of zero is returned if the DMA transfer is
not complete.

Note: This function is usually used when users do not wish to enable DMA interrupts. Under
normal circumstances DMA interrupts should be enabled and this function is not necessary.
Before this function can be used in a Win32 environment, a PCI device must be selected using
PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber = DMA_CHANNELDO;
ULONG channelStatus;

/* Poll DMA channel status */
do{
[* Sleep for 100 ms and recheck */
Sleep(100);
[* check status */
PIxQueryDmaChannelDone(drvHandle, channelNumber,
&channelStatus);
} while (channelStatus == 0x0);

3-60 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDmaChannelAvailable

Syntax:
ULONG PIxDmaChannelAvailable(IN HANDLErvHandlg;

Description:
Checks for first available DMA channel.
e drvHandleis the handle of the PCI device;

Note: This function is used to get the first available DMA channel. Note that race conditions may
arise from the use of this function under certain situations. Before this function can be used in a
Win32 environment, a PCI device must be selected using PIxSelectPciDevice().

Return Value:

If DMA channels 0 or 1 are available, the function will return DMA_CHANNELDO or
DMA_CHANNELZ1, respectively.

If no channels are available, NO_DMA_ CHANNEL_AVAILABLE will be returned.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG channelNumber;
DMADATA data;

/* Check which channel is available */
channelNumber = PIxDmaChannelAvailable(drvHandle);

/* Setup a DMA transfer as a Read, without chaining, and with

interrupts */

data.dmaMode = PCI_DMA_ MODE_DEFAULT | PCI_DMA _INTR_ENABLE_BIT;
data.dmaChain.pciAddr = 0xF4000000;

data.dmacChain.localAddr = 0x00001000;

data.dmaChain.transferByteCount = 0x1024;

data.dmaChain.descriptorPointer = 0x0 | PCI_DMA_DESCR_READ;
PIxSetupDmaChannel(drvHandle, channelNumber, &data);

[* Start a DMA transfer */
PIxStartDmaChannel(drvHandle, channelNumber);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-61

Messaging Functions

PIxReadlnboundPort

Syntax:

RETURN_CODE PIxReadIlnboundPort(IN HANDLdtvHandle
IN PULONG framePointey;

Description:

Reads the Messaging Inbound Port.

e drvHandleis the handle of the PCI device; and

¢ framePointeris the address of the Message Frame (MFA)

The resulting MFA depends on if this function is being called from the Win32 application or the
IOP application. See the table below for reference.

Function Called From Purpose MFA returned
Win32 Application Get an Empty Message Frame Inbound Free Tail Poirfter
IOP Application Get a Posted Message Frame Inbound Post Talil Poirllter

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG framePointer;

/* Read Inbound Port */
PIxReadInboundPort(drvHandle, &framePainter);

3-62 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxWritelnboundPort

Syntax:

RETURN_CODE PIxWritelnboundPort(IN HANDL&rvHandle
IN PULONG framePointey;

Description:

Write to the Messaging Inbound Port.

e drvHandleis the handle of the PCI device;

o framePointeris the address of the Message Frame (MFA) to write

The destination FIFO of the MFA written depends on if this function is being called from the
Win32 application or the IOP application. See the table below for reference.

Function Called From Purpose MFA destination
Win32 Application Post a Message to the FIFO Inbound Post Head Pojnter
IOP Application Free a Message Frame Inbound Free Head Pojnter

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG framePointer;

/* Write to the Inbound Port from the Win32 */
framePointer = malloc(sizeof(ULONG)*60);

[* fill the message frame with relevant data */

/* Post the address of the message frame to the Inbound Port */
PIxWritelInboundPort(drvHandle, &framePointer);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-63

PIxReadOutboundPort

Syntax:

RETURN_CODE PIxReadOutboundPort(IN HANDIdevHandle
IN PULONG framePointey;

Description:

Reads the Messaging Outbound Port.

e drvHandleis the handle of the PCI device; and

o framePointeris the address of the Message Frame (MFA)

The resulting MFA depends on if this function is being called from the Win32 application or the
IOP application. See the table below for reference.

Function Called From Purpose MFA returned
Win32 Application Get a Posted Message Frame Outbound Post Tail Poinfer
IOP Application Get an Empty Message Frame Outbound Free Tail Pointpr

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG framePointer;

/* Read outbound port */
PIxReadOutboundPort(drvHandle, &framePointer);

3-64 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxWriteOutboundPort

Syntax:

RETURN_CODE PIxWriteOutboundPort(IN HANDL&vHandle
IN PULONG framePointey;

Description:

Write to the Messaging Outbound Port.

e drvHandleis the handle of the PCI device; and

o framePointeris the address of the Message Frame (MFA) to write

The destination FIFO of the MFA written depends on if this function is being called from the
Win32 application or the IOP application. See the table below for reference.

Function Called From Purpose MFA destination
Win32 Application Free a Message Frame Outbound Free Head Pointgr
IOP Application Post a Message to the FIFO Outbound Post Head Pointé¢r

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
ULONG framePointer;

/* Write to the Outbound Port from the Win32 */
PIxWriteOutboundPort(drvHandle, &framePointer);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-65

PIxGetinboundFreeMfa

Syntax:

RETURN_CODE PIxGetinboundFreeMfa(IN HANDLd&vHandle
IN PULONG framePointey;

Description:

Retrieves a MFA from the Messaging Inbound Free FIFO. This is used by the IOP to send a
message back to itself via the PIxPutinboundPostMfa() API call.

e drvHandleis the handle of the PCI device; and

e framePointers the address of the Message Frame (MFA)

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:

This function can be used by IOP applications.

Usage:

HANDLE drvHandle;
ULONG framePointer;

/* Get Inbound Free MFA */
PIxGetinboundFreeMfa(drvHandle, &framePointer);

3-66 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxPutinboundPostMfa

Syntax:

RETURN_CODE PIxPutinboundPostMfa(IN HANDLd&vHandle
IN PULONG framePointey;

Description:

Posts an MFA to the Messaging Inbound Post FIFO. This is used by the IOP to send a message
back to itself. This is used in conjunction with PIxGetinboundFreeMfa() API call.

e drvHandleis the handle of the PCI device; and

o framePointeris the address of the Message Frame (MFA) to write

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by IOP applications.

Usage:

HANDLE drvHandle;
ULONG framePointer;

/* Post a MFA to the Inbound Post FIFO */
framePointer = malloc(sizeof(ULONG)*60);

/* fill the message frame with relevant data */

/* Post the address of the message frame to the Inbound Port */
PIxPutinboundPostMfa(drvHandle, &framePointer);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-67

PIxInitMessageFifos

Syntax:

RETURN_CODE PlIxInitMessageFifos(IN HANDL&vHandle
IN ULONG fifoSize
IN ULONG localAddp);

Description:

Configures messaging FIFO addresses.

e drvHandleis the handle of the PCI device;
o fifoSizeis the size of each FIFO; and

e |ocalAddris the base address for the FIFOs. The base address must start on a 1MB boundary.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by IOP applications.

Usage:
HANDLE drvHandle;

PIxInitMessageFifos(drvHandle, FIFO_SIZE 16K, 0x20000000);

3-68 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Bus Memory and I/O Functions

PIxDirectSlaveReadChar

Syntax:

RETURN_CODE PIxDirectSlaveReadChar(IN HANDUdE/Handle
IN LOCAL_SPACEIlocalSpace
IN ULONG localSpaceOffset
IN ULONG size
OUT PUCHARdestination),

Description:

Reads an 8-bit value from the local bus of a PCI device using Memory bus cycles.

e drvHandleis the handle of the PCI device;

¢ localSpacalefines which local address space register to used;

¢ localSpaceOffsds the starting offset from the localSpace PCI address to start reading from;
¢ sizedefines the number of bytes you want to read from the local bus; and

¢ destinationis a pointer to the storage location of the return value.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice(). This API function does not remap the local space window. You may
use PIxDirectSlaveRemapReadChar() API function if you wish to remap the local space window.

Local Space Enum Data Type

typedef enum LOCAL_SPACE
{

LocalSpace0,
LocalSpacel,
LocalSpace2,
LocalSpace3,
ExpansionRom
JLOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-69

LocalSpacel
Use Local Space 1 base address register.

LocalSpace2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments
The local space enumerated type is used to choose the local space base address register.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns AP1_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
UCHAR buffBUFFER_SIZE];

/*
* Read 0x64 bytes of local bus memory starting at location
* 0x100000
*/

PIxDirectSlaveReadChar(drvHandle,

LocalSpaceO,
0x100000,
BUFFER_SIZE,
buff
);

3-70 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectSlaveWriteChar

Syntax:

RETURN_CODE PlIxDirectSlaveWriteChar(IN HANDLd&irvHandle
IN LOCAL_SPACElocalSpace
IN ULONG localSpaceOffset
IN ULONG size
OUT PUCHARsourcg);

Description:

Writes an 8-bit value to the local bus of a PCI device using Memory bus cycles.

e drvHandleis the handle of the PCI device;

¢ localSpacalefines which local address space register to used;

¢ localSpaceOffsds the starting offset from the localSpace PCI address to start writing to;
¢ sizedefines the number of bytes you want to read from the local bus; and

e sourceis a pointer to the buffer that holds the data to store on the local bus.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice(). This API function does not remap the local space window. You may
use PIxDirectSlaveRemapWriteChar() API function if you wish to remap the local space window.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpaceO,
LocalSpacel,
LocalSpace2,
LocalSpace3,
ExpansionRom
}ILOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-71

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

/*
* Clear 0x64 bytes of local bus memory starting at location
* 0x100000
*/
buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

bufffi] = OxOL;

PIxDirectSlaveWriteChar(drvHandle,
LocalSpace0,
0x100000,
BUFFER_SIZE,

buff

);

3-72 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectSlaveReadShort

Syntax:

RETURN_CODE PIxDirectSlaveReadShort(IN HANDdE/Handle
IN LOCAL_SPACElocalSpace
IN ULONG localSpaceOffset
IN ULONG size
OUT PUSHORTdestinatiof);

Description:

Reads a 16-bit value from the local bus of a PCI device using Memory bus cycles.

e drvHandleis the handle of the PCI device;

¢ localSpacalefines which local address space register to used;

¢ localSpaceOffsds the starting offset from the localSpace PCI address to start reading from;
¢ sizedefines the number of shorts you want to read from the local bus; and

¢ destinationis a pointer to the storage location of the return value.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice(). This API function does not remap the local space window. You may
use PIxDirectSlaveRemapReadShort() API function if you wish to remap the local space window.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpace0,

LocalSpacel,

LocalSpace2,

LocalSpace3,

ExpansionRom
}ILOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-73

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
USHORT buffBUFFER_SIZE];

/*
* Read 0x64 shorts of local bus memory starting at location
* 0x100000
*/

PIxDirectSlaveReadShort(drvHandle,

LocalSpaceO,
0x100000,
BUFFER_SIZE,
buff
)i

3-74 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectSlaveWriteShort

Syntax:

RETURN_CODE PlIxDirectSlaveWriteShort(IN HANDLd&rvHandle
IN ULONG localSpace
IN ULONG localSpaceOffset
IN ULONG size
OUT PUSHORTsourcg;

Description:

Writes a 16-bit value to the local bus of a PCI device using Memory bus cycles.

e drvHandleis the handle of the PCI device;

¢ localSpacalefines which local address space register to used;

¢ localSpaceOffsds the starting offset of the localSpace PCI address to start writing to;
¢ sizedefines the number of shorts you want to read from the local bus; and

e sourceis a pointer to the buffer that holds the data to store on the local bus.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice(). This API function does not remap the local space window. You may
use PIxDirectSlaveRemapWriteShort() API function if you wish to remap the local space window.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpaceO,
LocalSpacel,
LocalSpace2,
LocalSpace3,
ExpansionRom
}ILOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-75

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

/*
* Clear 0x64 shorts of local bus memory starting at location
* 0x100000
*/
buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)
bufffi] = OxOL;

PIxDirectSlaveWriteShort(drvHandle,
LocalSpace0,
0x100000,
BUFFER_SIZE,

buff

);

3-76 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectSlaveReadLong

Syntax:

RETURN_CODE PIxDirectSlaveReadLong(IN HANDIdEvHandle
IN ULONG localSpace
IN ULONG localSpaceOffset
IN ULONG size
OUT PULONGdestination;

Description:

Reads a 32-bit value from the local bus of a PCI device using Memory bus cycles.

e drvHandleis the handle of the PCI device;

¢ localSpacalefines which local address space register to use.

¢ localSpaceOffsets the starting offset of the localSpace PCI address to start reading from;
¢ sizedefines the number of longs you want to read from the local bus; and

e destinationis a pointer to the storage location of the return value.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice(). This API function does not remap the local space window. You may
use PIxDirectSlaveRemapReadLong() API function if you wish to remap the local space window.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpaceO,

LocalSpacel,

LocalSpace2,

LocalSpace3,

ExpansionRom
}ILOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-77

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
ULONG buffBUFFER_SIZE];

/*
* Read 0x64 longs of local bus memory starting at location
* 0x100000
*/

PIxDirectSlaveReadLong(drvHandle,

LocalSpaceO,
0x100000,
BUFFER_SIZE,
buff
)i

3-78 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectSlaveWriteLong

Syntax:

RETURN_CODE PIxDirectSlaveWriteLong(IN HANDL&vHandle
IN ULONG localSpace
IN ULONG localSpaceOffset
IN ULONG size
OUT PULONGsource;

Description:

Writes a 32-bit value to the local bus of a PCI device using Memory bus cycles.

e drvHandleis the handle of the PCI device;

¢ localSpacalefines which local address space register to used;

¢ localSpaceOffsds the starting offset from the localSpace PCI address to start writing to;
¢ sizedefines the number of longs you want to read from the local bus; and

e sourceis a pointer to the buffer that holds the data to store on the local bus.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice(). This API function does not remap the local space window. You may
use PIxDirectSlaveRemapWriteLong() API function if you wish to remap the local space window.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpaceO,
LocalSpacel,
LocalSpace2,
LocalSpace3,
ExpansionRom
}ILOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-79

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

/*
* Clear 0x64 longs of local bus memory starting at location
* 0x100000
*/
buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

bufffi] = OxOL;

PIxDirectSlaveWriteLong(drvHandle,
LocalSpace0,
0x100000,
BUFFER_SIZE,

buff

);

3-80 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectSlaveRemapReadChar

Syntax:

RETURN_CODE PIxDirectSlaveRemapReadChar(IN HANDilrEHandle
OUT PUCHARdestination
IN ULONG startLocAddy
IN ULONG size
IN LOCAL_SPACEIlocalSpacg

Description:

Reads an 8-bit value from the local bus of a PCI device using Memory bus cycles.
e drvHandleis the handle of the PCI device;

e destinationis a pointer to the storage location of the return value;

e startLocAddris the staring address on the local bus to start reading from;

¢ sizedefines the number of bytes you want to read from the local bus; and

¢ localSpacalefines which local address space register to use.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice(). This API function remaps the local space window. Therefore,
performance is sacrificed in favor of robustness. Users who wish to have maximum performance
should use the PIxDirectSlaveReadChar() function.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpaceO,

LocalSpacel,

LocalSpace2,

LocalSpaces,

ExpansionRom
JLOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-81

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
UCHAR buffBUFFER_SIZE];

buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
/*

* Read 0x64 chars from local bus (local space 1) starting at
* location 0x10000000 on the local bus

*/
PIxDirectSlaveRemapReadChar(drvHandle,
buff,
0x10000000,
BUFFER_SIZE,
LocalSpacel

PIXPrint((*Lst Char = 0x%x\n”, buff[0]);

3-82 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectSlaveRemapWriteChar

Syntax:

RETURN_CODE PIxDirectSlaveRemapWriteChar(IN HANDHE/Handle
IN PUCHAR source
IN ULONG startLocAddr
IN ULONG size
IN LOCAL_SPACElocalSpacg

Description:

Writes an 8-bit value to the local bus of a PCI device using Memory bus cycles.
e drvHandleis the handle of the PCI device;

e sourceis a pointer to the buffer that holds the data to store on the local bus;
e startLocAddris the staring address on the local bus to start writing to;

¢ sizedefines the number of bytes you want to read from the local bus; and

¢ localSpacalefines which local address space register to use.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice(). This API function remaps the local space window. Therefore,
performance is sacrificed in favor of robustness. Users who wish to have maximum performance
should use the PIxDirectSlaveWriteChar() function.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpaceO,

LocalSpacel,

LocalSpace2,

LocalSpaces,

ExpansionRom
JLOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-83

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

/*
* Clear 0x64 chars of local bus memory starting at location
* 0x10000000 on the local bus
*/
buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

bufffi] = OxOL;

PIxDirectSlaveRemapWriteChar(drvHandle,
buff,
0x10000000,
BUFFER_SIZE,
LocalSpacel

);

3-84 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectSlaveRemapReadShort

Syntax:

RETURN_CODE PIxDirectSlaveRemapReadShort(IN HANDtEHandle
OUT PUSHORTdestination
IN ULONG startLocAddr
IN ULONG size
IN LOCAL_SPACElocalSpacg

Description:

Reads a 16-bit value from the local bus of a PCI device using Memory bus cycles.
e drvHandleis the handle of the PCI device;

e destinationis a pointer to the storage location of the return value;

e startLocAddris the staring address on the local bus to start reading from;

¢ sizedefines the number of shorts you want to read from the local bus; and

o localSpacalefines which local address space register to use.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice(). This API function remaps the local space window. Therefore,
performance is sacrificed in favor of robustness. Users who wish to have maximum performance
should use the PIxDirectSlaveReadShort() function.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpaceO,

LocalSpacel,

LocalSpace2,

LocalSpaces,

ExpansionRom
JLOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-85

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
/*

* Read 0x64 shorts from local bus (local space 1) starting at

* location 0x10000000 on the local bus

*/
PIxDirectSlaveRemapReadShort(drvHandle,
buff,
0x10000000,
BUFFER_SIZE,
LocalSpacel

PIXPrint((“Lst Short = 0x%x\n", buff[O]):

3-86 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectSlaveRemapWriteShort

Syntax:

RETURN_CODE PIxDirectSlaveRemapWriteShort(IN HANDHE/Handle
IN PUSHORTSsource
IN ULONG startLocAddr
IN ULONG size
IN LOCAL_SPACElocalSpacg

Description:

Writes a 16-bit value to the local bus of a PCI device using Memory bus cycles.
e drvHandleis the handle of the PCI device;

e sourceis a pointer to the buffer that holds the data to store on the local bus;
e startLocAddris the staring address on the local bus to start writing to;

¢ sizedefines the number of shorts you want to read from the local bus; and
¢ localSpacalefines which local address space register to use.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice(). This API function remaps the local space window. Therefore,
performance is sacrificed in favor of robustness. Users who wish to have maximum performance
should use the PIxDirectSlaveWriteShort() function.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpaceO,

LocalSpacel,

LocalSpace2,

LocalSpaces,

ExpansionRom
JLOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-87

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

/*

* Clear 0x64 Shorts of local bus memory starting at location

* 0x10000000 on local bus

*/

buff = (PUSHORT) malloc(sizeof(USHORT)* BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

bufffi] = OxOL;
PIxDirectSlaveRemapWriteShort(drvHandle,
buff,
0x10000000,
BUFFER_SIZE,

LocalSpacel

);

3-88 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectSlaveRemapReadlLong

Syntax:

RETURN_CODE PIxDirectSlaveRemapReadLong(IN HANDdiizHandle
OUT PULONGdestination
IN ULONG startLocAddy
IN ULONG size
IN LOCAL_SPACEIlocalSpacg

Description:

Reads a 32-bit value from the local bus of a PCI device using Memory bus cycles.
e drvHandleis the handle of the PCI device;

e destinationis a pointer to the storage location of the return value;

e startLocAddris the staring address on the local bus to start reading from;

¢ sizedefines the number of longs you want to read from the local bus; and

¢ localSpacalefines which local address space register to use.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice(). This API function remaps the local space window. Therefore,
performance is sacrificed in favor of robustness. Users who wish to have maximum performance
should use the PIxDirectSlaveReadLong() function.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpaceO,

LocalSpacel,

LocalSpace2,

LocalSpaces,

ExpansionRom
JLOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-89

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
/*

* Read 0x64 longs from local bus (local space 0) starting at
* location 0x10000000 on the local bus

*/
PIxDirectSlaveRemapReadLong(drvHandle,
buff,
0x10000000,
BUFFER_SIZE,
LocalSpace0

PIxPrint((“1st Loné] = 0x%x\n", buff[0]);

3-90 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectSlaveRemapWriteLong

Syntax:

RETURN_CODE PIxDirectSlaveRemapWriteLong(IN HANDdE/Handle
IN PULONG source
IN ULONG startLocAddr
IN ULONG size
IN LOCAL_SPACElocalSpacg

Description:

Writes a 32-bit value to the local bus of a PCI device using Memory bus cycles.
e drvHandleis the handle of the PCI device;

e sourceis a pointer to the buffer that holds the data to store on the local bus;
e startLocAddris the staring address on the local bus to start writing to;

¢ sizedefines the number of longs you want to read from the local bus; and

o localSpacalefines which local address space register to use.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice(). This API function remaps the local space window. Therefore,
performance is sacrificed in favor of robustness. Users who wish to have maximum performance
should use the PIxDirectSlaveReadLong() function.

Local Space Enum Data Type

typedef enum _LOCAL_SPACE
{

LocalSpaceO,

LocalSpacel,

LocalSpace2,

LocalSpace3,

ExpansionRom
JLOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-91

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

/*
* Clear 0x64 longs of local bus memory starting at location
* 0x10000000 on local bus
*/
buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)

bufffi] = OxOL;

PIxDirectSlaveRemapWriteLong(drvHandle,
buff,
0x10000000,
BUFFER_SIZE,
LocalSpacel

);

3-92 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectMasterReadChar

Syntax:

RETURN_CODE PIxDirectMasterReadChar(IN HANDdE/Handle
OUT PUCHARdestination
IN ULONG startAddrOffset
IN ULONG size);

Description:

Reads an 8-bit value from the PCI bus using Memory bus cycles.

e drvHandleis the handle of the PCI device;

e destinationis a pointer to the storage location of the return value;

e startAddrOffsetis the starting address offset used in conjunction with the PCI Base Address
(Remap) Register for Direct Master to PCI Memory to form the PCI starting address to read
from; and

e sizedefines the number of bytes you want to read from the PCI bus.

Note: This API function does not remap the local space window. You may use
PIxDirectMasterRemapReadChar() API function if you wish to remap the local space window.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by IOP applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);

/* Read 0x64 bytes from PCI bus starting at location 0x100000 */
PIxDirectMasterReadChar(drvHandle, buff, 0x100000, BUFFER_SIZE);
PIxPrint((“1st byte = 0x%x\n", buff[0]));

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-93

PIxDirectMasterWriteChar

Syntax:
RETURN_CODE PIxDirectMasterWriteChar(IN HANDL&EvHandle

IN PUCHAR source
IN ULONG startAddrOffset
IN ULONG sizé;

Description:

Writes an 8-bit value to the PCI bus using Memory bus cycles.

drvHandleis the handle of the PCI device;
sourceis a pointer to the buffer that holds the data to store on the local bus;

startAddrOffsets the starting address offset used in conjunction with the PCI Base Address
(Remap) Register for Direct Master to PCI Memory to form the PCI starting address to write
to; and

startLocAddris the staring address on the PCI bus to start writing to; and

sizedefines the number of bytes you want to write to the PCI bus.

Note: This API function does not remap the local space window. You may use
PIxDirectMasterRemapWriteChar() API function if you wish to remap the local space window.

Return Value:

On
On

success, this function returns API_SUCCESS.
error, this function returns API_FAILED.

Portability:

This function can only be used by IOP applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

[* Clear 0x64 bytes of PCI bus memory starting at location
* 0x100000 */
buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
for (i= 0; i <= BUFFER_SIZE; i++)
bufffi] = OxOL;
PIxDirectMasterWriteChar(drvHandle, buff, 0x100000, BUFFER_SIZE);

3-94

© PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectMasterReadShort

Syntax:

RETURN_CODE PIxDirectMasterReadShort(IN HANDE/Handle
OUT PUSHORTdestination
IN ULONG startAddrOffset
IN ULONG size);

Description:

Reads a 16-bit value from the PCI bus using Memory bus cycles.

e drvHandleis the handle of the PCI device;

e destinationis a pointer to the storage location of the return value;

e startAddrOffsetis the starting address offset used in conjunction with the PCI Base Address
(Remap) Register for Direct Master to PCI Memory to form the PCI starting address to read

from; and

e sizedefines the number of shorts to read from the PCI bus.

Note: This API function does not remap the local space window. You may use
PIxDirectMasterRemapReadShort() API function if you wish to remap the local space window.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by IOP applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

buff = malloc(sizeof(USHORT) * BUFFER_SIZE);

/* Read 0x64 shorts from PCI bus starting at location 0x100000 */
PIxDirectMasterReadShort(drvHandle, buff, 0x100000, BUFFER_SIZE);
PIxPrint((“1st short = 0x%x\n", buff[0]));

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997

3-95

PIxDirectMasterWriteShort

Syntax:

RETURN_CODE PIxDirectMasterWriteShort(IN HANDLdErvHandle
IN PUSHORTSsource
IN ULONG startAddrOffset
IN ULONG size);

Description:

Writes a 16-bit value to the PCI bus using Memory bus cycles.

e drvHandleis the handle of the PCI device;

e sourceis a pointer to the buffer that holds the data to store on the PCI bus;

e startAddrOffsetis the starting address offset used in conjunction with the PCI Base Address
(Remap) Register for Direct Master to PCI Memory to form the PCI starting address to write
to, and

e sizedefines the number of shorts to write to the PCI bus.

Note: This API function does not remap the local space window. You may use
PIxDirectMasterRemapWriteShort() API function if you wish to remap the local space window.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by IOP applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

[* Clear 0x64 shorts of PCI bus memory starting at location
* 0x100000 */
buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
for (i= 0; i <= BUFFER_SIZE; i++)
bufffi] = OxOL;
PIxDirectMasterWriteShort(drvHandle, buff, 0x100000,
BUFFER_SIZE);

3-96 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectMasterReadLong

Syntax:

RETURN_CODE PIxDirectMasterReadLong(IN HANDIdevHandle
OUT PULONGdestination
IN ULONG startAddrOffset
IN ULONG sizé;
Description:
Reads a 32-bit value from the PCI bus of a PCI device using Memory bus cycles.
e drvHandleis the handle of the PCI device;
e destinationis a pointer to the storage location of the return value;

e startAddrOffsetis the starting address offset used in conjunction with the PCI Base Address
(Remap) Register for Direct Master to PCI Memory to form the PCI starting address to read
from; and

e sizedefines the number of longs to read from the PCI bus.

Note: This API function does not remap the local space window. You may use
PIxDirectMasterRemapReadLong() API function if you wish to remap the local space window.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by IOP applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

buff = (PULONG) malloc(sizeof(ULONG)* BUFFER_SIZE);

/* Read 0x64 longs from PCI bus starting at location 0x100000 */
PIxDirectMasterReadLong(drvHandle, buff, 0x100000, BUFFER_SIZE);
PIxPrint((“1st long = 0x%x\n", buff[0]));

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-97

PIxDirectMasterWriteLong

Syntax:
RETURN_CODE PIxDirectMasterWriteLong(IN HANDL&vHandle
IN PULONG source
IN ULONG startAddrOffset
IN ULONG sizé;
Description:
Writes a 32-bit value to the PCI bus of a PCI device using Memory bus cycles.
e drvHandleis the handle of the PCI device;
e sourceis a pointer to the buffer that holds the data to store on the PCI bus;

e startAddrOffsetis the starting address offset used in conjunction with the PCI Base Address
(Remap) Register for Direct Master to PCI Memory to form the PCI starting address to write
to; and

e sizedefines the number of longs to write to the PCI bus.

Note: This API function does not remap the local space window. You may use
PIxDirectMasterRemapWriteLong() API function if you wish to remap the local space window.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by IOP applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

[* Clear 0x64 longs of PCI bus memory starting at location
0x100000 */
buff = malloc(sizeof(ULONG)* BUFFER_SIZE);
for (i= 0; i <= BUFFER_SIZE; i++)
bufffi] = OxOL;

PIxDirectMasterWriteLong(drvHandle, buff, 0x100000, BUFFER_SIZE);

3-98 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectMasterRemapReadChar

Syntax:

RETURN_CODE PIxDirectMasterRemapReadChar(IN HANDIrZHandle
OUT PUCHARdestination
IN ULONG startHostAddr
IN ULONG size);

Description:

Reads an 8-bit value from the PCI bus using Memory bus cycles.

e drvHandleis the handle of the PCI device;

e destinationis a pointer to the storage location of the return value;

e startHostAddiis the staring address on the PCI bus to start reading from; and

¢ sizedefines the number of bytes to read from the PCI bus.

Note: This API function remaps the local space window. Therefore, performance is sacrificed in
favor of robustness. Users who wish to have maximum performance should use the
PIxDirectMasterReadChar() function.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by IOP applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
/* Read 0x64 bytes from PCI bus starting at location 0x10000000
* on the PCI bus */
PIxDirectMasterRemapReadChar(drvHandle,

buff,

0x10000000,

BUFFER_SIZE

);
PIxPrint((“1st byte = 0x%x\n", buff[0]));

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-99

PIxDirectMasterRemapWriteChar

Syntax:
RETURN_CODE PIxDirectMasterRemapWriteChar(IN HANDHEvHandle
IN PUCHAR source
IN ULONG startHostAddr
IN ULONG siz8;
Description:
Writes an 8-bit value to the PCI bus using Memory bus cycles.
e drvHandleis the handle of the PCI device;
e sourceis a pointer to the buffer that holds the data to store on the local bus;
¢ startHostAddiis the staring address on the PCI bus to start writing to; and
¢ sizedefines the number of bytes to write to the PCI bus.

Note: This API function remaps the local space window. Therefore, performance is sacrificed in
favor of robustness. Users who wish to have maximum performance should use the
PIxDirectMasterWriteChar() function.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by IOP applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

/* Clear 0x64 bytes of PCI bus memory starting at location
0x10000000 on PCI bus */
buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)
buff[i] = OxOL;

PIxDirectMasterRemapWriteChar(drvHandle, buff, 0x10000000,
BUFFER_SIZE);

3-100 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectMasterRemapReadShort

Syntax:

RETURN_CODE PIxDirectMasterRemapReadShort(IN HANDIrZHandle
OUT PUSHORTdestination
IN ULONG startHostAddr
IN ULONG siz8;

Description:

Reads a 16-bit value from the PCI bus using Memory bus cycles.

e drvHandleis the handle of the PCI device;

e destinationis a pointer to the storage location of the return value;

e startHostAddiis the staring address on the PCI bus to start reading from; and

e sizedefines the number of shorts to read from the PCI bus.

Note: This API function remaps the local space window. Therefore, performance is sacrificed in
favor of robustness. Users who wish to have maximum performance should use the
PIxDirectMasterReadShort() function.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by IOP applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
/* Read 0x64 shorts from PCI bus starting at location 0x10000000
on PCI bus */
PIxDirectMasterRemapReadShort(drvHandle, buff, 0x10000000,
BUFFER_SIZE);
PIxPrint((“1st Short = 0x%x\n", buff[0]);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-101

PIxDirectMasterRemapWriteShort

Syntax:
RETURN_CODE PIxDirectMasterRemapWriteShort(IN HANDHE/Handle
IN PUSHORTSsource
IN ULONG startHostAddr
IN ULONG sizé;
Description:
Writes a 16-bit value to the PCI bus using Memory bus cycles.
e drvHandleis the handle of the PCI device;
e sourceis a pointer to the buffer that holds the data to store on the PCI bus;
e startHostAddiis the staring address on the PCI bus to start writing to; and
e sizedefines the number of shorts to write to the PCI bus.

Note: This API function remaps the local space window. Therefore, performance is sacrificed in
favor of robustness. Users who wish to have maximum performance should use the
PIxDirectMasterWriteShort() function.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by IOP applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

[* Clear 0x64 Shorts of PCI bus memory starting at location
0x10000000 on PCI bus */
buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)
buff[i] = OxOL;

PIxDirectMasterRemapWriteShort(drvHandle, buff, 0x10000000,
BUFFER_SIZE);

3-102 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectMasterRemapReadLong

Syntax:

RETURN_CODE PIxDirectMasterRemapReadLong(IN HANDdizHandle
OUT PULONGdestination
IN ULONG startHostAddr
IN ULONG size);

Description:

Reads a 32-bit value from the PCI bus of a PCI device using Memory bus cycles.
e drvHandleis the handle of the PCI device;

e destinationis a pointer to the storage location of the return value;

e startHostAddiis the staring address on the PCI bus to start reading from; and

¢ sizedefines the number of longs to read from the PCI bus.

Note: This API function remaps the local space window. Therefore, performance is sacrificed in
favor of robustness. Users who wish to have maximum performance should use the
PIxDirectMasterReadLong() function.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by IOP applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
/* Read 0x64 longs from PCI bus starting at location 0x10000000
on PCI bus */
PIxDirectMasterRemapReadLong(drvHandle,
bulff,
0x10000000,
BUFFER_SIZE

);
PIxPrint((“1st Long = 0x%x\n", buff[0]);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-103

PIxDirectMasterRemapWriteLong

Syntax:
RETURN_CODE PIxDirectMasterRemapWriteLong(IN HANDE/Handle

IN PULONG source

IN ULONG startHostAddr

IN ULONG siz8;
Description:
Writes a 32-bit value to the PCI bus of a PCI device using Memory bus cycles.
e drvHandleis the handle of the PCI device;
e sourceis a pointer to the buffer that holds the data to store on the PCI bus;
e startHostAddiis the staring address on the PCI bus to start writing to; and
¢ sizedefines the number of longs to write to the PCI bus.

Note: This API function remaps the local space window. Therefore, performance is sacrificed in
favor of robustness. Users who wish to have maximum performance should use the
PIxDirectMasterWriteLong() function.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by IOP applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

/* Clear 0x64 longs of PCI bus memory starting at location
0x10000000 on PCI bus */
buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)
buff[i] = OxOL;

PIxDirectMasterRemapWriteLong(drvHandle, buff, 0x10000000,
BUFFER_SIZE);

3-104 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectPortSlaveReadChar

Syntax:

RETURN_CODE PIxDirectPortSlaveReadChar(IN HANDd&/Handle
OUT PUCHARdestination
IN LONG size
IN ULONG portAddp);

Description:

Reads an 8-bit value from the local bus of a PCI device using I/O bus cycles.
e drvHandleis the handle of the PCI device;

e destinationis a pointer to the storage location of the return value;

¢ sizedefines the number of bytes you want to read from the local bus; and
e portAddrthe starting I/O port address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns AP1_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);

/* Read 0x64 bytes from local bus starting at location OXEF00*/
PIxDirectPortSlaveReadChar(drvHandle, buff, BUFFER_SIZE, OXEF00);
PIxPrint((“1st byte = 0x%x\n", buff[0]);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-105

PIxDirectPortSlaveWriteChar

Syntax:

RETURN_CODE PIxDirectPortSlaveWriteChar(IN HANDIdfvHandle
IN PUCHAR source
IN LONG size
IN ULONG portAddp);

Description:

Writes an 8-bit value to the local bus of a PCI device using I/O bus cycles.

e drvHandleis the handle of the PCI device;

e sourceis a pointer to the buffer that holds the data to store on the local bus;
¢ sizedefines the number of bytes you want to write to the local bus; and

e portAddrthe starting I/O port address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns AP1_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

* Clear 0x64 bytes of local bus memory starting at location
OXEF00 */
buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)
buff[i] = OxOL;

PIxDirectPortSlaveWriteChar(drvHandle, buff, BUFFER_SIZE,
OxEF00);

3-106 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectPortSlaveReadShort

Syntax:

RETURN_CODE PIxDirectPortSlaveReadShort(IN HANDdE/Handle
OUT PUSHORTdestination
IN LONG size
IN ULONG portAddp);

Description:

Reads a 16-bit value from the local bus of a PCI device using I/O bus cycles.
e drvHandleis the handle of the PCI device;

e destinationis a pointer to the storage location of the return value;

¢ sizedefines the number of shorts you want to read from the local bus; and
e portAddrthe starting I/O port address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns AP1_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);

/* Read 0x64 shorts from local bus starting at location OXEFQO */
PIxDirectPortSlaveReadChar(drvHandle, buff, BUFFER_SIZE, OXEF00);
PIxPrint((“1st short = 0x%x\n”, buff[0]);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-107

PIxDirectPortSlaveWriteShort

Syntax:

RETURN_CODE PIxDirectPortSlaveWriteShort(IN HANDIdEvHandle
IN PUSHORTSsource
IN LONG size
IN ULONG portAddp);

Description:

Writes a 16-bit value to the local bus of a PCI device using I/O bus cycles.

e drvHandleis the handle of the PCI device;

e sourceis a pointer to the buffer that holds the data to store on the local bus;
¢ sizedefines the number of shorts you want to write to the local bus; and

e portAddrthe starting I/O port address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns AP1_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

* Clear 0x64 shorts of local bus memory starting at location
OXEF00 */
buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)
buff[i] = OxOL;

PIxDirectPortSlaveWriteChar(drvHandle, buff, BUFFER_SIZE,
OxEF00);

3-108 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectPortSlaveReadLong

Syntax:
RETURN_CODE PIxDirectPortSlaveReadLong(IN HANDHOE/Handle

OUT PULONGdestination

IN LONG size

IN ULONG portAdds);
Description:
Reads a 32-bit value from the local bus of a PCI device using I/O bus cycles.
e drvHandleis the handle of the PCI device;
e destinationis a pointer to the storage location of the return value;
¢ sizedefines the number of longs you want to read from the local bus; and
e portAddrthe starting I/O port address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns AP1_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);

/* Read 0x64 longs from local bus starting at location OXEFQO */
PIxDirectPortSlaveReadChar(drvHandle, buff, BUFFER_SIZE, OXEF00);
PIxPrint((“1st long = 0x%x\n", buff[0]);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-109

PIxDirectPortSlaveWriteLong

Syntax:
RETURN_CODE PIxDirectPortSlaveWriteLong(IN HANDLdvHandle

IN PULONG source

IN LONG size

IN ULONG portAdds);
Description:
Writes a 32-bit value to the local bus of a PCI device using I/O bus cycles.
e drvHandleis the handle of the PCI device;
e sourceis a pointer to the buffer that holds the data to store on the local bus;
¢ sizedefines the number of longs you want to write to the local bus; and
e portAddrthe starting I/O port address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns AP1_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

* Clear 0x64 longs of local bus memory starting at location
OXEF00 */
buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
for (i = 0; i <= BUFFER_SIZE; i++)
buff[i] = OxOL;

PIxDirectPortSlaveWriteChar(drvHandle, buff, BUFFER_SIZE,
OxEF00);

3-110 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectPortMasterReadChar

Syntax:
RETURN_CODE PIxDirectPortMasterReadChar(IN HANDd&/Handle
OUT PUCHARdestination
IN LONG size
IN ULONG portAddp);
Description:
Reads an 8-bit value from the PCI bus with a PCI device using I/O bus cycles.
e drvHandleis the handle of the PCI device;
e destinationis a pointer to the storage location of the return value;
¢ sizedefines the number of bytes you want to read from the PCI bus; and

e portAddrthe starting I/O port address.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used in an IOP environment.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
I* Read 0x64 bytes from PCI bus starting at location OXEFOO */
PIxDirectPortMasterReadChar(drvHandle,

buff,

BUFFER_SIZE,
OXEFO00
);
PIxPrint((“1st byte = 0x%x\n”, buff[0]);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-111

PIxDirectPortMasterWriteChar

Syntax:

RETURN_CODE PIxDirectPortMasterWriteChar(IN HANDIdEvHandle
IN PUCHAR source
IN LONG size
IN ULONG portAdd;

Description:

Writes an 8-bit value to the PCI bus with a PCI device using I/O bus cycles.

e drvHandleis the handle of the PCI device;

e sourceis a pointer to the buffer that holds the data to store on the PCI bus;
¢ sizedefines the number of bytes you want to write to the PCI bus; and

e portAddrthe starting I/O port address.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used in an IOP environment.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUCHAR buff;

[* Clear 0x64 bytes of PCI bus memory starting at location
* OXEFO0O */
buff = (PUCHAR) malloc(sizeof(UCHAR) * BUFFER_SIZE);
for (i=0; i <= BUFFER_SIZE; i++)

bufffi] = OxOL;

PIxDirectPortMasterWriteChar(drvHandle,
buff,
BUFFER_SIZE,
OXEFO00

);

3-112 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectPortMasterReadShort

Syntax:
RETURN_CODE PIxDirectPortMasterReadShort(IN HANDdEHandle
OUT PUSHORTdestination
IN LONG size
IN ULONG portAddp);
Description:
Reads a 16-bit value from the PCI bus with a PCI device using I/O bus cycles.
e drvHandleis the handle of the PCI device;
e destinationis a pointer to the storage location of the return value;
¢ sizedefines the number of shorts you want to read from the PCI bus; and

e portAddrthe starting I/O port address.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used in an IOP environment.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
/* Read 0x64 shorts from PCI bus starting at location OXEFO0O */
PIxDirectPortMasterReadChar(drvHandle,

buff,

BUFFER_SIZE,
OXEFO00
);
PIxPrint((“1st short = 0x%x\n”, buff[0]);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-113

PIxDirectPortMasterWriteShort

Syntax:

RETURN_CODE PIxDirectPortMasterWriteShort(IN HANDIdEvHandle
IN PUSHORTSsource
IN LONG size
IN ULONG portAdd;

Description:

Writes a 16-bit value to the PCI bus with a PCI device using I/O bus cycles.

e drvHandleis the handle of the PCI device;

e sourceis a pointer to the buffer that holds the data to store on the PCI bus;
o sizedefines the number of shorts you want to write to the PCI bus; and

e portAddrthe starting I/O port address.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used in an IOP environment.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PUSHORT buff;

[* Clear 0x64 shorts of PCI bus memory starting at location
OXEF00 */
buff = (PUSHORT) malloc(sizeof(USHORT) * BUFFER_SIZE);
for (i=0; i <= BUFFER_SIZE; i++)
bufffi] = OxOL;

PIxDirectPortMasterWriteChar(drvHandle,
buff,
BUFFER_SIZE,
OXEFO00

);

3-114 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDirectPortMasterReadlLong

Syntax:
RETURN_CODE PIxDirectPortMasterReadLong(IN HANDdOE/Handle
OUT PULONGdestination
IN LONG size
IN ULONG portAddp);
Description:
Reads a 32-bit value from the PCI bus with a PCI device using I/O bus cycles.
e drvHandleis the handle of the PCI device;
e destinationis a pointer to the storage location of the return value;
¢ sizedefines the number of longs you want to read from the PCI bus; and

e portAddrthe starting I/O port address.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used in an IOP environment.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
I* Read 0x64 longs from PCI bus starting at location OXEFOO */
PIxDirectPortMasterReadChar(drvHandle,

buff,

BUFFER_SIZE,

OXEF00

);
PIxPrint((“1st long = 0x%x\n”, buff[0]);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-115

PIxDirectPortMasterWriteLong

Syntax:
RETURN_CODE PIxDirectPortMasterWriteLong(IN HANDLd&vHandle
IN PULONG source
IN LONG size
IN ULONG portAdd);
Description:
Writes a 32-bit value to the PCI bus with a PCI device using I/O bus cycles.
e drvHandleis the handle of the PCI device;
e sourceis a pointer to the buffer that holds the data to store on the PCI bus;
¢ sizedefines the number of longs you want to write to the PCI bus; and

e portAddrthe starting I/O port address.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used in an IOP environment.

Usage:
#define BUFFER_SIZE 0x64

HANDLE drvHandle;
PULONG buff;

/*
* Clear 0x64 longs of PCI bus memory starting at location OXEF00
*/
buff = (PULONG) malloc(sizeof(ULONG) * BUFFER_SIZE);
for (i=0; i <= BUFFER_SIZE; i++)
bufffi] = OxOL;

PIxDirectPortMasterWriteChar(drvHandle,
buff,
BUFFER_SIZE,
OXEFO00

);

3-116 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

EEPROM Access Functions

PIxReadEepromBuffer

Syntax:
RETURN_CODE PIxReadEepromBuffer(IN HANDLdEvHandle
OUT PUSHORTdest
IN ULONG size);
Description:
Reads 16-bit values from the configuration EEPROM.
e drvHandleis the handle of the PCI device;
e destis a pointer a buffer to store the data read; and
¢ sizedefines the number of shorts you want to read from the EEPROM.

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 or IOP applications.

Usage:
#define BUFFER_SIZE 0x40

USHORT buf[BUFFER_SIZE];

PIxReadEepromBuffer(drvHandle, buff, BUFFER_SIZE);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-117

PIxWriteEepromBuffer

Syntax:
RETURN_CODE PIxWriteEepromBuffer(IN HANDLHErvHandle
IN PUSHORTSsource
IN ULONG size);
Description:
Writes 16-bit values to the configuration EEPROM.
e drvHandleis the handle of the PCI device;
e sourceis a pointer a buffer that holds the values to store; and
e sizedefines the number of shorts you want to write to the EEPROM.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 or IOP applications.

Usage:

#define BUFFER_SIZE 0x40

USHORT buf[BUFFER_SIZE];

[* clear EEPROM */

for (i=0; i < BUFFER_SIZE; i++)
buffi] = 0x0;

PIxWriteEepromBuffer(drvHandle, buff, BUFFER_SIZE);

3-118 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Windows and IOP Device Driver Functions

PlxInitaialize API

Syntax:
RETURN_CODE PIxInitializeAPI(OUT PHANDLEpDrvHandIg;

Description:
Initializes the PCI SDK API.
e pDrvHandle is the handle of the device driver that the API is using;

Note: This function should be used to get a handle to the device driver before any API calls can
be used. The handle returned by this API function should be closed using the PIxTerminateAPI()
API function before the user application exits.

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns AP1_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

/* Init use of the PCI SDK API */
HANDLE PIxHandle;
PixInitializeAPI(&PIxHandle);
..... other code

/* Terminate use of the PCI SDK API */
PIxTerminateAPI(PIxHandle);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-119

PIxTerminateAPI

Syntax:
RETURN_CODE PIxTerminateAPI(IN HANDLHBrvHandIg;

Description:
Terminates use of the PCI SDK API.
¢ drvHandleis the handle of the device driver that was returned from PlxInitialize API().

Note: This function should be preceded by a call to PixInitializeAPI() and should be used to
terminate use of the PCI SDK API before the application terminates.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

/* Init use of the PCI SDK API */
HANDLE PIxHandle;
PixInitializeAPI(&PIxHandle);
..... other code

[* Terminate use of the PCI SDK API */
PIxTerminateAPI(PIxHandle);

3-120 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PCI Device Functions

PIxReadConfigRegister

Syntax:

RETURN_CODE PIxReadConfigRegister(IN HANDIdEvHandle
IN ULONG registerNumber
OUT PULONGdata,
IN ULONG bus
IN ULONG slot);

Description:

Read a configuration register from a PCI device.

¢ drvHandleis the handle of the PCI device;

e registerNumbeis the configuration register to read;

e datais a pointer to a buffer to store the register contents;

e Dbusis the PCI bus number of the device to read. If sexkd-FFFFFF the currently selected
device is used; and

¢ slotis the PCI slot number of the device to read. If séxkFFFFFFF the currently
selected device is used.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 or IOP applications. This API function can be used with a
non-PLX device.

Usage:

HANDLE drvHandle;
ULONG data;

/* Read the Vendor and Device ID of the PCI device on Bus 0
Slot 6 */
PIxReadConfigRegister(drvHandle, PCI9080_VENDOR_ID, &data,
0x00, 0x06);
PIxPrint((“ Vendor ID & Device ID = 0x%x\n", data);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-121

PIxWriteConfigRegister

Syntax:

RETURN_CODE PIxWriteConfigRegister(IN HANDL&vHandle
IN ULONG registerNumber
IN PULONGdata,
IN ULONG bus
IN ULONG slot);

Description:

Writes data to a configuration register on a PCI device.

e drvHandleis the handle of the PCI device;

e registerNumbeis the configuration register to write to;

e datais a pointer to the buffer that contains the data to write;

e busis the PCI bus number of the device to write. If s€xeFFFFFFF the currently
selected device is used; and

e slotis the PCI slot number of the device to write. If séiXBFFFFFFF the currently
selected device is used.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:

This function can be used by Win32 or IOP applications. This API function can be used with a
non-PCl 9080 device.

Usage:

HANDLE drvHandle;
ULONG data;

/* Write to the Vendor & Device ID of the PCI device on Bus O
Slot 6 */
data = (PLX_9080RDK_401_DEVICE_ID << 16) | PLX_VENDOR_ID;
PIxWriteConfigRegister(drvHandle,
PCI9080 VENDOR_ID,
&data,
0x00,
0x06
);

3-122 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxSelectPciDevice

Syntax:

RETURN_CODE PIxSelectPciDevice(IN HANDLdrvHandle
IN PDEVICE_LOCATIONdevicé;

Description:

Selects a PCI device as the current device given a combination of bus number, slot number,
vendor ID, and device ID.

e drvHandleis the handle of the PCI device; and
e deviceis a pointer to the device information.

Note: This function must proceed all other API functions that access PCI devices.

Device Location Structure

typedef struct DEVICE_LOCATION
{
ULONG deviceld;
ULONG vendorld;
ULONG busNumber;
ULONG slotNumber;
ULONG pIxChipType;
}DEVICE_LOCATION, *PDEVICE_LOCATION;

Purpose

Structure used for passing data to and from the configuration registers of a PCI device and to
store information about a specific PCI device.

Members

deviceld
The device ID of the PCI device.

vendorld
The vendor ID of the PCI device.

busNumber
The bus number where the PCI device is located.

slotNumber
The slot number where the PCI device is located on the PCI bus mentioned above.

pIxChipType
The registered PLX chip type for the PCI device. Possible values are
PLX_9080_DEVICE_ID andNO_DEVICE_ID.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-123

Comments
The device can be indicated using three methods:

e Method 1: Specifwendorld anddeviceld SetbusNumbeandslotNumbeto
OXFFFFFFFF;

e Method 2: SpecifjousNumberandslotNumber Setvendoridanddeviceldto
OXFFFFFFFF.

¢ Method 3: SpecifypusNumberslotNumbervendoridanddeviceld
ThepIxChipTypedoes not need to be set for any of these methods mentioned above.

When a PCI device has been selected, by calling the PIxSelectPciDevicplyChipTypéds
filled for that device. Currently the only PLX chip type recognized is the PCI 9080.

Return Value:

On success, this function returns API_SUCCESS. The missing information in the
DEVICE_LOCATION structure is also filled with the proper values.

On error, this function returns API_FAILED. All information in the DEVICE_LOCATION
structure is set tOXFFFFFFFF.

Portability:

This function can be used by Win32 or IOP applications. This API function can be used with a
non-PCl 9080 device.

Usage:

HANDLE drvHandle;
DEVICE_LOCATION device;

device.vendorld = PLX_VENDOR_ID;
device.deviceld = PLX_9080RDK_401 DEVICE_ID;
device.busNumber = OXFFFFFFFF;
device.slotNumber = OXFFFFFFFF;

PIxSelectPciDevice(drvHandle, &device);

3-124 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxFindPciDevice

Syntax:

RETURN_CODE PIxFindPciDevice(IN HANDLHrvHandle
IN PDEVICE_LOCATIONdevicg;

Description:

Finds a PCI device in the computer system given a combination of bus number, slot number,
vendor ID, and device ID. This function stops at the first device that match’s the search criteria.

e drvHandleis the handle of the PCI device; and

e deviceis a pointer to the device information.

Device Location Structure

typedef struct DEVICE_LOCATION
{
ULONG deviceld;
ULONG vendorld;
ULONG busNumber;
ULONG slotNumber;
ULONG pIxChipType;
}IDEVICE_LOCATION, *PDEVICE_LOCATION;

Purpose

Structure used for passing data to and from the configuration registers of a PCI device and to
store information about a specific PCI device.

Members

deviceld
The device ID of the PCI device.

vendorld
The vendor ID of the PCI device.

busNumber
The bus number where the PCI device is located.

slotNumber
The slot number where the PCI device is located on the PCI bus mentioned above.

pIxChipType
The registered PLX chip type for the PCI device. Possible values are
PLX 9080 _DEVICE_ID andNO_DEVICE_ID.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-125

Comments
The device can be indicated using three methods:

e Method 1: Specifywendorld anddeviceld SetbusNumbeandslotNumbeto
OXFFFFFFFF;

o Method 2: SpecifypusNumberandslotNumber Setvendorldanddeviceldto
OXFFFFFFFF.

e Method 3: SpecifyousNumberslotNumbervendoridanddeviceld
ThepIxChipTypedoes not need to be set for any of these methods mentioned above.

When a PCI device has been selected, by calling the PIxSelectPciDevicplyChipTypéds
filled for that device. Currently the only PLX chip type recognized is the PCI 9080.

Return Value:

On success, this function returns APlI_SUCCESS. The missing information in the
DEVICE_LOCATION structure is also filled with the proper values.

On error, this function returns API_FAILED. All information in the DEVICE_LOCATION
structure is set tOXFFFFFFFF.

Portability:

This function can only be used by Win32 applications. This API function can be used with a non-
PCI 9080 device.

Usage:

HANDLE drvHandle;
DEVICE_LOCATION device;

device.vendorld = PLX_VENDOR_ID;
device.deviceld = PLX_9080RDK_401 DEVICE_ID;
device.busNumber = OXFFFFFFFF;
device.slotNumber = OXFFFFFFFF;

PIxFindPciDevice(drvHandle, &device);

3-126 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlxGetBaseAddress

Syntax:

RETURN_CODE PIxGetBaseAddress(IN HANDIdevHandle
OUT PVIRTUAL_ADDRESSES/irtAddr);

Description:
Gets the user virtual addresses for the Memory resources of the PCI device.
e drvHandleis the handle of the PCI device; and

e virtAddris a pointer to the virtual address information. If this function is used by the IOP the
address returned is the physical PCI address instead of the virtual PCI address.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Virtual Addresses Structure

typedef struct _VIRTUAL_ADDRESSES
{

ULONG vag0;

ULONG val;

ULONG va2;

ULONG va3;

ULONG va4;

ULONG vab;

ULONG vaRom;

ULONG dmaBufferAddr;

ULONG dmaBufferAddrPhys;

ULONG dmaBufferSize;
IVIRTUAL_ADDRESSES, *PVIRTUAL _ADDRESSES;

Purpose
Structure containing the user virtual addresses of the PCI base address registers for a PCl device.

Members

va0
The user virtual address for PCI base address 0. For the PCI 9080 chip, this corresponds
to the user virtual address of the Memory Mapped Runtime Registers.

val
The user virtual address for PCI base address 1. For the PCI 9080 chip, this corresponds
to the user virtual address of the I/O Mapped Runtime Registers.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-127

vaz2
The user virtual address for PCI base address 2. For the PCI 9080 chip, this corresponds
to the user virtual address of the Local Address Space 0.

va3
The user virtual address for PCI base address 3. For the PCI 9080 chip, this corresponds
to the user virtual address of the Local Address Space 1.
va4d
The user virtual address for PCI base address 4. For the PCI 9080 chip, this value is
always 0.
va5
The user virtual address for PCI base address 5. For the PCI 9080 chip, this value is
always 0.
vaRom
The user virtual address for the Expansion ROM.
dmaBufferAddr
The user virtual address for the DMA buffer currently allocated in the device driver.
dmaBufferAddrPhys

The physical address for the DMA buffer above. This value is the value used to program
the DMA channel PCI Address Register of the PCI 9080.

dmaBufferSize
The size of the DMA buffer allocated.

Comments

The virtual address structure contains all the user virtual addresses for the various PCI base
addresses including the DMA buffer allocated in the device driver. This structure is filled by
calling the PIxGetBaseAddress() API call.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API1_FAILED.

Portability:

This function can be used by Win32 or IOP applications. This API function can be used with a
non-PCI 9080 device, but using this API function may cause the windows system to crash.

Usage:

HANDLE drvHandle;
VIRTUAL_ADDRESSES virtAddr;

3-128 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

[* get virtual addresses for all card resources */
PIxGetBaseAddress(drvHandle, &virtAddr);

PIxPrint((“The user space virtual address for the mem mapped
registers = 0x%x", virtAddr.va0);

PIxPrint((“The user space virtual address for the I/O mapped
registers = 0x%x", virtAddr.val);

PIxPrint((“The user space virtual address for Local Address Space
0 = 0x%x”", virtAddr.va2);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-129

9080RDK-401, 9080RDK-960 and 9080RDK-860 Support
Functions

PIxResetEmbedded

Syntax:
RETURN_CODE PIxResetEmbedded(IN HANDdE/Handlé;

Description:
Resets the IOP software. This function should be used before downloading IOP software.

For the PCI 9080RDK-401:
This function sends BLX_RESET_EMBED_INToorbell interrupt to the IOP. This forces a
board reset within the PLXRom monitor program.

For the PCI 9080RDK-960 and the PCl 9080RDK-860:
Local addres®x80000000 is the PCI 9080RDK-960 reset address. This function first
writesOx1 at reset addre€x80000000 and waits one second before it write® at the
same address to reset the embedded microprocessor.

¢ drvHandleis the handle of the PCI device;

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns APl_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
HANDLE drvHandle;

PIxResetEmbedded(drvHandle);

3-130 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxDownloadInit

Syntax:

RETURN_CODE PIxDownloadInit(IN HANDLErvHandle
IN PULONG destAddy;

Description:

This function programs Local Address Space 0 to point to the destination address of the IOP
software. This function should be used before IOP software is downloaded.

e drvHandleis the handle of the PCI device; and
e destAddiis a pointer to a buffer that contains the entry point of the IOP software.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:
#define BLOCK_SIZE 0x512

HANDLE drvHandle;

ULONG downloadAddr = 0x10000000, buffSize;
UCHAR buffBLOCK_SIZE];

FILE *imageHandle;

/* open file as read only and binary */
imageHandle = fopen(fname, "rb");

/* read 0x512 bytes into buff */

buffSize = fread(buff, sizeof(UCHAR), BLOCK_SIZE, imageHandle);
/* Init the download */

PIxDownloadInit(drvHandle, buff);

/* download data */

PIxDownloadData (drvHandle, buff, BLOCK_SIZE);

/* start the I0OP software */

PIxStartEmbedded (drvHandle, &downloadAddr);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-131

PIxDownloadData

Syntax:

RETURN_CODE PIxDownloadData (IN HANDL&rvHandle
IN PULONG dataBuffer
IN ULONG bufferSizg

Description:

This function downloads blocks of IOP software to the IOP location pointeddatbBuffer
This function uses 32-bit local bus Memory cycles.

e drvHandleis the handle of the PCI device;
o dataBufferis a pointer to the start of the buffer that holds the data to download;
o bufferSizas the size in bytes of the amount of data you wish to download.

Note: Before this function can be used in a Win32 environment, a PCI device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns APlI_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:

#define BLOCK_SIZE 0x512

HANDLE drvHandle;

ULONG downloadAddr = 0x10000000, buffSize;
UCHAR buffBLOCK_SIZE];

FILE *imageHandle;

/* open file as read only and binary */

imageHandle = fopen(fname, "rb");

[* read 0x512 bytes into buff */

buffSize = fread(buff, sizeof(UCHAR), BLOCK_SIZE, imageHandle);
/* Init the download */

PIxDownloadInit(drvHandle, buff);

[* download data */

PIxDownloadData (drvHandle, buff, BLOCK_SIZE);

[* start the IOP software */

PIxStartEmbedded (drvHandle, &downloadAddr);

3-132 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxStartEmbedded

Syntax:

RETURN_CODE PIxStartEmbedded(IN HANDLdtvHandle
IN PULONG downloadAddy,

Description:

For the PCI 9080RDK-401:
This function programs the I0P software’s entry point into the first ULONG location of
SRAM (local addres8x10000000). The function then programs the next ULONG location
with a non-zero value causing a jump on the IOP side to the IOP software’s entry point.

For the PCI 9080RDK-960 and the PCI 9080RDK-860:
This function programs the I0OP software’s entry point PBi9080 MAILBOX7 register
and then informs the IOP side to jump to the IOP software’s entry point by writing a constant
0x55555555 to thePCI9080_MAILBOX6.

e drvHandleis the handle of the PCI device;
¢ downloadAddis a pointer to a buffer that contains the entry point of the IOP software.

Note: Before this function can be used in a Win32 environment, a PCI| device must be selected
using PIxSelectPciDevice().

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:

#define BLOCK_SIZE 0x512

HANDLE drvHandle;

ULONG downloadAddr = 0x10000000, buffSize;
UCHAR buffBLOCK_SIZE];

FILE *imageHandle;

/* open file as read only and binary */

imageHandle = fopen(fname, "rb");

[* read 0x512 bytes into buff */

buffSize = fread(buff, sizeof(UCHAR), BLOCK_SIZE, imageHandle);
/* Init the download */

PIxDownloadInit(drvHandle, buff);

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-133

/* download data */

PIxDownloadData (drvHandle, buff, BLOCK_SIZE);
/* start the IOP software */

PixStartEmbedded (drvHandle, &downloadAddr);

3-134 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Miscellaneous Functions

PIxPrint

Syntax:
RETURN_CODE PIxPrint(IN format (...));

Description:

PIxPrint() is very similar to the ANSI C functigprintf(). All applications can use it the same as
printf(). Since some of the IOP applications have different print function names this function
provides a common print function for all IOP platforms that can be portable between all IOPs and
Win32 applications.

Portability:
This function can be used by Win32 or IOP applications.

Usage:
ULONG SecondValue = 2;

PIxPrint((“Hello World (%d)\n”, 1));
PIxPrint((“Hello World (%d)\n”, SecondValue));

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-135

PIxSetintrwait

Syntax:

RETURN_CODE PIxSetintrWait(IN HANDLErvHandle
IN OVERLAPPED*ovVI);

Description:

This function is used by Win32 applications when they need to wait for a doorbell interrupt to
occur. It will send an overlapped event structure to the device driver and wait until the event is
set. The driver will set the event when the interrupt occurs.

¢ drvHandleis the handle of the PCI device; and,

e ovlis a pointer to a structure containing an overlapped event.

Return Value:
On success, this function returns API_SUCCESS.
On error, this function returns API_FAILED.

Portability:
This function can only be used by Win32 applications.

Usage:

OVERLAPPED *ovl;
HANDLE drvHandle, intrEventHandle;

ovl = GlobalAlloc(GPTR, sizeof(OVERLAPPED));
intrEventHandle = CreateEvent(NULL, FALSE, FALSE, NULL);
ovl->hEvent = intrEventHandle;

[* wait until interrupt is complete */
PIxSetintrWait(drvHandle, ovl);

/* continue after the interrupt has occurred ... */

3-136 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PlIxlIsIntrActive

Syntax:

BOOLEAN PIxIsiIntrActive(IN HANDLEdrvHandle
OUT PINTSTATUSstatusPointey;

Description:

This function is used by applications to determine which interrupt of the PCI device is currently
active.

e drvHandleis the handle of the PCI device;

e statusPointers the descriptor register that contains information detailing which interrupts are
active. Possible descriptors are:

PCI_DOORBELL_INTR
PCI_ABORT_INTR
LOCAL_INTR
LOCAL_DOORBELL_INTR
DMA_CHANNELO_INTR
DMA_CHANNEL1_INTR
BIST_INTR
MAILBOX0_INTR
MAILBOX1_INTR
MAILBOX2_INTR
MAILBOX3_INTR
IP_FIFO_NOT_EMPTY_INTR
OF_FIFO_FULL_INTR

VVVVVVVVVVVYY

Return Value:
If an interrupt is currently pending, this function returns TRUE.

If no interrupts are currently pending, this function returns FALSE.

Portability:
This function can be used by Win32 and IOP applications.

Usage:

HANDLE drvHandle;
INTSTATUS status;

/* is an interrupt active */
if (PIxIsIntrActive(drvHandle, &status))

{

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-137

if (status & PCI_DOORBELL_INTR)
PIxPrint(“\n Doorbell Interrupt “);

if (status & MAILBOXO_INTR)
PIxPrint(“\n Mailbox O Interrupt “);

3-138 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

3.3.5 API| Data Structures

This section contains a detailed description of each data structure and data type used within the
API. The structures used are as follows:

API Data Structures

Structure Name Purpose Page Numbe

IOCTL Data Structure Common structure for passing data tp3-141
and from the device driver.

Virtual Addresses Structure Structure containing the user virtual | 3-143
addresses of the PCI base address
registers for a PCI device.

DMA Data Structure Structure containing the DMA data | 3-145
used to program the PCI 9080 DMA
registers.

DMA Chain Structure Structure containing the common 3-145

DMA chain elements. This structure is
used for building DMA chains.

Buffer Data Structure Structure used for passing data to and3-147
from the device driver.

Device Location Structure Structure used to store information | 3-148
about a specific PCI device.

Local Bus Descriptor Structure Structure used to describe the local hi&149
characteristics.

Local Space Enum Data Type Enumerated type used to specify the| 3-151

local space access.

PCI Space Enum Data Type Enumerated type used to specify the| 3-152
PCI space bus cycle type.

PLX Operating System Enum Data Type | Enumerated type used to define the | 3-153
current operating system.

Table 3-111 API Data Structures

The following is an example of a data structure or data type definition.

Sample Data Structure

typedef struct SAMPLE
{
ULONG someNumber;
ULONG someSize;
ULONG someBufferf[SOME_BUFFER_SIZE];

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-139

}SAMPLE, *PSAMPLE;

Purpose

The reasons for using this structure.

Members

An explanation of the members contained within the structure. Possible values are given when
applicable.

Comments

Extra comments on how and when this structure is used.

3-140 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

IOCTL Data Structure

typedef struct IOCTLDATA
{

union

DEVICE_LOCATION dISelectedDevice;
ULONG ulSerialNumber;
}uDeviceData,;

union

{
ULONG regNumber;

ULONG dmaChanNumber;
ULONG downloadAddr;
ULONG downloadDataSize;
ULONG portAddr;

luData;

union

{
ULONG value;

VIRTUAL_ADDRESSES virtualAddresses;
DMADATA dmaValues;
BUFFERDATA bufferData;
CONFIGDATA configData;
DEVICE_LOCATION device;
}uValue;
HOCTLDATA, *PIOCTLDATA;

Purpose

Common structure for passing data to and from the device driver.

Members
uDeviceData

Data applicable to selected device only.
uDeviceData.dISelectedDevice

Device data pertaining to the device selected.
uDeviceData.ulSerialNumber

Used in WInNT to assign registry values, in Win95 to index driver data structure.

uData
Union of data parameters.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-141

uData.regNumber
The PCI 9080 register number for the request.

uData.dmaChanNumber
The DMA channel number for the request. Can be el CHANNELOr
DMA_CHANNEL1

uData.downloadAddr
The starting local download address for the next block of data to download.

uData.downloadDataSize
The size of the current block of data for download.

uData.portAddr
The I/O port address for the request.

uValue
Union of value parameters.

uValue.value
A 32 bit data value.

uValue.virtualAddresses
The user virtual addresses structure.

uValue.dmaValues
The DMA data structure.

uValue.bufferData
The buffer data structure.

uValue.configData
The configuration data structure.

uValue.device
The device location structure.

Comments

The IOCTL data structure is used for passing all information and data to the device driver. The
uData member holds all the register and address information for reads or writes. The uValue
member holds the data that was read or written to the location described in the uData member.

3-142 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Virtual Addresses Structure

typedef struct VIRTUAL_ADDRESSES
{

ULONG va0;

ULONG val;

ULONG va2;

ULONG vag;

ULONG va4;

ULONG vab5;

ULONG vaRom;

ULONG dmaBufferAddr;

ULONG dmaBufferAddrPhys;

ULONG dmaBufferSize;
IVIRTUAL_ADDRESSES, *PVIRTUAL_ADDRESSES;

Purpose

Structure containing the user virtual addresses of the PCI base address registers for a PCI device.

Members

va0
The user virtual address for PCI base address 0. For the PCI 9080 chip, this corresponds
to the user virtual address of the Memory Mapped Runtime Registers.

val
The user virtual address for PCI base address 1. For the PCI 9080 chip, this corresponds
to the user virtual address of the I/O Mapped Runtime Registers.

vaz2
The user virtual address for PCI base address 2. For the PCI 9080 chip, this corresponds
to the user virtual address of the Local Address Space 0.

va3
The user virtual address for PCI base address 3. For the PCI 9080 chip, this corresponds
to the user virtual address of the Local Address Space 1.

va4d
The user virtual address for PCl base address 4. For the PCI 9080 chip, this value is
always 0.

va5
The user virtual address for PCl base address 5. For the PCI 9080 chip, this value is
always 0.

vaRom
The user virtual address for the Expansion ROM.

dmaBufferAddr

The user virtual address for the DMA buffer currently allocated in the device driver.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-143

dmaBufferAddrPhys
The physical address for the DMA buffer above. This value is the value used to program
the DMA channel PCI Address Register of the PCI 9080.

dmaBufferSize
The size of the DMA buffer allocated.

Comments

The virtual address structure contains all the user virtual addresses for the various PCI base
addresses including the DMA buffer allocated in the device driver. This structure is filled by
calling the PIxGetBaseAddress() API call.

3-144 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

DMA Data Structure And DMA Chain Structure

typedef struct DMADATA
{
ULONG dmaMode;
DMACHAIN dmaChain[1];
}DMADATA, *PDMADATA;

typedef struct _ DMACHAIN
{
ULONG pciAddr;
ULONG localAddr;
ULONG transferByteCount;
ULONG descriptorPointer;
}DMACHAIN, *PDMACHAIN;

Purpose
Structure containing the DMA data used to program the PCI 9080 DMA registers.

Members

dmaMode
The DMA mode data used to program the PCI 9080 DMA Mode register for a given
DMA channel.

dmaChain
An array of DMA chain data structures.

dmacChain.pciAddr
The PCI buffer address for the DMA transfer. This value is used to program the PCI 9080
DMA PCI Address Register for a given DMA channel.

dmacChain.localAddr
The I0P buffer address for the DMA transfer. This value is used to program the PCI
9080 DMA Local Address Register for a given DMA channel.

dmacChain.transferByteCount
The number of bytes to be transferred. This value is used to program the PCI 9080 DMA
Transfer Byte Count Register for a given DMA channel.

dmacChain.descriptorPointer
The descriptor pointer that points to the next DMA chain element. This value is used to
program the PCIl 9080 DMA Descriptor Pointer Register for a given DMA channel. The
lower four bits are used for programming this DMA transfer. Refer to the PCI 9080 Data
Sheet for more information.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-145

Comments
The DMA data structure is used to program the PCI 9080 DMA Registers.

For DMA transfers that use DMA chaining, the DMA chains need to be allocated and filled
before filling the DMA data structure. When the DMA chain is complete insert the address of the
first chain element into themaChain.descriptorPointef the DMA data structure (with the

lower four bits programmed according to the PCI 9080 Data Sheet). Do not fill in the other chain
elementsdmaChain.pciAddrdmaChain.localAddanddmaChain.transferByte Coyrf the

DMA chain structure element of the DMA data structure.

3-146 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Buffer Data Structure

typedef struct BUFFERDATA
{

ULONG size;

UCHAR buffer[BUFFER_SIZE];
IBUFFERDATA, *PBUFFERDATA,;

Purpose

Structure used for passing data to and from the device driver.

Members

size
The size of the data contained within the buffer that follows. The size can not be greater
thanBUFFER_SIZE

buffer
The data buffer.

Comments

The buffer data structure is used to pass data for reading or programming the EEPROM
connected to the PCI 9080. It is also used for passing data to and from the device with the /O
port API calls, e.g. PIxDirectPortMasterReadChar() API call will fill this structure with data read
using PCI bus I/O cycles.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-147

Device Location Structure

typedef struct DEVICE_LOCATION
{
ULONG deviceld;
ULONG vendorld;
ULONG busNumber;
ULONG slotNumber;
ULONG plIxChipType;
}IDEVICE_LOCATION, *PDEVICE_LOCATION;

Purpose

Structure used for passing data to and from the configuration registers of a PCI device and to
store information about a specific PCI device.

Members

deviceld
The device ID of the PCI device.

vendorld
The vendor ID of the PCI device.

busNumber
The bus number where the PCI device is located.

slotNumber
The slot number where the PCI device is located on the PCI bus mentioned above.

pIxChipType
The registered PLX chip type for the PCI device. Possible values are
PLX_9080_DEVICE_ID andNO_DEVICE_ID.

Comments

The device can be indicated using three methods:
¢ Method 1: Specifwendorld anddeviceld SetbusNumbeandslotNumbeto
OXFFFFFFFF;

e Method 2: SpecifjousNumberandslotNumber Setvendoridanddeviceldto
OXFFFFFFFF.

¢ Method 3: SpecifypusNumberslotNumbervendoridanddeviceld

TheplIxChipTypedoes not need to be set for any of these methods mentioned above.

When a PCI device has been selected, by calling the PIxSelectPciDevicpyChi@Typds
filled for that device. Currently the only PLX chip type recognized is the PCI 9080.

3-148 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Local Bus Descriptor Structure
typedef struct LOCAL_BUS DESCRIPTOR

{
unsigned long busWidth : 2
unsigned long dataToDataWaitStates : 4;
unsigned long readylnputEnable 01
unsigned long bterminputEnable o
unsigned long prefetchDisable : 1,
unsigned long prefetchCountEnable : 1;
unsigned long burstEnable 1
unsigned long prefetchCounter 24,
unsigned long reserved : 17; I* Word-alignment */

} LOCAL_BUS_DESCRIPTOR, *PLOCAL_BUS_DESCRIPTOR;

Purpose

Structure used to describe the local bus characteristics.

Members

busWidth
The width of the local bus.

dataToDataWaitStates
The number of wait states inserted after the address is presented on the local bus until the
data is ready. The value must be between 0-15.

readylnputEnable
Enables or disables the Ready input.

bterminputEnable
Enables or disables the BTERM input.

prefetchDisable
Enables or disables prefetching when reading memory.

prefetchCountEnable
Enables or disables prefetching counter. If enabled the PCI 9080 reads up to the number
of ULONGs specified in the prefetch counter. If disabled the PCI 9080 ignores the
prefetch counter and reads continuously until terminated by the PCI bus.

burstEnable
Enables or disables bursting. If bursting is disabled then the PCI 9080 performs
continuous single cycle accesses for burst PCI read/write cycles.

prefetchCounter
Stores the number of ULONGS that can be prefetched. Up to 16 ULONGS can be
prefetched during memory read cycles.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-149

AX_

ccmNoLoaY”

-<I|

Comments

The local bus descriptor structure is used to describe the local bus characteristics.

3-150 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Local Space Enum Data Type

typedef enum LOCAL_SPACE
{

LocalSpaceO0,

LocalSpacel,

LocalSpace2,

LocalSpaces,

ExpansionRom
JLOCAL_SPACE;

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
local Memory space.

Members

LocalSpace0
Use Local Space 0 base address register.

LocalSpacel
Use Local Space 1 base address register.

LocalSpace?2
Use Local Space 2 base address register.

LocalSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The local space enumerated type is used to choose the local space base address register.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-151

PCI Space Enum Data Type

typedef enum _PCI_SPACE
{
pciMemSpace,
pciloSpace
} PCI_SPACE;

Purpose

Enumerated type used for choosing the desired PCI Address Space access.

Members

pciMemSpace
Use PCI memory cycles when accessing the PCI bus.

pciloSpace
Use PCI I/O cycles when accessing the PCI bus.

Comments

The local space enumerated type is used to select the type of bus cycles when accessing the PCI
bus.

3-152 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PLX Operating System Enum Data Type

typedef enum _PLX_OS
{

PIxUnderterminedOs,
PIxWindows95,
PIxWindowsNt

} PLX_OS;

Purpose

Enumerated type used identifying the operating system.

Members

PIxUnderterminedOs
Current operating system is unknown or not recognizable.

PIxWindows95
Current operating system is Win95.

PIxWindowsNt
Current operating system is WIinNT.

Comments

The PLX operating system enumerated type is used to choose the current operating system.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-153

3.4 Windows Device Driver Design

3.4.1 Introduction

The design of the Windows device driver included in the PCI SDK can be used for various board
designs. The layout of the device driver is organized so that sections of the code can be reused in
new device drivers with little modification. The following sections contain details on the design

of the WIinNT and Win95 device drivers provided.

The following descriptions assume that the reader has an understanding of Windows device

drivers.

3.4.2 Device Driver File Layout

The Windows device driver is a combination of files each with a specific responsibility. The
device driver is made up of four files:

PLXxx.C : The Windows NT/95 specific device driver code

This code provides the necessary entry points to the driver for each operating system.
This file also includes the interface for passing user requests to the other files, such as
accesses to the PLX chip via tBERVICE.C file. This file is specific to WIinNT or

Win95.

INTR.C : The interrupt service code for the Windows device driver

This code provides support functions for the handling of interrupts in either WinNT
or Win95. This includes the interrupt service routine (ISR), operating system
registering of the interrupt, and others. Some parts of this file are generic for
Windows, while others are WinNT or Win95 specific.

PLXPCI.C : The PCI specific device driver code

This code provides all the PCI procedures, such as configuring a PCI device, reading
the PCI configuration registers of a particular device, and more. This file is generic
for PCI devices in a Windows environment.

SERVICE.C: The PLX Chip specific device driver code

This code provides access to the PLX chip, such as reading and writing to any
register, setting up DMA transfers, and more. This file is generic for any PLX PCI
bridge chip in any operating system.

For Win95 device drivers a few files were added:

3-154

KE95FCN.C: The Win95 kernel support functions

This code provides functions that are normally supported under WinNT. This file
may not be needed when Microsoft provides a common device driver model for
Win95 and WIinNT.

© PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PLXCTRL.ASM The PLX Win95 VxD device driver control procedure
This file contains the procedure that connects the entry points for the Win95 VxD
device driver to the Win95 kernel control codes. This file is written in assembly.

PLX95.DEF: The PLX Win95 VxD device driver memory segment definitions
This file contains the memory segment definitions for the Win95 VxD device driver.

3.4.2.1 Functions Contained Within PLXxx.C

ThePLXxx.C file contains six functions:

Note: For the Win95 VxD device driver the main entry points, DriverEntry(), DrvDispatch(),
DrvUnload(), and PIxWriteToRegistry(), have ‘WIN95_ ' appended to the beginning of the
function name.

DriverEntry(): This is the entry point for the device driver. It performs initialization
of the device driver. This function maps all addresses and interrupts to a driver data
structure.

pIxDrvDispatch(): This is the main dispatch routine. It handles all user requests for
open, close and I/O control calls. For each user request it processes the user call and
passes the call to other support routines if necessary. This routine provides the main
functionality of the driver.

plxDrvUnload(): This is the device driver unload routine. All memory allocated
during the execution of the device driver is freed and the device object is deleted.
When the device driver is stopped the windows kernel calls this function.

PIxWriteToRegistry(): This function establishes the registry information given the
registry key, subkey, and device information. The bus number, slot number, device,
and vendor ID are stored for driver use. This function is called when the device
objects are created. Different versions of this function exist for each operating
system.

PIxCompletelrp(): This is a routine to complete an IRP that was marked pending. It is
similar to the PIxCancellrp() but this one is called when a pending IRP has completed
successfully.

This routine is currently used when tReX_IOCTL_SET_INTR_WAIT control

code is received. When this control code is received by the PLX device driver's
dispatch routine it marks the IRP as pending. When it receives a doorbell interrupt
from the local side, the doorbell DPC (Deferred Procedure Call) calls the
PIxCompletelrp() to tell the user application, waiting on this call, that a doorbell
interrupt was received.

PIxResetEmbedded(): This routine resets an IOP processor. Currently, it supports the
PCI 9080RDK-401, PCI 9080RDK-960 and PCI 9080RDK-860 evaluation boards.

MapInUserSpace(): This function maps any kernel virtual address into the user’s
virtual address space, one at a time. This function requires that the physical address
of the kernel virtual address be passed to it.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-155

¢ UnmapUserSpaceAddr(): This function unmaps a user virtual address that was
mapped using the MaplnUserSpace() function call. This function requires that the
user virtual address be passed to it. This is a complement function to
MaplnUserSpace().

o PIxDriverSleep(): This function relinquishes the device driver from the CPU for a
given time to allow other applications to run while the device driver is waiting.

e IsPIxPciDevice(): This function checks configuration registers to determine if the
device passed in contains the PLX bridge chip. It returns a Boolean value. This
function is found in both WinNT and Win95 version of the device driver.

e PIxCancellrp(): This is the cancel routine for any IRP (/O Request Packet) received
by the dispatch routine. In the event that the user application terminates abruptly, the
WInNT kernel will call this routine for each pending IRP.

For the WIinNT device driver only:

e PIxCreateDeviceObiject(): This function creates a single device object and links one
PLX device to it. This function in doing so performs the following tasks that are
necessary for initializing and controlling a PLX device in WinNT. (Initializes
interrupts, creates registry entries, and establishes local base addresses.)

e PIxDestroyDeviceObjects(): Called only when device is being unloaded, this function
unlinks all devices from their device objects. After this is done, the device instance is
removed from the Driver object.

¢ PIxMapLocalMemoryAddresses(): This function converts the local base addresses
found in the configuration registers and converts them into kernel memory address
space. It also assigns these values to the device object’s extension.

e PIxUnmapLocalMemoryAddresses(): This is the previous function’s compliment. Its
purpose is to remove the base addresses referenced in the extension for the selected
device object.

For the Win95 device driver only:

¢ PIxSetExtension(): This function checks the serial number assigned in the API, and
uses this to find the extension for the current device. This function is called for every
I/O operation. If the device is non-PLX, the function is not used.

3.4.2.2 Functions Contained Within INTR.C
TheINTR.C file contains six functions:

¢ plxiIntr(): This is the device driver's ISR. The ISR should be as small and as quick as
possible. For WIinNT, the ISR should only clear the interrupt bit that triggered it and
gueue the appropriate DPC.

e pIxDoorbellDpc(): This function handles all the PCI doorbell interrupts sent from the
IOP processor.

3-156 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

pIxAbortDpc(): This function handles abort interrupts received from the PCI 9080
chip.

pIxOutboundDpc(): This function handles the outbound post FIFO interrupt (only on
the PCI 9080 chip).

Connectinterrupt(): This function registers the interrupt line with the operating
system and links it with the ISR (given by the PCI BIOS to the PLX bridge chip at
boot time).

UnReportinterruptUsage(): This function unregisters the ISR from the operating
system. This is a complement function to Connectinterrupt().

For the Win95 device driver:

pIxIsr(): This function is called by the Win95 kernel. This function calls the pixIntr()
with the proper parameters.

3.4.2.3 Functions Contained Within PLXPCI.C

ThePLXPCI.C file contains nine functions:

Note: Device driver designers with little PCI experience should consult the PCI specification
before creating PCI compliant device drivers.

FindADevice(): This function scans all the PCI buses for a device. The target device
can be given either using the bus number and slot number of the device, the device
ID and vendor ID of the device, or by using both methods. This function returns all
of the device location structure - the bus number, slot number, device ID, vendor ID
and the PLX chip type - if the device is found. It fills the device location structure
with OXFFFFFFFF if the device was not found.

SelectADevice(): This function retrieves the configuration information of the target
device if it is present on any of the PCI buses. It registers the device, maps all the
base addresses into system memory and allocates memory for any buffers that are
needed for this device. The device is selected using the same device location
structure as FindADevice(). This is a Win95 driver function.

DeselectDevice(): This function unmaps the memory, unregisters the PLX device and
unreports the interrupt. This function serves as a complement to SelectADevice() .
This is a Win95 driver function.

MapMemoryAddress(): This function maps the base addresses, found in the
configuration registers of a PCI device, into the system memory, one at a time.

GetAddressRange(): This function retrieves the range of addressable locations for
each base address found in the configuration registers of a PCI device, one at a time.

RegisterPIxDevice(): This function determines if the PCI bridge chip is a PLX PCI
bridge chip and the type of PLX chip. Depending on the type of PLX chip this
function will do specific initialization, memory allocation, and set the chip type in the
device structure contained within the device extension structure.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-157

e UnregisterPIxDevice(): This function frees any memory allocated by
RegisterPIxDevice() and resets the chip type in the device structure within the device
extension structure. This is a complement function to RegisterPIxDevice().

o PciReadAllBaseAddresses(): This function reads all the local base addresses from the
device information given. This returns the values in a device extension object. This
function exists in WinNT.

3.4.2.4 Functions Contained Within SERVICE.C
TheSERVICE.C file contains three functions:
e plxService(): This function provides the access to the PLX PCI bridge chip.

o EepromSendCmd(): This function sends a command to the EEPROM connected to
the PLX PCI bridge chip.

e EepromClock(): This function sends the clocking sequence to the EEPROM
connected to the PLX PCI bridge chip.

3.4.3 Windows Device Driver Design and Implementation

3.4.3.1 Device Driver Initialization

The initialization sequence for the PLX device driver supplied in this PCI SDK is described in
Table 3-122 The Device Driver Initialization Sequence. The associated API/driver calls are given
as a reference to the sequence used for initializing the device driver.

Device Driver Initialization Sequence

API/driver Call What The Device Driver Does

1. DLLMain() This function is automatically run on the first call to the API. I
first determines the operating system, maps the DMA buffer {o
the user’s virtual address, and determines the number of PL
devices on the system. It then uses the Win32 API CreateFilg() to
open a handle to either thk.sys device driver under
Windows NT omplx95.vxd virtual device driver under
Windows 95.

2. DriverEntry() All connection oriented processing is done in the driver entry
This executes before any application attaches to the API's DILL.

For WinNT:

1. The driver dispatch points are assigned. The WinNT
kernel calls the appropriate service routine when it

3-158 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

API/driver Call What The Device Driver Does

receives these calls from a user application. There aje six
commonly used dispatch points:

IRP_MJ_CREATE for the open routine.
IRP_MJ_CLOSE for the close routine
IRP_MJ_DEVICE_CONTROLfor the I/O control
routine

IRP_MJ_CLEANUPfor the IRP clean up routine
IRP_MJ_READ for the read routine
IRP_MJ_WRITE: for the write routine

The PLX device driver currently only connects the firgt
three. It also connects a driver unload function called
pIxDrvUnload(). This routine is called when the driver
stopped. It performs any clean up of the device drive}
and frees all memory used by the device driver and
deletes the device object.

S

2. A FastMutex object is created. This allows for mutua
exclusion of processes during the driver’s processing of
IRPs (I/O Request Packets).

3. The driverEntry() routine is run at system start-up. It i
at this time the data structures are created. The first
device object is created for all non-PLX devices. It cgn
be used to Map PCI Base Address Registers and
Expansion ROM Base Address into the user memory. A
symbolic link is given to it so the Win32 subsystem cfin
recognize it. Users identify the device by the handle
returned by CreateFile().

4. By scanning the buses and slots, every PLX device i$
given a device object and extension. After the deviceland
extension are initialized, functions are called which map
the kernel memory addresses to the base address
registers, the registry is updated, symbolic links
attached, and all interrupts and DPCs (more on DPC
later) are connected. Note that non-PLX devices do not
have interrupts attached. All data linked to the PLX
device is stored in the extension.

vl

5. The device extension is a structure used by the drivgr
where commonly used variables are stored. The dev|ce
extension is where global device driver variables should
be kept. The WIinNT kernel guarantees that the devide
extension will be in system memory during the
execution of the driver. If a variable is not in memory
when it is accessed a page fault will occur. If this

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-159

API/driver Call

What The Device Driver Does

happens when the device driver is executing the Win
kernel crashes.

The individual DPCs (Deferred Procedure Calls) are
initialized. The DPCs are used with interrupt service
routines (ISR). To eliminate timing and priority
problems while interrupts are being serviced, the ISR
should only run for the shortest time possible. For thi

INT

reason, the ISR offloads most of the interrupt handling to

DPCs. The DPCs are queued and executed at a lower

priority than the ISR allow

ing other ISRs to be serviced.

Finally, the device driver allocates a contiguous block of
memory that will be used for DMA transfers to and fr¢m
the device. The location of this buffer is known to evgry

device extension.

For Win95:

1.

6.

A globally allocated device extension is created to hdld

DMA buffer information. A global pointer to a device

extension is created. Its purpose will be explained later.

A global pointer to a mutex handle is created as well
This will be used in the Win95_DeviceloControl()
function to maintain mutual exclusion of processes.

After opening the PLX key in the registry, the driver
removes outdated registry information.

The DMA buffer is allocated and its location stored.

The buses are scanned for valid PLX devices. When
is located, the registry is updated with device
information.

In the Win95 version of this driver, an extension obje
exist for each PLX device on the system. At this time
non-pagable locked memory is allocated for the
extension block. If this is successful, the
SelectADevice() is called which maps all memory

address registers and connects all interrupts if needqd.

Lastly, the mutex object is created.

one

3. SelectADevice()

This is a Windows 95 function only. It's functionality
mirrors that of the Windows NT functions that initialize a
device object.

1.

The function first searches the PCI bus for the target

3-160

© PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

API/driver Call

What The Device Driver Does

device by using either the bus number and slot numi
of the device, the device ID and vendor ID of the dev
or both (FindADevice() performs this action).

If the device is found, SelectADevice() function will

unreport any interrupt usage of a previously mapped
device and complete any outstanding IRPs. Next thig
function unmaps any memory addresses for the prev
device and unregisters the device.

For the new device the SelectADevice() function will
first read its configuration registers to get the
configuration information of this device. The device ig
checked to see if it uses a PLX PCI bridge chip and
performs any chip specific configuration (performed [
calling RegisterPIxDevice()). The device type is set if
the device structure of the device extension structure
(see section 3.4.4 Device Driver Structures for more
information).

The base addresses (for local bus slave accesses) in
configuration registers are mapped into memory. Thq
steps involved are as follows:

o Determine if the base address maps into memory
I/O space.

¢ Get the addressable range for this base address.

¢ Map the address into the kernel memory space b
translating the bus address found in the
configuration register (given by the PCI BIOS at
boot time).

e Create a user virtual address for this base addres
This will allow user applications to directly access
the local bus of the device.

er
ce,

ous

y

the

or

Y

S.

The ISR is connected to the interrupt line given in the
configuration registers of the device.

4. CreateFile ()

The device driver dispatch routine, pIxDrvDispatch(), is called by
this function. As this function is called by DLLMain(), there isjho

need for this to be called.

For WIinNT: The dispatch routine is passB®_MJ_CREATE
This increases the counter to the number of threads on that

device.

For Win95: The dispatch routine is pas8#®@C_OPENAs all

initialization has been done at driver load time. Nothing is dovI]e.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997

3-161

API/driver Call

What The Device Driver Does

5. PIxSelectPciDevice()

The device driver dispatch routine is called by this function.
For WIinNT: The dispatch routine is called with

For Win95: The dispatch routine is called with the control cod

IRP_MJ_DEVICE_CONTROWith the control code
PLX_IOCTL_SELECT_PCI_DEVICE The dispatch
routine gets the pointer to the system buffer which conta
the user information, the input buffer length, and the outy
buffer length. The system buffer is used for both input of
data from the user and output of data back. Therefore, it
important to copy all data needed out of the buffer beford
copying data into it.

1. Since the control code sent to the dispatch routine is
PLX_IOCTL_SELECT_PCI_DEVICEthe dispatch
routine fills the buffer with the selected device
information, such as device and vendor IDs as well g
bus and slot positions.

2. The dispatch function then calls
PIxMapAllUserAddresses() to assign user virtual
addresses to the base address registers.

3. If the device is a non-PLX type, the function
PCIReadAllIBaseAddresses() loads all the generic P(
base address registers.

4. Note: The driver fills the device objects with the releva
data. The API function PIxSelectPciDevice() is
responsible for the creation and removal of device
handles to objects.

PLX IOCTL_SELECT_PCI_DEVICE Two separate
buffers are passed along with their sizes to the dispatch
routine. A system buffer similar to the WinNT system buf

is allocated and the data contained within the input buffef

copied into it. At the completion of the dispatch routine, t
system buffer is copied to the output buffer.

5. Since the control code sent to the dispatch routine is
PLX_IOCTL_SELECT_PCI_DEVICEthe dispatch
routine calls SelectADevice() function for non-PLX
devices only. These devices all share one area of dri

ns
ut

S

<7

Nt

e

er

memory. If the device is PLX, the virtual addresses afe

written from the appropriate extension to the applicat

on.

Table 3-122 The Device Driver Initialization Sequence

3-162

© PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

3.4.3.2 Device Driver Termination

The termination sequence for the PLX device driver supplied in the PCI SDK is described in
Table 3-133 The device driver termination sequence. The associated API calls are given as a
reference to the sequence used for initializing the device driver.

Device Driver Termination Sequence

API Call What The Device Driver Does

1. DLLMain() When an application terminates, or ends a process that uses the API
DLL, this function is called with DLL_PROCESS_ DETACH
passed in. Both the API and the driver work to remove all resoyrces
allocated. Three separate driver dispatch functions are called. Note:

This terminates the driver ddiar this application The data

structures and DMA will persist until the driver itself is unloadeq.

This occurs at system shutdown.
For WIinNT:

1. The dispatch routine is first called with
PLX_IOCTL_DESELECT_PCI_DEVICE. This serve
to unmap all virtual addresses used by the API.

2. The control code PLX_IOCTL_UNMAP_-
COMMON_DMA is sent. This clears the DMA

vl

information stored in the virtual address structure offthe

buffer.

3. The Win32 API function CloseHandle() is called witH
the global device handle passed in. The
IRP_MJ_CLOSE is caught by the driver dispatch an
used to decrement the number of threads present
counter in the device extension.

For Win95:

1. PLX_IOCTL_DESELECT_PCI_DEVICE: This case
present to allow congruity with the API. This returns
STATUS_SUCCESS.

2. PLX_IOCTL_UNMAP_COMMON_DMA: Again this
is performed at driver unload so this returns
STATUS_SUCCESS.

3. CloseHandle() causes DIOC_CLOSEHANDLE to b4
passed to the dispatch routine. This removes the

[@X

S

memory owned by the IRP in the extension.

Table 3-133 The device driver termination sequence

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-163

3.4.4 Device Driver Structures

This section contains a detailed description of each structure used within the device driver. The
structures used are as follows:

Structure Name Purpose Page Numbe

Device Extension Structure Structure to store commonly used variables| 3-165
within the device driver.

The following is an example of a structure definition.

Sample Data Structure

typedef struct SAMPLE
{

ULONG someNumber;

ULONG someSize;

ULONG someBuffer[SOME_BUFFER_SIZE];
}SAMPLE, *PSAMPLE;

Purpose

The reasons for using this structure.

Members

Explanation of the members contained within the structure. Possible values are given when
applicable.

Comments

Extra comments on how and when this structure is used.

3-164 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

Device Extension Structure
typedef struct _DEVICE_EXTENSION
{
#ifdef HOST
PClI_COMMON_CONFIG plIxConfigReg;
ifdef WIN95
LPOVERLAPPED mylrp;
HIRQ IntrHandle;
struct _DEVICE_EXTENSION *pNextExt;
endif /* WIN95 */
ifdef WINNT
PDEVICE_OBJECT DeviceObject;
PDRIVER_OBJECT DriverObiject;
PADAPTER_OBJECT AdapterObiject;
ULONG MapRegisterCount;
PUNICODE_STRING RegistryPath;
PIRP mylrp;
KDPC plxDoorbellDpc, plxAbortDpc, plxOutboundDpc;
endif /* WINNT */
PKINTERRUPT InterruptObject;
DEVICE_LOCATION device;
ULONG currDownloadAddr, doorbellintr;
PHYSICAL_ADDRESS plxMemBaseAddrPhys, pixloBaseAddrPhys,
pIxLocalBaseAddrPhys, plxLocallBaseAddrPhys,
plxLocal2BaseAddrPhys, plxLocal3BaseAddrPhys,
plxRomBaseAddrPhys;

ULONG pIxMemBaseAddrUser, pixloBaseAddrUser,
pIxLocalBaseAddrUser, plxLocallBaseAddrUser,
plxLocal2BaseAddrUser, plxLocal3BaseAddrUser,

plxRomBaseAddrUser;
ULONG dmaBigBuffer, dmaBigBufferRange, dmaBigBufferUser;
PHYSICAL_ADDRESS dmaBigBufferPhys;
#endif [* HOST */

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-165

PUCHAR pIxMemBaseAddr, plxloBaseAddr,
plxLocalBaseAddr, plxLocallBaseAddr,
plxLocal2BaseAddr, plxLocal3BaseAddr,
plxRomBaseAddr;

ULONG pIxMemBaseRange, plxloBaseRange,
pIxLocalBaseRange, plxLocallBaseRange,
pIxLocal2BaseRange, plxLocal3BaseRange,
plxRomBaseRange;

} DEVICE_EXTENSION, *PDEVICE_EXTENSION;

Purpose

Structure to store commonly used variables within the device driver.

Members

pIxConfigReg
This structure stores a carbon copy of all the PCI configuration registers of the device
that is currently selected by the device driver function call, PIxSelectADevice(). This
structure is only available on the host device driver.

mylrp
This structure stores the handle for a user event. The event is used to signal the user
application that a doorbell interrupt has occurred. This structure is filled by the API call,
PIxSetintrWait(). For Win95, this isl&POVERLAPPEDBtructure. For WinNT, it is a
PIRP structure. This structure is only available on the host device driver.

IntrHandle
This structure stores the handle for the ISR. This structure is only available to the Win95
device driver.

DeviceObject
This structure stores the pointer to the allocated device object. This structure is only
available to the WIinNT device driver.

DriverObject
This structure stores the pointer to the allocated driver object. This structure is only
available to the WIinNT device driver.

AdapterObject
This structure stores the pointer to the allocated adapter object. This structure is used for
allocating DMA buffers in WIinNT. This structure is only available to the WinNT device
driver.

MapRegisterCount
This variable stores the maximum number of registers needed for the DMA buffer. Each
memory page that the DMA buffer occupies requires a register. The value stored within
this variable is the buffer size divided by the page size plus two. The reason for the
addition is that the first character and the last character of the DMA buffer may be on

3-166 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

separate memory pages. Therefore, the worst case scenario is to have two extra map
registers one for each of the memory page containing only one character. This structure is
only available to the WinNT device driver.

RegistryPath
This structure stores the pointer to the WIinNT registry. This structure is only available to
the WInNT device driver.

pixDoorbellDpc
This structure stores the pointer to the plxDoorbellDpc function. This structure is only
available to the WIinNT device driver.

pIxAbortDpc
This structure stores the pointer to the pIxAbortDpc function. This structure is only
available to the WIinNT device driver.

pIxOutboundDpc
This structure stores the pointer to the plxOutboundDpc function. This structure is only
available to the WIinNT device driver.

InterruptObject
This structure stores the pointer to the interrupt object. For Win95, this points to a buffer
allocated at initialization which stores information about the interrupt and the ISR. For
WInNT, it points to a interrupt object that is received from the WinNT kernel when the
ISR is registered. This structure is only available to the host device driver.

device
This structure stores information about the currently selected device. This structure is
filled when SelectADevice() device driver function call is performed. This structure is
only available to the host device driver.

currDownloadAddr
This variable stores the current local download address. This value holds the kernel
virtual address for the Local Space 0 base address and the download address offset from
the Local Base Address (Re-map) register. This variable is only available to the host
device driver.

doorbellintr
This variable stores the last doorbell interrupt value. This variable is only available to the
host device driver.

plxMemBaseAddrPhys
This variable stores the physical address of the PCI base register 0. For the PCI 9080, this
corresponds to the PCI Base Address for Memory Mapped Runtime Registers. This
variable is only available to the host device driver.

plxloBaseAddrPhys
This variable stores the physical address of the PCI base register 1. For the PCI 9080, this
corresponds to the PCI Base Address for I/O Mapped Runtime Registers. This variable is
only available to the host device driver.

plxLocalBaseAddrPhys
This variable stores the physical address of the PCI base register 2. For the PCI 9080, this

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-167

corresponds to the PCI Base Address for Local Address Space 0. This variable is only
available to the host device driver.

plxLocallBaseAddrPhys
This variable stores the physical address of the PCI base register 3. For the PCI 9080, this
corresponds to the PCI Base Address for Local Address Space 1. This variable is only
available to the host device driver.

plxLocal2BaseAddrPhys
This variable stores the physical address of the PCI base register 4. For the PCI 9080, this
value is 0x0. This variable is only available to the host device driver.

plxLocal3BaseAddrPhys
This variable stores the physical address of the PCI base register 5. For the PCI 9080, this
value is 0x0. This variable is only available to the host device driver.

plxRomBaseAddrPhys
This variable stores the physical address of the Expansion ROM base address. For the
PCI 9080, this corresponds to the PCI Base Address for Expansion ROM. This variable is
only available to the host device driver.

plxMemBaseAddrUser
This variable stores the user virtual address of the PCI base register 0. For the PCI 9080,
this corresponds to the PCI Base Address for Memory Mapped Runtime Registers. This
variable is only available to the host device driver.

plxloBaseAddrUser
This variable stores the user virtual address of the PCI base register 1. For the PCI 9080,
this corresponds to the PCI Base Address for I/O Mapped Runtime Registers. This
variable is only available to the host device driver.

plxLocalBaseAddrUser
This variable stores the user virtual address of the PCI base register 2. For the PCI 9080,
this corresponds to the PCI Base Address for Local Address Space 0. This variable is
only available to the host device driver.

plxLocallBaseAddrUser
This variable stores the user virtual address of the PCI base register 3. For the PCI 9080,
this corresponds to the PCI Base Address for Local Address Space 1. This variable is
only available to the host device driver.

plxLocal2BaseAddrUser
This variable stores the user virtual address of the PCI base register 4. For the PCI 9080,
this value is 0x0. This variable is only available to the host device driver.

plxLocal3BaseAddrUser
This variable stores the user virtual address of the PCI base register 5. For the PCI 9080,
this value is 0x0. This variable is only available to the host device driver.

plxRomBaseAddrUser
This variable stores the user virtual address of the Expansion ROM base register. For the
PC1 9080, this corresponds to the PCI Base Address for Expansion ROM. This variable is
only available to the host device driver.

3-168 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

dmaBigBuffer
This variable stores a pointer to the DMA buffer.

dmaBigBufferRange
This variable stores size of the DMA buffer.

dmaBigBufferUser
This variable stores the user virtual address of the DMA buffer.

dmaBigBufferPhys
This variable stores the physical address of DMA buffer.

plxMemBaseAddr
This variable stores the kernel virtual address of the PCI base register 0. For the PCI
9080, this corresponds to the PCI Base Address for Memory Mapped Runtime Registers.

plxloBaseAddr
This variable stores the kernel virtual address of the PCI base register 1. For the PCI
9080, this corresponds to the PCI Base Address for I/O Mapped Runtime Registers.

pIxLocalBaseAddr
This variable stores the kernel virtual address of the PCI base register 2. For the PCI
9080, this corresponds to the PCI Base Address for Local Address Space 0. For IOP
device drivers this is the IOP memory mapping for Local Address Space 0.

pIxLocallBaseAddr
This variable stores the kernel virtual address of the PCI base register 3. For the PCI
9080, this corresponds to the PCI Base Address for Local Address Space 1. For IOP
device drivers this is the IOP memory mapping for Local Address Space 1.

plxLocal2BaseAddr
This variable stores the kernel virtual address of the PCI base register 4. For the PCI
9080, this value is 0x0.

plxLocal3BaseAddr
This variable stores the kernel virtual address of the PCI base register 5. For the PCI
9080, this value is 0x0.

plxRomBaseAddr
This variable stores the kernel virtual address of the Expansion ROM base register. For
the PCI 9080, this corresponds to the PCI Base Address for Expansion ROM.

plxMemBaseRange
This variable stores the addressable range of the PCI base register 0. For the PCI 9080,
this corresponds to the PCI Base Address for Memory Mapped Runtime Registers
addressable range.

plxloBaseRange
This variable stores the addressable range of the PCI base register 1. For the PCI 9080,
this corresponds to the PCI Base Address for I/O Mapped Runtime Registers addressable
range.

plxLocalBaseRange
This variable stores the addressable range of the PCI base register 2. For the PCI 9080,
this corresponds to the PCI Base Address for Local Address Space 0 addressable range.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-169

pIxLocallBaseRange
This variable stores the addressable range of the PCI base register 3. For the PCI 9080,
this corresponds to the PCI Base Address for Local Address Space 1 addressable range.

plxLocal2zBaseRange
This variable stores the addressable range of the PCI base register 4. For the PCI 9080,
this value is 0x0.

plxLocal3BaseRange
This variable stores the addressable range of the PCI base register 5. For the PCI 9080,
this value is 0x0.

plxRomBaseRange
This variable stores the addressable range of the Expansion ROM. For the PCI 9080, this
corresponds to the PCI Base Address for Expansion ROM addressable range.

Mutex, FastMutex

A mutex is a synchronization object used to claim ownership of a critical section of code
(usable by only one thread). An object cannot claim the mutex if it is already taken by
itself or others.

Comments

The device extension structure is used to store frequently used variables within the device driver.
For WIinNT the device extension structure also contains all the global variables for the device
driver.

3-170 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

3.4.5 PLX Device Driver Build Environment

The following section explains the environment used to build the WIinNT plx.sys, and the Win95
pIx95.vxd driver files as well as a short installation procedure.

Note: To compile a custom copy of the driver, the Microsoft Device Developer Kit for NT
version 4.0 and the Microsoft Device Driver Kit for Windows 95 should be installed. If
any a deeper understanding of the build process is desired, information is available in
the DDK documentation.

3.4.5.1 The WInNT Device Driver

After the PCI SDK software is installed on your system, your source code directory should be in
the following location, with the files shown present.

Directory: c:\pIx\pcisdk\drivers\WinNT

Note: The directory provided above should be replaced by the installation directory of the PCI
SDK.

Files included:

e plxnt.c

e plxpci.c
e intr.c

e service.c
o makefile
e sources

All compiling under WinNT is executed by using theifld ' command. Checked and free
builds are provided. Thmakefile should not be edited to add, delete or modify files in the
build environment. Theources file contains the paths, preprocessor definitions, and source
files needed to compile the device driver. After a successful build, the new device driver is
located in thee:\pIx\pcisdk\drivers\winnt\i386\checked or
c:\pIx\pcisdk\drivers\winnt\i386\free subdirectories. These files must be
installed to be effective.

Note: The directories provided above should be replaced by the installation directories of the
PCI SDK.

To install the WinNT PLX device driver:

Note: Before installing a new PLX device driver make sure that all PLX applications are
terminated including any application using the PLX API and PLX device driver.

1. To start the new PLX device driver, first execute tiet 'stop plx " command. This will
unload the current device driver.

2. Copy theplx.sys file from the local directory listed above to the
c:\winnt\system32\drivers directory.

Note: The directory provided above should be replaced by the WinNT directory.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-171

3. Execute the commanadet start plx ". Your driver will be loaded.

3.4.5.2 The Win95 Device Driver

After the PCI SDK software is installed on your system, your source code directory should be in
the following location, with the files shown present.

Directory: c:\pIx\pcisdk\drivers\Win95

Note: The directory provided above should be replaced by the installation directory of the PCI
SDK.

Files included:

e pIx95.c

e plxpci.c

o ke95fcn.c
o pIx95.def
e plxctrl.asm
e intr.c

e service.c

¢ makefile

e makefile.rel

Before compiling, the correct environment variables must be set. UsdnB2 bat file found
in the DDK. Once this is done, compiling is performed usingriheake’ command. After a
successful compile, the resultait95.vxd file is located in the

c:\pIx\pcisdk\drivers\Win95\checked or
c:\pIx\pcisdk\drivers\Win95\free subdirectories. These files must be installed to be
effective.

Note: The directories provided above should be replaced by the installation directories of the
PCI SDK.

To install the WIinNT PLX device driver:

Note: Before installing a new PLX device driver make sure that all PLX applications are
terminated including any application using the PLX API and PLX device driver.

1. Copy theplx95.vxd file to thec:\windows\system directory.
Note: The directory provided above should be replaced by the Win95 directory.

2. Restart the system to load the new driver.

3-172 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

3.5 PLX Loader Application

3.5.1 Introduction

The PLX Loader application (PIxLdr) included with the PCI SDK is used to download IOP
applications to the evaluation board. PIxLdr has been generated to run as a Win32 application and
it uses the API. Designers may wish to consult the source code for a better understanding of API
functionality.

3.5.2 Using PLX Loader

Users should consult the PCI SDK User’'s Manual to learn how to use PIxLdr.

3.5.3 Design

PIxLdr is a simple Win32 application that downloads an image file to the evaluation board.
Below is the design algorithm followed by PIxLdr:

3.5.3.1 PIxLdr Program Algorithm:

1. Read start-up parameters. If “-401r”, “-960r" or “-860r” is given, the program only resets the
board and DOES NOT download the image file even if the image file is given.

e Four start-up parameters are allowed: The first parameter is used to tell what kind of
board to target, being either -401, -960 or -860. The board must be reset before new
software is allowed to be downloaded. Reset is done by using the PIxResetEmbedded()
function (go to page 3-130 for more information on the PIxResetEmbedded() API
function). The second parameter can be eitlfietd download a FLASH image to the
board, *fr’ to read the FLASH, or the image name, which specifies the image file to
download. The image file must be in the COFF file format. The third and fourth
parameters are used when accessing the FLASH only. The third parameter states the
starting FLASH address offset for the access. The fourth parameter is the FLASH image
filename that will be downloaded into the FLASH or will store the data read from the
FLASH.

2. Initialize download;

¢ Initialization is accomplished by using the PIxDownloadInit() API function. This
function informs the device driver of the start location of the IOP software in local bus
memory and programs Local Address Space 0 of the PLX device to point to the base
offset of local memory which contains the start of the download.

3. Download blocks until the end of file is reached;

e The PIxDownloadData() API function is now used to download the rest of the IOP
software.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-173

4. Start the IOP software.

o After all IOP software has been downloaded, the PIxStartEmbedded() API function is
called (go to page 3-133 for more information on the PIxStartEmbedded () API function).

3.6 IOP Applications

3.6.1 Introduction

The I0P application, lopApp, contains the user application, the APl and the driver. It currently
works as a stand-alone application with no operating system.

3.6.2 Design of the PCI 9080RDK-401 IOP application

The IOP application is a combination of files each with a specific responsibility. The application
is made up of five files:

IOPMAIN.C: The main IOP application code
This code contains the main function of the IOP application.

EMBED.C The IBM 401 board specific code
This code is specific for the IBM 401 board. It contains initialization code and 1/O
processing code.

PLXAPI.C : The PLX API code

This code contains the same function calls as plxapi.dll that is used for Win32
applications. The difference with this code is the way the API calls are passed to the
IOP device driver.

SERVICE.C: The PLX chip set specific code
This code is the same code that is contained within the WinNT and Win95 device
drivers service.c file, used for accessing the PLX bridge chips.

EMBEDINT.C The IOP application interrupt handling code
This code contains the interrupt service routine for the IOP device driver.

3.6.2.1 Functions Contained Within IOPMAIN.C

ThelOPMAIN.C file contains twelve or thirteen functions:

3-174

getRegisterInfo(): This function requests register information from the user such as
register number for access, read or write access to this register, and for a write the
value to write to the register.

initializeMemory(): This function initializes a memory range either with all zeros or
with values that increment by one starting at zero.

PIx9080InitFifo(): This function sets up the FIFO structure for the embedded
microprocessor.

© PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

PIxPrintBuffer(): This function prints out a buffer or data structure for the length of
bytes passed by the calling function. The output is in one of three formats: UCHAR,
USHORT, and ULONG.

TestDirectMasterMem(): This routine is used to access all the six direct memory API
function calls (PIxDirectMasterReadChar(), PIxDirectMasterWriteChar(),

PIxDirectMasterReadShort(), PIxDirectMasterWriteShort(),
PIxDirectMasterReadLong(), and PIxDirectMasterWriteLong()).

TestDirectMasterlO(): This function is used to access all the six direct I/O API
function calls (PIxDirectPortMasterReadChar(), PIxDirectPortMasterWriteChar(),

PIxDirectPortMasterReadShort(), PIxDirectPortMasterWriteShort(),
PIxDirectPortMasterReadLong(), and PIxDirectPortMasterWriteLong()).

TestRegisters(): This routine is used to read from or write to a register.

TestDMA(): This function provides all the routines for accessing DMA related API

calls. DMA can be set up and tested.

AccessLocalMemory(): This function is used to read from or write to local memory

locations.

AllRegisters(): This function is used to read from a register group such as Local

Configuration Registers.

TestEProm(): This function is used to test API calls for reading from or writing to
EEPROM.

DebugTest(): If the lopApp is compiled with DB_DEBUG option, this function will
be functional. Otherwise, it does not exist in the lopApp. It provides three debug
routines: 1). test PClI memory from local; 2). test SRAM memory; 3). Fill memory.

main(): This is the main function of the IOP application.

3.6.2.2 Functions Contained Within EMBED.C

TheEMBED.Cfile contains eight functions:

plxGetValue(): This function retrieves data, either a character, a decimal number or a
hex-decimal number from the user. This function can be processor independent and
can be used with Win32 applications. To use it with Win32 applications or with other
processors replace the I/O calls with the relative Win32 call or processor specific
call.

init401(): This function initializes the IBM 401 processor. This will be explained in
more detail in section 3.6.3.3.

embedInit(): This function initializes the device extension structure on the IOP side
and enables the interrupts on the PLX bridge chip that the IOP application currently
handles.

resetEmbed(): This function resets the IBM 401 processor.

plxGetValue(): This function gets a value of a specific type from the serial terminal.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-175

3.6.2.3 Functions Contained Within PLXAPI.C

ThePLXAPI.C file is similar to the WIin32 file. See section 3.3 for more information.

3.6.2.4 Functions Contained Within SERVICE.C

TheSERVICE.C file is similar to the WIinNT device driver file. See section 3.4.2.4 for more
information.

3.6.2.5 Functions Contained Within EMBEDINT.C
TheEMBEDINT.Cfile contains eight functions:
e setup_int(): This function connects the interrupt pin to the ISR.

e pixintHandler(): This function processes all PLX chip interrupts.

3.6.3 Design of the PCI 9080RDK-960 IOP application

The IOP application is a combination of files each with a specific responsibility. The application
is made up of five files:

¢ IOPMAIN.C: The main IOP application code
This code contains the main function of the IOP application.

¢ EMBED.C The PCI 9080RDK-960 bhoard specific code
This code is specific for the evaluation board. It contains initialization code and I/O
processing code.

e PLXAPI.C : The PLX API code

This code contains almost the same function calls as plxapi.dll that is used for Win32
applications. The difference with this code is the way the API calls are passed to the
IOP device driver.

¢ SERVICE.C: The PLX chip set specific code
This code is the same code that is contained within the WinNT and Win95 device
driversservice.c file, used for accessing the PLX bridge chips.

e EMBEDINT.C The IOP application interrupt handling code
This code contains the interrupt service routine for the IOP device driver.

e 16552.C : The UART input/output handling code

This code contains the routines for processing I/O and interrupts from the UART. It is
specific for the PCI9080RDK-960 board.

¢ CHAR_IO.C: The I/O handling code
This code contains some routines for processing 1/O such as s2printf.
e [INT960.C : The routines handling i960 interrupts.

This code contains routines handling Intel 960-specific interrupts.

3-176 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

INTS9080.C: The routines handling 9080 board interrupts.

This code contains routines handling 9080-specific interrupts.

WIN32SUP.C: The routine mimicking Win32 API FillMemory call.

This code only contains a FillMemory routine.

3.6.3.1 Functions Contained Within IOPMAIN.C

ThelOPMAIN.C file contains twelve or thirteen functions:

getRegisterInfo(): This function requests register information from the user such as
register number for access, read or write access to this register, and for a write the
value to write to the register.

initializeMemory(): This function initializes a memory range either with all zeros or
with values that increment by one starting at zero.

PIx9080InitFifo(): This function sets up the FIFO structure for the embedded
microprocessor.

PIxPrintBuffer(): This function prints out a buffer or data structure for the length of
bytes passed by the calling function. The output is in one of three formats: UCHAR,
USHORT, and ULONG.

TestDirectMasterMem(): This routine is used to access all the six direct memory API
function calls (PIxDirectMasterReadChar(), PIxDirectMasterWriteChar(),
PIxDirectMasterReadShort(), PIxDirectMasterWriteShort(),
PIxDirectMasterReadLong(), and PIxDirectMasterWriteLong()).

TestDirectMasterlO(): This function is used to access all the six direct /0O API
function calls (PIxDirectPortMasterReadChar(), PIxDirectPortMasterWriteChar(),
PIxDirectPortMasterReadShort(), PIxDirectPortMasterWriteShort(),
PIxDirectPortMasterReadLong(), and PIxDirectPortMasterWriteLong()).

TestRegisters(): This routine is used to read from or write to a register.

TestDMA(): This function provides all the routines for accessing DMA related API
calls. DMA can be set up and tested.

AccessLocalMemory(): This function is used to read from or write to local memory
locations.

AllRegisters(): This function is used to read from a register group such as Local
Configuration Registers.

TestEProm(): This function is used to test API calls for reading from or writing to
EEPROM.

DebugTest(): If the lopApp is compiled with DB_ DEBUG option, this function will
be functional. Otherwise, it does not exist in the lopApp. It provides three debug
routines: 1). test PClI memory from local; 2). test SRAM memory; 3). Fill memory.

main(): This is the main function of the IOP application.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-177

3.6.3.2 Functions Contained Within EMBED.C
The EMBED.Cfile contains eight functions:

e pIxGetValue(): This function retrieves data, either a character or a hex-decimal
number from the user. This function is processor independent and can be used with
Win32 applications. To use it with Win32 applications or with other processors,
replace the I/O calls with the relative Win32 call or processor specific call.

e initi960(): This function initializes the Intel 1960 processor. This will be explained in
more detail in section 3.6.3.3.

o embedInit(): This function initializes the device extension structure on the IOP side
and enables the interrupts on the PLX bridge chip that the IOP application currently
handles.

e s2flush(): This function flushes the input buffer of the Intel i960 processor.

e s2gethex(): This function retrieves a hex-decimal value from a hex string located in
the input buffer of the Intel 960 processor.

e s2getstr(): This function retrieves a string terminated by a carriage return located in
the input buffer of the Intel 960 processor.

o s2gethexstr(): This function retrieves a hex string terminated by a carriage return
located in the input buffer of the Intel 960 processor.

e Sleep(): This function does a busy wait loop for 100 times the loop value provided by
the calling function.

3.6.3.3 Functions Contained Within PLXAPI.C

ThePLXAPI.C file is similar to the Win32 file. See section 3.3 for more information.

3.6.3.4 Functions Contained Within SERVICE.C

TheSERVICE.C file is similar to the WinNT device driver file. See section 3.4.2.4 for more
information.

3.6.3.5 Functions Contained Within EMBEDINT.C
TheEMBEDINT.Cfile contains two functions:

o resetEmbed(): This function resets the IOP processor by setting the instruction
pointer to point to the first instruction executed at boot time (memory location
OXFFFFFFFC).

e plxintHandler(): This function processes all PLX chip interrupts.

3.6.3.6 Functions Contained Within 16552.C

The16552.C file contains ten functions:

3-178 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

¢ serialChkchar(): This function checks whether there is a received character. If a
character is available, it returns TRUE. Otherwise, it returns FLASE.

e serialGetchar(): This function reads a received character if one is available.
Otherwise, it returns -1.

e serialPutchar(): This function outputs a character.
o serial_set(): This function sets the baud rate.
e serial_init(): This function initializes the 16552 UART.

e seriallntr(): This function is called when there is an interrupt from the serial port. It is
the interrupt-handling routine for the serial port.

¢ serialLoopback(): This function is used to put the UART in loopback mode.

¢ delay(): This function guarantees the required recovery time between cycles to the
16552.

e inreg(): This function reads from the registers of the 16552.

e outreg(): This function writes to the registers of the 16552.

3.6.3.7 Functions Contained Within CHAR_10.C
TheCHAR_IO.C file contains seven functions:

e mux_getchar(): This function returns a received character if one is available.
Otherwise, it returns -1.

e mux_putchar(): This function outputs a character through the serial port.

e chkchar(): This function is the same as serialChkchar() in 16552.c file.

e charOut(): This function is the same as mux_putchar() in this module.

e charin(): This function keeps on trying to get a character until a character is available.
e out_hex(): This function outputs hex number.

e s2printf(): This function is a simplified equivalent of the printf function.

3.6.3.8 Functions Contained Within INT960.C
ThelNT960.C file contains fifteen functions:

¢ i960GetVect(): This function retrieves an interrupt handling procedure pointer from
the Interrupt Table.

e 1960SetVect(): This function sets up an interrupt handling routine for a specific
interrupt number in the Interrupt Table.

e SetlCON(): This function sets a new value for the Interrupt Control (ICON) register.

e GetICON(): This function gets the Interrupt Control (ICON) register value.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-179

o SetIMAPVector(): This function sets the IMAP (Interrupt Mapping) register bits to
assign vectors to particular external interrupt pins.

e SetPriority(): This function changes the priority of the current process.
e GetPriority(): This function returns the priority of the current process.

e GetPRCB(): This function returns a pointer to the PRCB (Process Control Block)
structure.

e SetPRCB(): This function sets up a new PRCB structure.

e GetSFO(): This function returns the IPND (Interrupt Pending) register value.
o SetSFO(): This function sets the IPND register value.

e GetSF1(): This function returns the IMSK (Interrupt Mask) register value.

e SetSF1(): This function sets the IMSK register value.

¢ ModifyPC(): This function modifies the process control register.

e Sysctl(): This function issues a system control call.

3.6.3.9 Functions Contained Within INTS9080.C
TheINTS9080.C file contains seven functions:
e Isr_UART(): This function disables the UART interrupt.

Doorbelllsr(): This function is the routine for handling doorbell interrupts.

e DMA_Isr(): This function handles the DMA-generated interrupts.

e Isr_9080(): This function is the dispatch routine for all the interrupts generated by the
PCI9080 chip.

e InitUART_Ints(): This routine sets up the interrupt-handling routine for UART.

e [nit9080_Ints(): This function sets up the interrupt-handling routine for the PCI9080
chip.

¢ Init960_Ints(): This function sets up the interrupt-handling routine for the Intel
i960HA processor.

3.6.3.10 Functions Contained Within WIN32SUP.C
TheWIN32SUP.C file contains only one function:

¢ FillMemory(): This function mimics the function call implemented in Win32 API. It
fills a block of memory with a specified value.
3.6.4 Microprocessor Initialization

The procedure for initializing the IBM 401 microprocessor is as follows:

3-180 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

1. Declare a global variable the IOP application for the stack pointer:

int _first_stack_pointer = 0x007FFFQO;

2. Declare a variable for storing the device extension information and point the
drvHandle to point to the structure:

DEVICE_EXTENSION extension;
HANDLE drvHandle;

drvHandle = &extension;

3. Call InitRdk() which calls init401(), slinit(), embedinit(), and setup_int(). The
s1init() function initializes the serial 1/0O software that allows communication with the
IOP application via a terminal package connected to the serial port of the IBM 401
board.

4. The embedInit() function initializes the device extension structure and enables the
PLX bridge chip interrupts that are serviced by the interrupt service routine. The
function embedinit() currently initializes the base addresses and their respective
ranges contained within the device extension. It also enables the following interrupts:

- PCl interrupt enable

- PClI doorbell interrupt enable

- Local interrupt output enable

- Local doorbell interrupt enable

- Local DMA channel 0 interrupt enable
- Local DMA channel 1 interrupt enable

5. Connect the interrupt service routine to the interrupt line of the processor by calling
setup_int().

The procedure for initializing the Intel i960 microprocessor is as follows:

1. Declare a variable for storing the device extension information and a pointer
drvHandle to point to the structure:

DEVICE_EXTENSION extension;
HANDLE drvHandle;

drvHandle = &extension;

2. Call InitRdk() which calls init960() to run all the initialization routines needed before
the embedded code starts. The init960() function calls the following initialization
routines:

e Call _LL_init() to initialize the low-level library. This function, included in
the board-specific low-level libraries from the Intel i960 Processor
Development Tools kit, performs all necessary chip and board initialization
functions.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 3-181

e Call _HL_init() to initialize high level library. This function, included in the
architecture-specifiibcxx.ahigh-level libraries from the Intel i960
Processor Development Tools kit, initializes all the necessary high-level
library.

o Set (_stdio_ptr())-> _stdout._size to 1 to make standard output unbuffered
so that the printf library routine can work properly.

e Call serial_init() to initialize the serial /0 software that allows
communication with the IOP application via a terminal package connected to
the serial port of the evaluation board.

o Call embedinit() to initialize the device extension structure and enable the
PLX bridge chip interrupts that are serviced by the interrupt service routine.
The function embedInit() currently initializes the base addresses and their
respective ranges contained within the device extension. It also initializes the
Direct Master to PCI Memory or I/O Registers with board-specific values. It
also enables the following interrupts:

- PCl interrupt enable

- PCI doorbell interrupt enable

- Local interrupt output enable

- Local doorbell interrupt enable

- Local DMA channel O interrupt enable
- Local DMA channel 1 interrupt enable

¢ Connect the interrupt service routine to the interrupt line of the processor by
calling Init960_Ints().

3.6.5 Design of the Generic IOP application

The PCI SDK contains a version of the IOP application that is processor independent. This
generic version can be used as a starting point for developing IOP applications with other
microprocessors. The design is very similar to the previous two IOP applications described
above, and therefore it is not described in this manual. It is recommended that designers consult
the source code, which contains comments in sections that need processor dependent code

3.7 Messaging FIFO

Refer to the PLX PCI 9080 documentation for more information on the messaging FIFOs.

3-182 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

4. Creating Applications Using The
PLX API

4.1 Win32 Applications

An example Win32 application using the PLX API will be presented along with the design
descriptions. The steps for creating a Win32 application will be described into two sections being:

e Creating A MS Developer’'s Studio Workspace File, which describes the steps
involved in creating a workspace file and the environment setup.

e Hello World Design Skeleton, which describes the steps for building the Hello World
program.

4.1.1 Creating A MS Developer’s Studio Workspace File
The Hello World application will be a console application that will use the PLX API.

The main steps to creating a new workspace file are as follows:

1. Create a new workspace file.

2.
3.
4.

Choose a Console Application workspace file from the New Project wizard.

Choose a project name and destination location for the project.

Setup the project environment.

Under the Build menu of Developer Studio, choose Settings... This brings up the project
settings dialog box.

Choose the C/C++ tab.

Change the Category type to Preprocessor.

In the Preprocessor definitions window add the following entries:
» PLX_9080
» HOST
» PLX_API

In the Additional include directories add a path to the PLX SDK include directory.

Note: It is recommended that a relative path from the workspace project directory to the
PLX SDK include directory be given if both the include directory and the workspace
project are located on the same logical Windows Drive. This makes the workspace
project more compatible between various Windows Systems and Windows Drive
Mappings.

Create the application that will use the PLX API.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 4-1

6. Include all the source files into the workspace project. Copiith&pi.lib
PLX SDK directory into the workspace project directory. IncludePtiRApi.lib

the workspace project files.

7. Build the application.

4.1.2 Hello World Design Skeleton

file in the
file into

This section will explain the Hello World application design. The Hello World is a simple

example application that uses the PLX API. The application determines which PLX 9080RDKs

are present in the system and attempts to select one of them.

Hello.c File:

#include <windows.h>
#include <stdio.h>
#include <conio.h>
#include "plxapi.h"

I* */
I* MAIN PROGRAM */
I* *

void main(int argc, char * argv[])

HANDLE plxHandle;
RETURN_CODE rc;
DEVICE_LOCATION device, dev;
ULONG ven, logbus, logdev, temp;
BOOLEAN RDKFound = FALSE;

/* Initialize the PLX API */
if (PIxInitializeAPIl(&plxHandle) == API_FAILED)

printf(("**** PLX Device Driver Was Not Opened!!! "
u****\n")); (2]

exit(1);
}

/* Search for 9080RDK-401 boards in system */
for (logbus = 0; logbus < MAX_PCI_BUS; logbus++)

for (logdev = 0; logdev < MAX_PCI_DEV; logdev++)
{

[* reset variable */

4-2 © PLX Technology, Inc., 1997

PCI SDK Programmer’s Reference Manual

ven = OXFFFFFFFF;

/* Read the Vendor/Device ID register */
PIxReadConfigRegister(plxHandle,

CFG_VENDOR_ID,

&ven,

logbus,

logdev

); 4
if (ven != OXFFFFFFFF)

/* Found a PCI board, determine if itis a
* PLX RDK board
*/
switch (ven & OXFFFF)
{
case (PLX_VENDOR_ID):
PIxReadConfigRegister(plxHandle,
PCI9080_SUB_VENDOR_ID,
&temp,
logbus,
logdev
);
if (temp == ((PLX_9080_DEVICE_ID << 16)
| PLX_VENDOR_ID))
PIxPrint(("Hello, the PLX 9080RDK-%x is”

"present!\n",
ven >> 16
)k
else
PIxPrint(("Hello, the PLX %x Board is present!\n",
ven >> 16

)

[* Keep a copy of last device found */
RDKFound = TRUE;
device.busNumber = logbus;
device.slotNumber = logdev;
device.vendorld = OXFFFFFFFF;
device.deviceld = OXFFFFFFFF;
break;

case (IBM_VENDOR_ID):
PIxReadConfigRegister(plxHandle,
PCI9080_SUB_VENDOR_ID,
&temp,
logbus,
logdev

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997

if (temp == ((PLX_9080_DEVICE_ID << 16)
| PLX_VENDOR_ID))

PIxPrint(("Hello, the PLX 9080RDK-%x is present!!",
ven >> 16

)k
/* Keep a copy of last device found */ (5]
RDKFound = TRUE;
device.busNumber = logbus;
device.slotNumber = logdev;
device.vendorld = OXFFFFFFFF;
device.deviceld = OXFFFFFFFF;
break;

}
/* else not a PLX RDK board, so fall in default */

default:
break;
}

}
}
}

/* Check if a PLX RDK board was found */
if 'RDKFound)

PIxPrint(("**** Could not find PLX RDK boards in system!!!”
"****\n"));
}

else
{
/* Make a copy of the device information used as reference
later */
dev = device;

/* Select the last device found */
rc = PIxSelectPciDevice(plxHandle, &device); (6]
if (rc == API_SUCCESS)
PIxPrint(("PLX device selected properly, "
"PLX IC type is %x\n",
device.pIxChipType

);
else
PIxPrint(("Board on Bus #%d, Slot #%d was not selected "
"properly\n“,
dev.busNumber,
dev.slotNumber

4-4 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

)
}

while(!_kbhit());

[* Terminate the PLX API */
PIxTerminateAPI(plxHandle); 7]
exit (0);

O The first step in creating an application that uses the PLX API is to initialize the PLX API.
This function takes a pointer to a handle variable and returns a valid API handle.

® Because the initialization of the PLX API fail@ixPrint() cannot be used to print an
error message on the console screen. For Win32 applicatiomsriti§ function can be
used. This function may not be defined for IOP applications.

© The Hello World application will begin by searching for all know PLX boards by checking
every PCI bus and slot. When it finds a PLX board, it prints a hello message to the console
screen.

O This function can access the PCI configuration registers of any PCI device on any PCI bus.
To find a board on any PCI bus scan through the PCI buses and slots, read the vendor ID and
device ID of the board present in that slot and compare it with the desired board’s vendor ID
and device ID.

© Keep a copy of a valid PLX board into the device location variable to use later in selecting a
PCI device.

® Before accessing a PLX board, and using most of the PLX API functions, it is necessary to
select a PCI device. There are three methods for selecting a device:

e Method 1: Specifylevice.vendoridanddevice.deviceldSetdevice.busNumbemnd
device.slotNumbeo OxFFFFFFFF.

e Method 2: Specifylevice.busNumbeanddevice.slotNumbeSetdevice.vendorid
anddevice.deviceltb OXFFFFFFFF.

e Method 3: Specifylevice.busNumbedevice.slotNumbedevice.vendorlénd
device.deviceld

© Before terminating an application, it is necessary to terminate the PLX API.

4.2 9080RDK Applications

Building 9080RDK applications are similar to building Win32 applications. Most Win32
applications built with the PLX API are portable to the 9080RDK with few modifications. This
section will present a similar Hello World application presented in the previous section and will
show the differences between the Win32 application and the 9080RDK application.

The IOP API and device driver are separated into three libraries:

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 4-5

TEC

The IOP API Library: This library contains all the interface code used by applications to
communicate to the device driver. This library is similar to the Win32 PLX API. The code
contained within the library is common for all IOP platforms however it must be compiled
separately for each IOP processor’'s compiler suite.

The IOP Device Driver Library: This library contains the common device driver code for all
IOP platforms. The code contained within the library is common for all IOP platforms
however it must be compiled separately for each IOP processor’'s compiler suite.

The I0P Specific Device Driver Library: This library contains the IOP specific device driver
code. The code contained within the library is specific to each IOP and should not be
compiled for other platforms.

Note: Though some of the functions within this library may be similar to others for other IOP
platforms these functions should only be used for reference purposes when working with new
IOP platforms. The IOP specific device driver libraries should only be compiled and linked to
applications destined for that specific IOP only.

The steps involved in creating an IOP application using the PLX API are:

1. Recompile each of the IOP API and device driver libraries for the desired PClI 9080RDK
platform for the application (if necessary).

2. Create a directory for the new application and copy the IOP API and device driver libraries
for the desired PCI 9080RDK platform into it.

3. Create the necessary application source files using the PLX API functions.
Create a make directives file for the application. This file facilitates the building of the
application.
Note: It may be more convenient to copy a makefile from one of the desired PCI 9080RDK
platform sample programs into the application directory and modify it for the application
and the IOP processor’s compiler and linker environments.

5. When all application files are created build the application executable, download the
executable to the PCI 9080RDK and test.

Hello.c File:

#include <stdlib.h>
#include <stdio.h>
#include "plxapi.h"

#include "plxrdk.h" (1]

I* */

I* MAIN PROGRAM */
I* */

void main(int argc, char * argv[])

4-6

HANDLE pixHandle;
RETURN_CODE rc;

© PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

TEC

ULONG ven, logbus, logdev, temp, VendorDeviceld;
BOOLEAN RDKFound = FALSE;

/* Initialize the PLX API */
if (PIxInitializeAPI(&plxHandle) == API_FAILED) 2]
{
printf("**** PLX APl was not initialized properly !!I'"
"****\n");
resetEmbed();
exit(1); /* should not reach here */

}

/* machine-specific initialization routine */
InitRdk(plxHandle); ©

/* Search for 9080RDK boards in system */ (4]
for (logbus = 0; logbus < 1; logbus++)

for (logdev = 0; logdev < MAX_PCI_DEYV; logdev++)
{

/* reset variable */

ven = OXFFFFFFFF;

/* Read the Vendor/Device ID register */
PIxReadConfigRegister(plxHandle,
PCI9080_VENDOR_ID,
&ven,
logbus,
logdev
);
if (ven != OXFFFFFFFF)
{
/*
* Found a PCI board, determine if it is
* a PLX RDK board
*/
switch (ven & OXFFFF)
{
case (PLX_VENDOR_ID):
PIxReadConfigRegister(plxHandle,
PCI9080_SUB_VENDOR_ID,
&temp,
logbus,
logdev
: (5]
if (temp == ((PLX_9080_DEVICE_ID << 16)
| PLX_VENDOR_ID))

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997

PIxPrint(("Hello, the PLX 9080RDK-%x"
" is present!\n",
ven >> 16

)
else
PIxPrint(("Hello, the PLX %x Board"
" is present!\n",
ven >> 16

)8

/* Keep a copy of last device found */
RDKFound = TRUE;
break;

case (IBM_VENDOR_ID):
PIxReadConfigRegister(plxHandle,

PCI9080_SUB_VENDOR_ID,
&temp,
logbus,

logdev

);

if (temp == ((PLX_9080_DEVICE_ID << 16)

| PLX_VENDOR_ID))

PIxPrint(("Hello, the PLX 9080RDK-%X"
" is present!\n",
ven >> 16
); _
/* Keep a copy of last device found*/
RDKFound = TRUE;
break;
}
/*
* else not a PLX RDK board, so fall in
* default
*/

default:
break;
}

}
}
}

/* Check if a PLX RDK board was found */
if 'RDKFound)

PIxPrint(("**** Could not find any other PLX RDK boards"
" in system!!l ***¥\n"));

4-8 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

©

}

/* Show this board's information */
rc = PIxReadRegister(plxHandle,
PCI9080_VENDOR_ID,
&VendorDeviceld
: (6]
if (rc == API_SUCCESS)
PIxPrint(("PLX vendor id is %X, device id is %x\n",
VendorDeviceld & OxFFFF,
VendorDeviceld >> 16

);
else
PIxPrint(("Could not read the vendor/device id register"”

" properly\n"));

[* Terminate the PLX API */
PIxTerminateAPI(plxHandle);

PIxPrint(("\n!! Ending program and resetting the embedded"
" processor!\n™);

resetEmbed(); 7]

exit(0); * should not reach here */

For the 9080RDK IOP applications an extra header is neptiedk.h . This header
contains some definitions needed for all 9080RDKs.

As mentioned for the Win32 application the first thing an application needs to do is initialize
the PLX API.

All IOP applications need to initialize the 9080RDK board and setup some board specific
variables. Though each 9080RDK is different in configuration only one common call is
needed to perform the PCI 9080RDK board initializatioitRdk() . This function calls

the appropriate initialization function depending on the PCI 9080RDK board type.

Again, the Hello World will search the PCI bus for other 9080RDK boards.

Currently thePIxReadConfigRegister() andPIxWriteConfigRegister()
functions can only scan the PCI bus that the 9080RDK is currently on. Future releases of the
PCI1 9080 SDK will include capabilities to scan other PCI buses.

To read the PCI configuration registers of the PCI 9080 IC connected to the 9080RDK board
usePIxReadRegister() andPIxWriteRegister() instead of
PIxReadConfigRegister() andPIxWriteConfigRegister() since these

functions perform specialized transactions on the PCI bus to access the PCI registers of other
PCI devices that are not applicable to the local PCI 9080 IC.

Once the application has terminated, reset the I0OP by cedisegEmbed()

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 4-9

5. Common PLX Questions

This chapter contains some common questions that can help in understanding how the PLX API
and device driver react in the given situations. This chapter is provided a general understanding of
the PLX API and device driver.

1. How does the driver deal with non-PLX devices?

Non PLX devices can be supported with the PLX API (and device driver). The features provided
by the PLX API's limited.

What is supported for non-PLX devices:
¢ No interrupts of any sort can be connected to the driver;
e DMA buffer is allocated within the device driver; and,
¢ Only the PCI registers can be read. No other access to any other registers is permitted.

Limiting the access to non-PLX devices ensures proper operation of the device driver.

2. What happens if the PLX device does have an interrupt line but the device driver's
ISR/DPC can't be mapped?

If a device has a valid interrupt line the driver will attempt to connect to it. If the connection fails,
the device driver initialization fails as well. This failure will occur when the device driver is
loaded (normally at system initialization).

3. What happens if the PLX device does NOT have an interrupt line?

If the device does not have an interrupt line, no interrupt connection will be attempted. All other
services will still be available.

4. What happens if two applications/processes connect to the same devices?
For WIinNT:

As each application is created, each one is given its own copy off the PLX API. Each copy of the
PLX API has global structures, which are local to the PLX API. When applications selects a
device, the process’ virtual address structure is filled with user addresses specific to each
application. All physical base addresses for the device are mapped into kernel memory when the
device driver is loaded. When an application is started, the virtual addresses are obtained from the
device driver. If an application selects another device, new user virtual addresses are calculated.

When two applications select the same board, they may have the same virtual addresses, but they
are exclusive. The virtual addresses that each application uses refer to the same location in kernel
space. If an application is terminated, only the virtual addresses assigned to that application are
unreferenced. All other applications are not affected.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 5-1

For Win95:

When the device driver is initialized the device driver maps all physical registers into the kernel
memory space (if it is PLX) and creates the virtual addresses needed for the user application. Due
to the flat memory model that Win95 employs both the kernel addresses and the user virtual
addresses are identical. The device extension is a linked list that contains the device information
for each PCI device present. When the application selects a device the device information
(contained within the device extension linked list) is copied into the application’s copy of the

PLX API. Every time the device is changed the information stored within the PLX API is updated
with the new device’s information.

5. What happens if two applications are using different devices?

If applications connect to different devices, they are mutually exclusive with different device and
virtual address information.

6. How many simultaneous devices does this support?

The driver has been designed to follow the PCI specifications. Depending on the development
system, any number of devices can be supported if the development system has enough PCI slots
available and has enough available memory storage to hold all the information for the devices.
Currently, no more than eight cards simultaneously have been tested.

7. How many simultaneous applications can be supported?

The device driver is application independent. The only restriction on number of applications is
the amount of available memory on the system.

5-2 © PLX Technology, Inc., 1997 PCI SDK Programmer’s Reference Manual

6. Recommendations For Custom
Design

All source code has purposely been written for clarity and to allow for custom design.
Specifically, the device drivers are designed to allow for easy porting to other operating systems.
To aid designers in porting the driver, most operating system specific function calls are grouped
together in separate files. Furthermore, the use of the driver service routine that contains no
operating specific functions will ease the task of porting. It is recommended that designers
continue to adopt this design principle.

A major design goal for the PCI SDK is ease of development time. Therefore, we have chosen to
trade-off design finesse in favor of design clarity. It is likely that designers will wish to change

the architecture of the code to customize it towards their own goals. We encourage this and hope
that our PCl SDK has met its goal of being a simple to learn, yet complete, software tool for
designers to implement in their own designs.

PCI SDK Programmer’s Reference Manual © PLX Technology, Inc., 1997 6-1

The Next dimension in imaging

This software design kit has been developed and tested by Vitana Corporation.
For more information regarding SDK and RDK designs, please contact:

Vitana Corporation

Tel: 613-749-4445
Email: rdk@vitana.com
Web: www.vitana.com

For technical support questions, please contact PLX Customer Support.

