
PCI SDK Programmer’s Reference Manual
Release 2.0, initial publishing June 22, 1998.

Copyright © 1998, PLX Technology, Inc.. All rights reserved.

This document contains proprietary and confidential information of PLX Technology Inc. (PLX).
The contents of this document may not be copied nor duplicated in any form, in whole or in part,
without prior written consent from PLX.

PLX provides the information and data included in this document for your benefit, but it is not
possible for us to entirely verify and test all of this information in all circumstances, particularly
information relating to non-PLX manufactured products. PLX makes no warranties or
representations relating to the quality, content or adequacy of this information. Every effort has
been made to ensure the accuracy of this manual, however, PLX assumes no responsibility for
any errors or omissions in this document. PLX shall not be liable for any errors or for incidental
or consequential damages in connection with the furnishing, performance, or use of this manual
or the examples herein. PLX assumes no responsibility for any damage or loss resulting from the
use of this manual; for any loss or claims by third parties which may arise through the use of this
SDK; for any loss or claims by third parties which may arise through the use of this SDK; and for
any damage or loss caused by deletion of data as a result of malfunction or repair. The
information in this document is subject to change without notice.

Product and Company names are trademarks or registered trademarks of their respective owners.

Document number: SdkProg.doc

i

Table of Contents

1. GENERAL INFORMATION 1-1
1.1 About This Manual ..1-1

1.2 Where To Go From Here ...1-1

1.3 Conventions ...1-1

1.3.1 Windows Programming Conventions ...1-1

1.4 Terminology...1-2

2. PCI SDK SOFTWARE ARCHITECTURE OVERVIEW 2-1
2.1 Assumptions...2-1

2.1.1 PCI SDK Assumptions..2-1

2.1.2 IOP API and IOP Software Assumptions ...2-1

2.1.3 PCI API and Win32 Software Assumptions ...2-1

2.2 Overview..2-2

2.3 Software Architecture ..2-2

3. IOP SOFTWARE ARCHITECTURE 3-1
3.1 Board Support Package (BSP) Library ..3-2

3.1.1 Microprocessor Initialization Module...3-2

3.1.1.1 Microprocessor Boot Code ...3-2

3.1.1.2 Interrupt Service Routine..3-2

3.1.2 Board Initialization Module ..3-3

3.1.2.1 Board Initialization Routine..3-3

3.1.3 The Main() and AppMain() Functions ..3-4

3.2 IOP API Library...3-5

3.2.1 DMA Resource Manager ..3-6

3.3 Back-End Monitor ...3-10

3.3.1 Methods For Debugging IOP Applications...3-11

3.3.2 Operation Of The Back-End Monitors In A System...3-11

3.4 PLXRom and IOP Applications...3-12

3.4.1 IOP Memory And IOP Applications...3-12

3.4.2 MiniRom Application ...3-13

3.5 Porting The PCI SDK To New Platforms..3-14

3.6 Support For Multiple PCI ICs On One Board..3-14

4. HOST SOFTWARE ARCHITECTURE 4-1
4.1 PLXMon98 ..4-1

4.1.1 Serial Communication...4-1

4.1.2 API/Device Driver Communication..4-2

4.1.2.1 PCI API Library..4-2

ii

4.1.2.2 Win32 Device Driver..4-2

4.2 Applications And The PCI SDK..4-2

4.3 Host Device Driver Overview ...4-3

4.3.1 Driver Module...4-3

4.3.2 Services Module..4-4

4.4 Creating a New Driver ...4-4

4.5 Device Driver Features ..4-4

5. CREATING APPLICATIONS USING THE PLX API 5-1
5.1 Customizing The BSP..5-1

5.1.1 Customizing The Main() Function..5-1

5.1.2 Customizing The Microprocessor Initialization Function.......................................5-4

5.1.2.1 MPC860 Initialization...5-4

5.1.2.2 IBM 401GF Initialization ...5-5

5.1.3 Customizing The Board Initialization Function..5-7

5.2 IOP Applications..5-14

5.2.1 Setup Of The Development Environment...5-14

5.2.2 Rebuilding The Hello World Application...5-14

5.2.3 Building Custom Applications ..5-15

5.3 Windows Applications...5-15

5.3.1 Creating A MS Developer’s Studio Project File ...5-16

5.3.2 Building A Custom Application..5-16

APPENDIX A. IOP API FUNCTION DESCRIPTION A-1
A.1 IOP API Function Quick Reference List ..A-1

A.2 IOP API Functions Details..A-3

Initialization Functions..A-4

PlxInitApi ..A-4

PlxInitPciBusProperties ..A-6

PlxInitPciArbitration ...A-7

PlxInitPciSpace ...A-8

PlxInitIopBusProperties ..A-10

PlxInitIopArbitration...A-12

PlxInitLocalSpace ...A-13

PlxInitIopEndian ...A-15

PlxInitDone ...A-17

Register Access Functions...A-18

PlxRegisterRead ..A-18

PlxRegisterWrite ...A-20

PlxRegisterReadAll ...A-21

PlxRegisterMailboxRead ..A-22

iii

PlxRegisterMailboxWrite..A-23

PlxRegisterDoorbellRead..A-24

PlxRegisterDoorbellSet ...A-25

PCI API Support Functions ...A-26

PlxPciConfigRegisterRead..A-26

PlxPciConfigRegisterWrite ...A-28

Interrupt Support Functions...A-29

PlxIntrEnable...A-29

PlxIntrDisable..A-30

PlxIntrStatusGet ..A-31

Bus Memory and I/O Functions ..A-32

PlxBusPciRead ..A-32

PlxBusPciWrite ...A-34

DMA Functions ...A-36

PlxDmaResourceManagerInit ...A-36

PlxDmaSglChannelOpen ..A-38

PlxDmaSglBuild..A-40

PlxDmaSglFill ...A-42

PlxDmaSglTransfer ...A-44

PlxDmaSglChannelClose ..A-47

PlxDmaBlockChannelOpen ..A-48

PlxDmaBlockTransfer...A-50

PlxDmaBlockTransferRestart ...A-52

PlxDmaBlockChannelClose..A-53

PlxDmaShuttleChannelOpen...A-54

PlxDmaShuttleTransfer ...A-56

PlxDmaShuttleTransferRestart..A-58

PlxDmaShuttleChannelClose ..A-59

PlxDmaIsr..A-60

Messaging Unit Functions...A-61

PlxMuInit ..A-61

PlxMuInboundPortRead..A-62

PlxMuInboundPortWrite ...A-63

PlxMuOutboundPortRead ...A-64

PlxMuOutboundPortWrite ..A-65

Power Management Functions ..A-66

PlxPowerLevelSet ...A-66

PlxPowerLevelGet ..A-67

Serial EEPROM Access Functions ...A-68

PlxSerialEepromRead ...A-68

PlxSerialEepromWrite ..A-69

iv

USER Pins Functions ..A-70

PlxUserRead..A-70

PlxUserWrite...A-71

Miscellaneous Functions ...A-72

PlxSdkVersion...A-72

PlxPrintf ..A-73

PlxGetChars ..A-74

PlxEchoEnable ..A-75

A.3 API Data Structures ..A-76

S8 and U8 Data Types...A-77

S16 and U16 Data Types...A-78

S32 and U32 Data Types...A-79

U64 Data Type ..A-80

API Parameters Structure ..A-81

DMA Channel Descriptor Structure..A-83

DMA Transfer Element Structure And SGL Address StructureA-86

DMA Resource Manager Parameters Structure ..A-89

PLX Interrupt Structure...A-90

PCI Bus Properties Structure...A-94

PCI Arbitration Descriptor Structure ..A-97

IOP Bus Properties Structure ..A-98

IOP Arbitration Descriptor Structure ..A-103

IOP Endian Descriptor Structure...A-105

Access Type Enumerated Data Type ..A-108

IOP Space Enum Data Type..A-109

BAR Space Enum Data Type..A-110

PCI Space Enum Data Type..A-111

Bus Index Enum Data Type ..A-112

Mailbox ID Enum Data Type..A-113

DMA Channel Enum Data Type ...A-115

DMA Direction Enum Data Type ...A-116

DMA Command Enum Data Type..A-117

DMA Channel Priority Enum Data Type..A-118

Power Level Enum Data Type ..A-119

EEPROM Type Enum Data Type ...A-120

USER Pin Enum Data Type ..A-121

Pin State Enum Data Type ..A-122

Echo State Enum Data Type ...A-123

APPENDIX B. PCI API FUNCTION DESCRIPTION B-1
B.1 PCI API Function Quick Reference List .. B-1

v

B.2 PCI API Functions Details.. B-2

PCI Functions .. B-4

PlxPciDeviceOpen .. B-4

PlxPciDeviceClose .. B-6

PlxPciConfigRegisterRead.. B-7

PlxPciConfigRegisterWrite ... B-9

PlxPciConfigRegisterReadAll... B-11

PlxPciDeviceFind.. B-12

PlxPciBusSearch ... B-14

PlxPciBaseAddressesGet .. B-15

PlxPciBarRangeGet... B-16

PlxPciCommonBufferGet ... B-17

Register Access Functions... B-18

PlxRegisterRead .. B-18

PlxRegisterWrite ... B-19

PlxRegisterReadAll ... B-20

PlxRegisterMailboxRead .. B-21

PlxRegisterMailboxWrite.. B-22

PlxRegisterDoorbellRead.. B-23

PlxRegisterDoorbellSet ... B-24

Interrupt Support Functions... B-25

PlxIntrAttach ... B-25

PlxIntrEnable... B-27

PlxIntrDisable.. B-28

PlxIntrStatusGet .. B-29

Bus Memory and I/O Functions .. B-30

PlxBusIopRead.. B-30

PlxBusIopWrite... B-32

PlxIoPortRead ... B-34

PlxIoPortWrite .. B-35

DMA Functions ... B-36

PlxDmaBlockChannelOpen .. B-36

PlxDmaBlockTransfer... B-38

PlxDmaBlockTransferRestart ... B-40

PlxDmaBlockChannelClose.. B-41

Messaging Unit Functions... B-42

PlxMuInboundPortRead.. B-42

PlxMuInboundPortWrite ... B-43

PlxMuOutboundPortRead ... B-44

PlxMuOutboundPortWrite .. B-45

Power Management Functions .. B-46

vi

PlxPowerLevelSet ... B-46

PlxPowerLevelGet .. B-47

Serial EEPROM Access Functions ... B-48

PlxSerialEepromRead ... B-48

PlxSerialEepromWrite .. B-49

USER Pins Functions .. B-50

PlxUserRead.. B-50

PlxUserWrite... B-51

Miscellaneous Functions ... B-52

PlxSdkVersion... B-52

B.3 PCI API Specific Data Structures ... B-53

Device Location Data Type... B-54

Virtual Addresses Data Type .. B-55

PCI Memory Data Type .. B-56

APPENDIX C. MODIFICATIONS MADE TO THE DRIVEWAY LIBRARY FILES C-1
C.1 Modified DriveWay Files ... C-1

C.2 Detailed Explanation... C-1

C.2.1 File: Scc1.c... C-1

C.2.2 File: Portc.c .. C-4

C.2.3 File: Boot.as ... C-5

C.2.4 File: Pq_hand.c... C-9

C.2.5 File: Link.cmd .. C-9

C.2.6 File: Makefile ... C-10

C.2.7 File: Bsp.c .. C-11

C.3 Notes On The MPC860 Library Files Used With The PCI SDK C-11

vii

PLX SOFTWARE LICENSE AGREEMENT

THIS SOFTWARE DESIGN KIT INCLUDES PLX SOFTWARE THAT IS LICENSED TO YOU UNDER SPECIFIC TERMS
AND CONDITIONS. CAREFULLY READ THE TERMS AND CONDITIONS PRIOR TO USING THIS DESIGN KIT. BY
OPENING THIS PACKAGE OR INITIAL USE OF THIS SOFTWARE DESIGN KIT INDICATES YOUR ACCEPTANCE OF
THE TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD RETURN THE ENTIRE
SOFTWARE DESIGN KIT TO PLX.

LICENSE Copyright (c) 1998 PLX Technology, Inc.

This PLX Software License agreement is a legal agreement between you and PLX Technology, Inc. for the PLX Software
Design Kit(“SOFTWARE PRODUCT”) which is provided on the enclosed PLX diskettes, or may be recorded on other media
included in this Software Design Kit. PLX Technology owns this SOFTWARE PRODUCT. The SOFTWARE PRODUCT is
protected by copyright laws and international copyright treaties, as well as other intellectual property laws and treaties, and is
licensed, not sold. If you are a rightful possessor of the Software Design Kit, PLX grants you a license to use the SOFTWARE
PRODUCT as part of or in conjunction with a PLX chip on a per project basis. PLX grants this permission provided that the
above copyright notice appears in all copies and derivatives of the SOFTWARE PRODUCT. Use of any supplied runtime
object modules or derivatives from the included source code in any product without a PLX Technology, Inc. chip is strictly
prohibited. You obtain no rights other than those granted to you under this license. You may copy the SOFTWARE
PRODUCT for backup or archival purposes. You are not authorized to use, merge, copy, display, adapt, modify, execute,
distribute or transfer, reverse assemble, reverse compile, decode, or translate the SOFTWARE PRODUCT except to the
extent permitted by law.

GENERAL

If you do not agree to the terms and conditions of this PLX Software License Agreement, do not install or use the Software Design Kit
and promptly return the entire unused SOFTWARE PRODUCT to PLX Technology, Inc. You may terminate your license at any time.
PLX Technology may terminate your license if you fail to comply with the terms and conditions of this License Agreement. In either
event, you must destroy all your copies of this SOFTWARE PRODUCT. Any attempt to sub-license, rent, lease, assign or to transfer
the Software Design Kit except as expressly provided by this license, is hereby rendered null and void.

WARRANTY

PLX Technology, Inc. provides this SOFTWARE PRODUCT AS IS, WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTIBILITY OR FITNESS FOR A PARTICULAR
PURPOSE. PLX makes no guarantee or representations regarding the use of, or the results based on the use of the software and
documentation in terms of correctness, or otherwise; and that you rely on the software, documentation, and results solely at your own
risk. In no event shall PLX be liable for any loss of use, loss of business, loss of profits, incidental, special or, consequential damages
of any kind. In no event shall PLX’s total liability exceed the sum paid to PLX for the product licensed hereunder.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 1-1

1. General Information
The PCI SDK included in the development package is a powerful aide to software designers. The
PCI SDK comes complete with a powerful Application Programmer’s Interface (API) for both
the IOP and Win32 platforms, sample IOP applications, and a device driver for Windows NT. We
are confident that with the PCI SDK, your designs will be brought to market faster and more
efficiently.

1.1 About This Manual
This manual provides detailed design information on the API, the devices driver, and user
applications that are supplied with the PCI SDK.

Designers should use this manual as a reference for all API functions.

1.2 Where To Go From Here
The following is a brief summary of the chapters to help guide your reading of this manual:

Chapter 2, PCI SDK Software Architecture Overview, describes the layout of the PCI SDK
software.

Chapter 3, IOP Software Architecture, provides a brief explanation of the IOP software,
specifically the Board Support Package (BSP), the IOP API, and the Back-End Monitors (BEM).

Chapter 4, Host Software Architecture, provides a brief explanation of the Win32 software,
specifically the PCI API and the device driver.

Chapter 5, Creating Applications Using The PLX API, is an explanation of how the PCI SDK can
be ported to different applications or boards.

1.3 Conventions
Please note:

• italics are used to represent variables, and program names;

• courier is used to represent source code given as examples;

• highlighted text contains features that are not currently supported by the PCI SDK 2.0 but
will be supported in future releases.

1.3.1 Windows Programming Conventions

Some designers may not be familiar with Windows programming conventions. Therefore, a few
conventions have been noted below:

• PU32 data is analogous to U32 *data or unsigned long *data; and

• IN and OUT are used to distinguish between parameters that are being passed into API
functions and parameters that are being returned by API functions.

1-2  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

1.4 Terminology
All references to Windows NT assume Windows NT 4.0 or higher and may be denoted as
WinNT.

Win32 references are used throughout this manual to mean any application that is compatible
with Windows NT.

All references to IOP software are software that runs on the evaluation board (either a PCI
9080RDK-860, a PCI 9080RDK-401B or a generic IOP).

References to IOP bus are used to represent the local bus of the evaluation board.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 2-1

2. PCI SDK Software Architecture Overview

2.1 Assumptions
This section discusses some assumptions made in the design of the PCI SDK.

2.1.1 PCI SDK Assumptions

The assumptions for the PCI SDK are as follows:

• Mailbox register 0 and 1 are reserved for communication between the PLXLdr98 an the IOP
software when downloading applications; and

• Doorbell register values: FLASH_READ and FLASH_WRITE are reserved for
communication between the PLXLdr98 and the IOP software when downloading
applications.

2.1.2 IOP API and IOP Software Assumptions

The assumptions for the IOP API and the IOP software are as follows:

• For the Back-End Monitors to function properly the IOP board must have one available serial
port, configurable by the Board Support Package software;

• The data received by the serial port will be retrieved in a timely manner in order to eliminate
any lost data;

• The initialization of the PCI IC is done by the IOP software only;

• While the Back-End Monitor Level 2 Debugger is running the application cannot receive data
from the serial port;

• The data expected by the application will not contain any data that could be interpreted by
either Back-End Monitor as a command if they are linked in with the application;

• All IOP applications must be reentrant, cyclic and relinquish the processor periodically to
avoid starvation of the Back-End Monitors (cooperative or non-preemptive multitasking);

• When an application is downloaded to the IOP RAM memory the IOP BSP must execute the
CheckPciDownloadToRam() function at microprocessor reset;

• All PLX PCI RDKs reserve the doorbell interrupt, DOORBELL_KERNEL_RESET, for
resetting the microprocessor from external applications; and,

• The BlinkLed() function assumes that the LED is connected to the PCI IC’s USERo pin.

2.1.3 PCI API and Win32 Software Assumptions

The assumptions for the PCI API and the Win32 software are as follows:

• All Win32 applications supplied with the PCI SDK will provide full functionality to all
registered devices and only limited functionality to non registered devices; and,

• The doorbell interrupt, QUERY_EEPROM_TYPE, is reserved for PLXMon97 and PLXMon98
to query the PLX PCI RDK for the specific configuration EEPROM connected to the PCI IC.

2-2  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

2.2 Overview
The PCI SDK is separated into two distinct sets of software, the IOP software that runs on the
development board and the PCI software that runs on the WinNT host system (as shown in Figure
2-1). Each API contains distinct function calls that emphasize the features of the PCI IC. Some
function calls look and react similarly in both API’s but may have different parameter lists.

The IOP software contains three modules (excluding the IOP application), the IOP API library,
the Board Support Package (BSP) and the Back-End Monitor. The IOP API is designed
specifically for each PCI IC or for a combination of PCI IC’s on one board. The IOP API can be
customized to run on any board by modifying the Board Support Package. Different levels of
debugging can be performed by including the Back-End Monitor into the IOP application.
Chapter 3 provides detailed information on the IOP software provided with the PCI SDK.

The PCI software can be separated into two different packages, the Serial Communication
package and the PCI Bus Communication package (see Chapter 4). The Serial Communication
package accesses the information from the board using messages sent through the serial port of
the board. This communication method requires having the Back-End Monitor Level 1 included
into the IOP application running on the desired board.

The PCI Communication package consists of two modules, being the PCI API Dynamic Link
Library (DLL) and the WinNT Device Driver. PCI applications make calls to the PCI API DLL
where they are translated into the appropriate device driver calls. The device driver performs the
requested action and provides a response, where appropriate, to the API DLL. The status of the
API call is passed back to the calling application.

2.3 Software Architecture
The PCI SDK software architecture is shown in Figure 2-1. The SDK software is divided into
five major components:

• PLXMon98: this module includes the Host API and device driver for PCI Bus
communications, and the PLXMon98 Communications module for serial communications to
the Back-End Monitor;

• IOP API Library: this library contains the code that performs the API functions and accesses
the PCI IC;

• BSP Library: this library contains all board specific code, including the IOP bus memory
map, the board and microprocessor initialization routines and the interrupt service routine for
the PCI IC;

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 2-3

• Back-End Monitor: this module provides monitors for debugging IOP applications which
supports PLXMon98 through the serial port or debugging using a dumb terminal; and,

• IOP Applications: this module contains the main application for the board and the IOP.

PLXMon98
(With Host OS Software)

IOP Applications

Serial Port and PCI Bus

IOP API

(Specific for each
solution)

Back-End MonitorBSP Library

HOST

IOP

IOP Image File (PLXRom.bin or App.bin)

Figure 2-1 The PCI SDK Software Architecture

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 3-1

3. IOP Software Architecture
The IOP software architecture is separated into four modules, being:

• The PCI API library;

• The Board Support Package (BSP) library;

• The Back-End Monitor (2 debugging levels); and,

• The IOP application software.

The PCI SDK software architecture is shown in Figure 3-1.

IOP Image File (PLXRom.bin or App.bin)

PCI
IC

PCI
IC

µP

User Applications

Dumb Terminal or
HyperTerminal

µP
Initialization

Module

Board
Initialization

Module

BSP Library

BEM
Level 1

BEM
Level 2

Back-End Monitor

DMA Resource
Manager

IOP API

Figure 3-1 The IOP Software Architecture

3-2  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

3.1 Board Support Package (BSP) Library
The Board Support Package library contains all the information needed by the IOP API that is
specific to the board. This library provides the necessary entry points needed to port the PCI SDK
to new platforms. The Board Support Package is composed of two main modules, being:

• The Microprocessor Initialization module; and,

• The Board Initialization module.

Note: Prior to porting the PCI SDK to new boards an understanding of the BSP and its
functionality should be acquired.

3.1.1 Microprocessor Initialization Module

The microprocessor initialization module contains all the necessary information about the
microprocessor required by the IOP API. Some of the information contained within this module
are the microprocessor boot code, the main default interrupt service routine (ISR) for the PCI
SDK and the default PCI IC interrupt trigger support functions.

3.1.1.1 Microprocessor Boot Code

When the board is powered up, the microprocessor starts executing the boot code. This code
initializes the microprocessor, configures the memory controller, copies data and code (if
necessary for performance reasons) from the boot FLASH to RAM memory and brings the
microprocessor to a ready state. The sequence of events is as follows:

1. The board is powered on.

2. The microprocessor begins at the reset address where it immediately jumps to the boot code.

3. The boot code configures the memory controller.

4. The data section and the code section (if necessary) of the boot application is copied to RAM
memory (either DRAM or SRAM).

5. The exception vector table is initialized.

6. Any other microprocessor specific initialization is done, such as configuring the endian
registers, configuring the clock (if internal clocks are available), setting up any peripheral
units internal to the microprocessor.

7. Once the microprocessor is initialized and is ready to run, the boot code jumps to the board
initialization routine (see section 3.1.2.1).

Note: The MiniRom application included in the PCI SDK provides a good starting point for users
who have untested boards. The application is limited in features and functionality and should be
the basis for porting the PCI SDK to new boards (see section 3.4.2 for more information). For the
MPC 860, generation of the boot code is provided by the DriveWay Toolset and is included in the
PCI SDK as a library of functions.

3.1.1.2 Interrupt Service Routine

The interrupt service routine (ISR) provided in the BSP controls all interrupts generated by any
PCI IC. The ISR is divided into one main routine with one function to service each interrupt
trigger on the IC. When an interrupt is generated, the main ISR determines the interrupt trigger
and calls the appropriate interrupt trigger service routine to service the interrupt.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 3-3

This method allows modification of individual interrupt trigger service routines or modification
of the main interrupt service routine to customize the handling of interrupts for each application.

3.1.2 Board Initialization Module

The Board Initialization module contains information on the features of the board and the board
initialization routine. Some of the information it provides include the memory map of the IOP
bus, specifically where the following devices are located in memory:

• SRAM address and range;

• DRAM address and range;

• PCI IC Register Base address;

• UART ports (Control/Status, Data);

• Flash Memory address and range;

• Direct Master Memory Remap address and range;

• Direct Master I/O Remap address and range; and,

• Boot address.

The PCI SDK needs to know the endianness for each memory region. If the IOP bus is less than
32 bits wide, the PCI SDK needs to know how the IOP bus is connected to the PCI IC
(specifically which bytes and byte lanes are used by the IOP bus).

The Back-End Monitor needs to know about the UART. The necessary UART ISRs and serial
communication functions are included in this module.

3.1.2.1 Board Initialization Routine

The board initialization routine contains the necessary API functions to configure and initialize
the PCI IC, the IOP API library, the Back-End Monitor and any other device on the board. This
function is called from the microprocessor initialization routine (the microprocessor boot code,
see section 3.1.1.1) at start up. The board initialization sequence is as follows:

1. Initialize the PCI IC. A list of IOP API initialization functions is provided with each of its
parameters set to the PCI IC’s default values (set by calling the PlxInitApi() function).

2. Change the default values for the parameters as necessary before calling the respective IOP
API initialization function.

3. Set the Local Init Status bit when the PCI IC is initialized (this asserts the NB# pin low). This
bit allows the PCI BIOS to access to the PCI IC. Once the PCI BIOS has assigned the
appropriate values to the PCI IC’s configuration registers, the PCI IC is completely initialized
and is ready to run.

4. Initialize the different debugging levels of the Back-End Monitor with the necessary board
specific information.

5. Initialize any other peripheral on the board.

6. Connect the ISRs to the appropriate interrupt lines of the microprocessor.

7. Initialize the application, if necessary, once all devices on the board have been initialized and
are operational.

3-4  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

8. Jump to the main application routine.

3.1.3 The Main() and AppMain() Functions

The BSP Library contains the main() function for any application using the PCI SDK. This
function controls the operation of the IOP API. The function starts by initializing the
microprocessor and its peripherals, the PCI IC (when there is no EEPROM connected to it), the
UART IC, and the Back-End Monitors (when in use). The function proceeds to test the available
memory on board and begins the main application section.

The main application section consists of a loop that allows execution of several tasks on a round-
robin priority scheme. Each task is allowed as much time as it needs to run (non-preemptive and
no priority levels). This loop runs without interruption in a cyclic fashion and therefore all the
tasks must eventually return (tasks must be reentrant).

Two versions of the Back-End Monitor can be used to filter the stream of data, supplied by the
UART Services functions, to help in debugging new applications. The UART Services functions
receive a stream of data from the RS-232 port on the board and buffer it. This stream can be
received by any task requiring data from the serial port.

The first Back-End Monitor, Bem1(), does simple debugging and is the first level debugger. This
monitor task is used with PLXMon98’s serial debugger support turned on. The Bem1() monitor
task only accepts two commands, read and write to an IOP memory location. The second monitor
task, Bem2(), is more advanced and can accept more commands. It can be run by connecting a
debug terminal to the serial port of the board without running PLXMon98 or without having
Windows installed.

BemL1()

AppMain()BemL2()

UART Services

beml2on?
YES NO

Figure 3-2 The Data Stream Flow Diagram.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 3-5

Note: PCI SDK 2.0 currently does not support PLXMon98 serial communication to boards
connected to the host system. Future releases of the PCI SDK will come with a version of
PLXMon98 that supports this feature.

With the stream of data received from the serial port (see Figure 3-2), the Bem1() task receives
and parses through it, searching for commands. When Bem1() finds a command that it recognizes,
the monitor removes the command from the stream, reacts accordingly to the command and
returns a response when appropriate. Once the stream of data has been completely parsed and all
Bem1() commands have been removed from it the filtered stream is made available to the next
task wishing data from the serial port.

The filtered data stream is received by either the second Back-End Monitor, Bem2(), for more
command parsing or to the application, AppMain(). As before the Bem2() monitor looks at the
data stream provided by the Bem1() monitor searching for commands destined for itself. When
commands are found this monitor performs the necessary actions and provides a response when
appropriate. Unlike the previous monitor task, this monitor does not supply a filtered data stream
to the next task in the daisy chain. When this task is active it captures all the serial data and does
not relinquish control back to the application. The application will not run until the monitor is
turned off. At that point, the application runs as before.

The filtering of the data stream can be bypassed by a task at any point in time by calling the
UART Services functions. An example of this feature is when Bem2() task starts an application
download to memory. The application binary file being downloaded may contain data that looks
similar to a command for the Bem1() task. If the Bem1() task is retrieving the data from the
UART Services functions then some information about the application will be lost. Therefore,
while Bem2() task downloads an application, it calls directly PlxGetChars() to retrieve the
unfiltered data from the UART IC until the application is completely downloaded. Once the
download is complete, the Bem2() task returns control to the BSP Module’s main loop to allow
other tasks to run.

This feature should be used with caution however because it directly affects the operation of the
other tasks dependant on the data stream coming from the serial port. When an application
requests unfiltered data the task calls PlxGetChars() function and this function returns an
unfiltered data stream. This task should not return to the main loop (within the BSP Module) to
continue processing of debug commands until all the necessary unfiltered data has been received
by the application. By doing this the Back-End Monitor tasks will not scan through the data and
remove command data from the stream that was not intended to be a command for the debug
monitors.

3.2 IOP API Library
The IOP API library contains the source code for all the documented API functions. This code is
standard for all IOP applications and is independent of the board configuration. The code directly
calls the PCI IC (no intermediary functions).

Note: Each PCI IC has its own IOP API library specifically designed to complement its features.
To implement more than one PCI IC on one board, a new library is created. This library
combines the features of each IC and has new functions to accent the features achieved by
grouping the ICs.

3-6  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

3.2.1 DMA Resource Manager

The IOP API supports three different DMA transfer types and manages the DMA resources. The
supported DMA transfer types are:

• Scatter-Gather DMA: Transfers data using Scatter-Gather Lists and can transfer several
blocks of data at a time (formally called chaining DMA);

• Block DMA: Transfers data one block at a time; and,

• Shuttle DMA: a circular scatter-gather DMA transfer.

The Scatter-Gather DMA transfer is most commonly used of all DMA transfers. This method
supports DMA transfers where either the source or destination memory locations are not
contiguous (this is common with most operating system memory allocation) the best. By
grouping multiple DMA transfer requests, the IOP application is interrupted less often providing
improved performance.

The Block DMA transfer is used primarily for single DMA transfers and where the number of
transfer requests is small.

The Shuttle DMA Transfer is best used when the data transfers are repetitive (where the source
and destination locations remain relatively constant but the transfer direction may switch or the
transfer size is different).

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 3-7

Scatter-Gather DMA Transfers

In Scatter-Gather DMA transfers (see Figure 3-3), a SGL DMA channel is opened (steps 1-2).
With a successful return (step 3), a Scatter-Gather List (SGL) is acquired from the DMA resource
manager (steps 4-6) by calling PlxDmaSglBuild() and a handle to a list of DMA transfer element
addresses is returned (step 7). The DMA transfer elements are programmed with the appropriate
source and destination data addresses, the transfer size and the DMA transfer descriptors by
calling PlxDmaSglFill() (step 8). The SGL is passed to the PlxDmaSglTransfer() function (step
9). If there is not a SGL currently executing on the DMA channel, this function programs the list
address into the DMA descriptor register for the opened DMA channel and also into the Current
SGL Address buffer (one buffer for each DMA channel), and the DMA transfer is started (step
10). If there is a SGL executing then this function places the SGL address into the SGL Waiting
Queue (one queue for each DMA channel) (step 11). When the SGL currently executing is
completed the ISR reads the Current SGL Address buffer (step 12) and frees the DMA transfer
elements for this SGL to the DMA Transfer Element Free Queue (one queue for each DMA
channel) (step 13). The ISR then removes all the current SGL entries in the SGL Waiting Queue
and joins them together (step 14). The new SGL address is placed into the Current SGL Address
buffer and it is placed and started on the DMA Channel (step 15).

SGL
Waiting
Queue

Current SGL
Address

APP

P
lxD

m
aS

glT
ransfer()

PlxDmaSglBuild()

DMA
Channel 0

DMA
Channel 1

1.

2. 2.

3. 4.

5.

7.

11.

DMA
ISR

SGL
Waiting
Queue

15.

14.

Current SGL
Address

10.

13.

12.

Scatter-Gather List

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

Free
Queue

DMA
Transfer
Element

Free
Queue

6.

PlxDmaSglFill()

8.

8.

9.

PlxDmaSglChannelOpen()

Figure 3-3 Scatter-Gather DMA Flow Diagram

3-8  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Block DMA Transfers

In Block DMA transfers (see Figure 3-4), a Block DMA channel is opened (steps 1-2). With a
successful return (step 3), the PlxDmaBlockTransfer() function is called with the appropriate
source and destination data addresses, the transfer size and the DMA transfer descriptor (step 4).
This function checks the status of the DMA channel to determine if there is a transfer in progress
by checking the DMA Done flag. If there is a transfer in progress then the function returns the “In
Progress” error code. Otherwise the DMA data is programmed into the DMA registers for the
DMA channel and the transfer is started. When the transfer is completed, the ISR will set the
DMA Done flag (step 5). If the PlxDmaBlockTransfer() function is set to not return immediately
then this function polls the DMA Done flag (step 6) and when the flag is set the function will
return. The PlxDmaBlockTransferRestart() function is used to quickly restart a Block DMA
transfer that was pre-programmed with the PlxDmaBlockTransfer() function (step 7). The only
parameter needed is the transfer size. All other DMA information is reused from the previous
transfer. This function also supplies an immediate return feature where, when the parameter is set
to FALSE, the function polls the DMA Done flag (step 8) until it is set then returns.

DMA Done

APP

PlxDmaBlockChannelOpen() PlxDmaBlockTransfer() PlxDmaBlockFastTransfer()

DMA
Channel 0

DMA
Channel 1

1.

2.

2.

3.

4.

DMA
ISR

5.

DMA Done

6.

7.

8.

Figure 3-4 Block DMA Transfer Flow Diagram

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 3-9

Shuttle DMA Transfers

In Shuttle DMA transfers (see Figure 3-5), a Shuttle DMA Engine is started by opening a Shuttle
DMA channel (steps 1-2). A number of DMA transfer elements are acquired from the DMA
resource manager (step 3). The DMA transfer elements are linked to create a Shuttle List (step 4).
This Shuttle List is placed on the opened DMA channel and is started thereby starting the Shuttle
DMA Engine. A list of the DMA transfer element addresses is returned to the application (step 5).
From this point, each DMA transfer element of the Shuttle List can be treated as a unique DMA
channel. To start a transfer, the PlxDmaShuttleTransfer() function is called with the appropriate
source and destination data addresses, the transfer size and the DMA transfer descriptors (step 6).
This function checks the status of the Shuttle DMA channel to determine if there is a transfer in
progress by checking the transfer size for the given DMA transfer element. If there is a transfer in
progress then the function returns the “In Progress” error code. Otherwise the DMA data is
programmed into the DMA transfer element provided by the application and the transfer is
started. When the transfer is completed the PCI IC (through the PLX DMA Descriptor Write
Back Feature) sets the transfer size for the completed DMA transfer element to zero. If the
PlxDmaShuttleTransfer() function is set for blocking then this function will poll the DMA
transfer element’s transfer size and when the size is set to zero the function will return. The

DMA
Transfer
Element

Free
Queue

APP

PlxDmaPerpetualChannelOpen() PlxDmaPerpetualFastTransfer()PlxDmaPerpetualTransfer()

DMA
Channel 0

DMA
Channel 1

1.

2.2.

5.

7.

DMA
Transfer
Element

Free
Queue

Perpetual List

3.

4. 6.

6.

7.

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

Figure 3-5 The Shuttle DMA Flow Diagram

3-10  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaShuttleTransferRestart() function is used to quickly restart a Block DMA transfer that
was pre-programmed with the PlxDmaShuttleTransfer() function (step 7). The only parameter
needed is the transfer size. All other DMA information is reused from the previous transfer. This
function also supplies a blocking feature where it polls the DMA transfer element’s transfer size
until it is set to zero.

3.3 Back-End Monitor
The Back-End Monitor (BEM) provides features that help in the debugging of IOP applications.
This module has two separate monitor tasks, BEM Level 1 Debugger, and BEM Level 2
debugger. The first monitor supports PLXMon98 serial command passing to the IOP application
and the second monitor supports debugging the IOP application via a dumb terminal connected to
the serial port of the board.

The BEM Level 1 Debugger is the lowest level debugger. This monitor only supports two
commands, reading and writing to IOP memory locations (these commands support different data
sizes). These commands provide a generic interface for any application. PLXMon98 uses this
monitor to retrieve data from the IOP. In normal operation, this monitor accesses the UART
Services functions to get a stream of data that has been received by the UART IC. The monitor
extracts commands (that the monitor recognizes) from the data stream, performs the necessary
action and provides a response when appropriate. This monitor provides the filtered data stream
to the next task requiring serial data in the daisy chain.

Note: PCI SDK 2.0 currently does not support PLXMon98 serial communication to boards
connected to the host system. Future releases of the PCI SDK will come with a version of
PLXMon98 that supports this feature.

The BEM Level 2 Debugger is more advanced and supports more commands than the BEM
Level 1 Debugger. It is not necessary, when using this monitor, to have PLXMon98 running or
Windows installed to use this monitor to debug IOP applications. This monitor supports
debugging of applications using a dumb terminal connected to the serial port (or a terminal
package on the host system with a serial cable connected from the board’s serial port to a COM
port on the host system). This monitor has a larger command set and supports downloading of
RAM based applications and reprogramming the FLASH memory. Unlike the BEM Level 1
Debugger monitor task, this monitor does not pass a stream of filtered data to the next task in the
loop. Either this task is parsing commands or is passing all the data received to the next task,
being the IOP application. The monitor can be setup so that it is parsing commands when the
board is powered up or when the application starts (depending if the monitor is running in ROM
or RAM memory). At any point in time the monitor can be turned on or off by sending the
appropriate command through the serial port. When the monitor recognizes one of the commands
it reacts accordingly. While the monitor is running the application is not. The IOP software is
designed in a cooperative multitasking environment (non-preemptive multitasking) and as such
only the BEM Level 2 monitor or the application can run at any time.

There are times when a task may not want other tasks to extract data (or commands) from the data
stream such as when the BEM Level 2 is performing an application download. This can be done
by accessing the UART Support functions directly. A task, such as the BEM Level 2 monitor,
bypasses the previous task in the daisy chain and calls PlxGetChars() to retrieve an unfiltered
data stream. If a task chooses to access the unfiltered data stream it should take all the data
necessary to perform the action and, only once the action is complete, return control back to the
main routine (contained within the BSP).

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 3-11

The next application in the daisy chain, if required, retrieves the filtered data stream from the
BEM Level 2 monitor. The application can do whatever it needs to do with the data. The
application can choose to provide a filtered stream of data from what is left over from its parsing
of the data stream so that the data stream can be passed down to the next task in the chain.

3.3.1 Methods For Debugging IOP Applications

The PCI SDK supports three main methods for debugging IOP applications, being:

• Win32 Debugging: Using either PLXMon97 or PLXMon98. This method assumes that there
is no IOP application running on the board. With newer boards, this method provides the
preliminary debugging and validation of new boards.

• BEM Level 2 Debugging: Using BEM Level 2 Debugger with a terminal program or a dumb
terminal. This method is used to debug the microprocessor boot code, the IOP application and
accesses to external devices by the IOP application.

• PLXMon98 with BEM Level 1 Debugging: With BEM Level 1 linked into the IOP
application, PLXMon98 can communicate to the board through the PC’s COM port to the
serial port on the board. This method is a combination of the two previous methods.
PLXMon98 can be setup to communicate to the board or IOP application using the serial port
or the PCI bus.

3.3.2 Operation Of The Back-End Monitors In A System

The Back-End Monitors can be used in many ways. This section describes the combinations that
can be used and how these combinations affect system performance.

The Back-End Monitor combinations are as follows:

1. AppMain() only: the IOP application is running without any BEM tasks;

2. BemL1() and AppMain(): the IOP application is running with BEM Level 1 debugger;

3. BemL1(), BemL2() and AppMain(): the IOP application is running with full debugging
capabilities;

4. BemL2() and AppMain(): the IOP application is running with BEM Level 2 debugger;

5. BemL2() only: the BEM Level 2 debugger is running without any IOP applications (useful for
testing the board functionality); and,

6. BemL1() and BemL2(): both debuggers are running to support PLXMon98 debugging as well
as dumb terminal debugging.

Method 1: This method is used once the application has been fully tested and is working
properly. There is no monitor tasks running so this method provides the best performance for the
application.

Method 2: PLXMon98 is used to debug the application through the serial port. Application
performance will be affected using this method because the BEM Level 1 monitor is processing
commands and copy data to and from different memory buffers. There is a possibility of lost data
destined for the application. If application data matches BEM Level 1 commands, the monitor
will remove them from the serial data stream. When the application requires data that could be
captured by the monitor, the application should access the UART Services module directly,
bypassing the monitor (done by calling PlxGetChars()).

3-12  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Method 3: Either a dumb terminal or PLXMon98 can be used to debug the application. The
application performance is greatly affected using this method. While BEM Level 2 monitor is
active and processing commands the application is not running. Once the monitor is disabled the
application runs similarly to Method 2 (there is still a performance hit because BEM Level 2
snoops the serial data looking for its activate command).

Method 4: This method runs similarly to Method 3 with some performance improvements. Since
BEM Level 1 monitor is removed, the data from the serial port is received either directly by the
application or by BEM Level 2. The latency of the BEM Level 1 command parsing is removed,
increasing the performance of the overall system.

Method 5: Only BEM Level 2 is running with no applications running. This method is good for
board sanity checks to ensure proper board functionality.

Method 6: Similar to Method 5 with the addition of PLXMon98 debugging support.

3.4 PLXRom and IOP Applications
All IOP applications, including PLXRom, are connected to the IOP API, the BSP and the Back-
End Monitor to create the binary image. This image is then programmed into FLASH memory, or
downloaded to RAM memory and executed.

All IOP applications have an AppMain() function which is the main application function. The
main() function is kept within the BSP module. This limitation is imposed on all applications
because of how the Back-End Monitors (BEMs) are implemented. The BEMs need to run
periodically to operate properly. Since there can only be one execution thread running at one
time, a cyclic thread is created using the main() function. This thread loops forever calling the
BEMs and then the main application function sequentially (cooperative multitasking or non-
preemptive multitasking). The AppMain() function should be cyclic in nature and should return
control periodically back to the main() function.

All evaluation boards will have PLXRom programmed into the FLASH memory of the board.
PLXRom allows IOP application downloads to RAM memory and testing of the applications
from RAM memory. A fully featured BSP is provided for ROM based IOP applications while a
limited BSP is provided for RAM based applications.

3.4.1 IOP Memory And IOP Applications

IOP application running in ROM or in RAM use memory in different ways. When an IOP
application is running in ROM the application contains all the modules it needs, such as the Back-
End Monitors. A ROM application contains:

• The main application module;

• The IOP API;

• The BSP module; and,

• The Back-End Monitor (debug version of ROM application).

Figure 3-6 shows how the ROM application uses memory.

RAM applications are built differently from ROM applications. The RAM applications look very
similar to ROM applications from a source code point of view but they differ when the RAM
application is linked to the libraries. RAM type application borrow the Back-End Monitor from
the resident ROM application. The size of RAM applications are normally smaller because a lot

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 3-13

of the code used by the RAM application resides in the ROM application. Therefore the ROM
application on the board must have the modules needed for the RAM application and the ROM
application must provide the links to those modules. The BSP provided with the PCI SDK
contains the links for RAM based applications.

3.4.2 MiniRom Application

MiniRom is included in the PCI SDK to provide a good starting point for users who have an
untested hardware device and for this reason, it is limited in features and functionality. It provides
bare minimum boot up code for most boards. This application configures the microprocessor, the
PCI IC, and proceeds to blink the LED that is connected to one of the PCI IC’s USER pins. To
use the MiniRom application, you should program the binary image into the FLASH using a
FLASH chip programmer. Once the FLASH is programmed reboot the board, and if the LED
blinks then the MiniRom application configured the board properly. If this test is successful, the
FLASH can be reprogrammed with the PCI SDK PLXRom image (supplied with the PCI SDK).

All Available
Memory

(FLASH, SRAM,
DRAM, ...)

RAM BSP

IOP API

RAM Application

RAM Application Data Segment
(Stack, Heap, BSS)

RAM Application

ROM BSP

IOP API

Back-End Monitor Level 1

Back-End Monitor Level 2

ROM Application

ROM Application Data Segment
(Stack, Heap, BSS)

ROM Application

Figure 3-6 IOP Memory Diagram

3-14  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Note: This ROM application is provided as a bare bones ROM application useful for confirming
the functionality of new boards. It does not contain any PCI SDK features that are described in
any PCI SDK manual.

3.5 Porting The PCI SDK To New Platforms
All information needed to port the PCI SDK to new platforms is contained within the BSP
module. Some of the information contained within the BSP include:

• The memory map of the IOP bus;

• The microprocessor boot code;

• The PCI IC interrupt service routine;

• The UART interrupt service routine;

• The board initialization routine; and,

• The board and/or application specific controls for the IOP API and the Back-End Monitor.

The IOP API and the Back-End Monitor need to know where certain devices are located on the
IOP bus, such as the PCI IC, DRAM, SRAM and the UART. These values need to be updated
when creating an application for new boards.

When the microprocessor is changed on a board, the microprocessor boot code must be modified
to support the new microprocessor. This boot code is provided within the BSP module.

Most interrupt service routines are customized to the application. To customize the PCI ISR for
an application, either modify the interrupt trigger service routines or modify the main ISR.

The Back-End Monitor relies on the UART ISR to send and receive data from the serial port.
Modify the UART ISR to support the UART on the board.

To initialize the PCI IC modify the parameters for the IOP API initialization functions contained
within the board initialization routine.

Within the BSP, there are some control parameters for the IOP API and the Back-End Monitor
that can be modified to improve performance of the PCI SDK. These parameters are platform and
application dependent and can affect the operation of the application differently on different
systems.

3.6 Support For Multiple PCI ICs On One Board
Each PCI IC has its own IOP API library. When two or more ICs are present on one board, a new
IOP API library must be created. This library will contain the normal API functions (defined in
this document) and some new or modified functions that represent new features made available
by combining the features of the multiple ICs. Some multiple IC libraries will be available (for
the more popular implementations), however it will be up to the designer to create his/her own
library for multi-IC combinations not currently supported.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 4-1

4. Host Software Architecture

4.1 PLXMon98
PLXMon98 can communicate with PCI devices via two different paths (see Figure 4-1):

• Direct Serial Communications;

• Host API/Device Driver Interface.

4.1.1 Serial Communication

This method of communicating with a PCI device is mainly used for debugging purposes. While
a custom host device driver is being created, it is helpful to be able to read and write values
directly to and from the PCI device. It is recommended to compile out this module in a release
version of an application for this method of data transfer can be very dangerous to the end user.

If PLXMon98 is set to serial mode, The application calls functions that reside in the PLXMon98
Communications Module. It is the job of this code to convert the valid PLXMon98 commands

PCI
IC

PCI
IC

µP

PLXMon98

S
erial

C
om

m
unication

PCI BusCommunication

PLXMon98 Comm.
Module

Win32 Serial
Comm. Package

PLX Services Module

Win32 Driver Module

WDM (Win32 Driver)

PCI API

Dumb Terminal

Figure 4-1 The Host Software Architecture

4-2  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

into a serial data stream. The protocol used in passing the data is based on an ASCII translation
scheme. A detailed description of this protocol can be found in section 3.3. This stream of data is
sent to the IOP application. The Win32 system provides a device driver to control the serial port.
The Win32 SDK provides services to access this device driver.

When the data arrives, the PCI device’s microprocessor must have a means of handling the
incoming data. The Back-End Monitor contains functions that are hooked via an interrupt, so
when data does arrive, they are called to retrieve the data from the UART. The Back-End Monitor
decodes the command and data, and acts on the command and returns a reply. If the data received
by the Back-End Monitor is not a command the data is queued for the IOP application.

4.1.2 API/Device Driver Communication

PCI Bus Communication is performed using the PCI API DLL and the WinNT device driver
supplied with the PCI SDK.

4.1.2.1 PCI API Library

The PCI API consists of a library of functions, from which multiple PCI devices can be accessed
and used. The PCI API provides API function groups, which manage the features of each PCI IC.
Groups such as DMA access, direct data transfers, and interrupt handling contain functions that
can be universal to any PCI device.

The PLXMon98 application makes extensive use of the PCI API functions. For the most part, the
PCI API’s purpose is to translate application functions calls and send them to the appropriate
device driver. The only functionality present in the PCI API is to manage the various device
drivers. This includes opening, closing and searching for devices that are present on the PCI bus.

4.1.2.2 Win32 Device Driver

The device driver’s role in the system is to store device data within the kernel and to execute the
commands given to it from the PCI API. The device driver can be used as a framework to create
custom software for managing PCI devices as well.

The Win32 Driver Model (WDM) is a new platform for developing device drivers on the
Windows 98/NT 5.0 operating systems. It is very similar in architecture to that of Windows NT
4.0 and allows the creation of one device driver that can be used for both operating systems
without any porting or modifications.

The overall architecture of the device driver is designed to reduce the time needed to create a new
device drivers for any PCI device. By modifying the source code provided for the device driver,
new custom driver can created in minimal time.

4.2 Applications And The PCI SDK
All PCI Applications connect to and use the PCI API DLL. The application can communicate to
any PCI device with a PLX IC by using the PCI API DLL. Each application can be created like
any other Windows application. For more information on creating an application using the PCI
API DLL, see section 5.3.2.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 4-3

4.3 Host Device Driver Overview
This section describes the overall layout and concept of a PLX device driver. To accommodate
the need for one common PCI API as well as to reduce development time for device driver design
for new boards, the following device driver model was created.

One device driver handles each type of PLX IC, as seen in Figure 4-2. Each device driver
communicates with the PCI API on a one-to-one basis; there is no device driver inter-
communication. If a new device driver is developed and added to the system, it can be integrated
simply by installing it into the operating system. If more than one PLX IC are present on a board,
the device driver can only see the one that is directly connected to the primary PCI bus. All PCI
API functions will access this IC only.

Note: The device driver platform presented here is for Windows NT. This model was created
specifically so that this driver can be quickly ported to the Win32 Driver Model (WDM) once it
becomes available in Windows 98/NT 5.0. The WDM will be supported in future releases of the
PCI SDK.

4.3.1 Driver Module

This module provides the management of the PCI devices in Windows NT. This management
includes storing device specific information, processing PCI API and system messages, handling
interrupts, and allocating resources for each device. Some non-PLX specific functionality is
handled in this module, such as reading from and writing to PCI configuration registers.

PCI API

9080 Services
Module

9080 Driver Module

PCI 9080 Driver

9054 Services
Module

9054 Driver Module

PCI 9054 Driver

Services Module

 Driver Module

Future PLX Driver

PCI
9080

PCI
ICµP

PCI
9054

Figure 4-2 The PLX Device Driver Layout

4-4  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

4.3.2 Services Module

This module has access to the entire register set of the PCI IC, and thus is in charge of providing
the functionality for the device driver. All PCI interrupt handling for the driver is handled within
this module.

4.4 Creating a New Driver
This area briefly covers how a new device driver can be created using the existing device driver
as a template. When a new Services Module, which provides the real functionality for the device
driver, is updated to support a new PCI IC, the old Services Module is replaced. The new
Services Module would reflect the new register set of the PCI IC and would support the existing
PCI API by accessing the appropriate registers on the new PCI IC based on the PCI API function
requested.

The Driver Module would need little modification to create a new PCI device driver. If new API
functions are created, the handling of those functions would force the modification this module to
support the new functions.

4.5 Device Driver Features
The PCI device driver supports the sharing of interrupts between many PLX boards. The device
driver uses one interrupt line on the PCI bus that all PLX boards share to interrupt the host PC.
The interrupt service routine determines which board caused the interrupt and services that
board’s interrupt.

The device driver supports event logging into the system log file. When the device driver
determines an error in operation, it updates the system event log file with the appropriate
information concerning the cause of the error. This log file can be used to debug the device driver
when the device driver is started at boot time. This file contains the reasons why the device driver
was not loaded and started.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 5-1

5. Creating Applications Using The PLX API

5.1 Customizing The BSP
As mentioned in the section on the BSP (section 3.1), the BSP has control of the main() function.
This function starts by initializing the microprocessor and proceeds to initialize the IOP API, the
PCI IC, the DMA Resource Manager and the Back-End Monitors. All the memory is tested to
ensure that they are functioning properly. The main() function then begins the daisy chain loop
where each task is called.

5.1.1 Customizing The Main() Function

The main() function is the first function that is run when the application starts. This function’s
responsibilities are to initialize all the components of the board, including the microprocessor, the
PCI IC and other peripheral devices on the board, and to initialize all the software that will run on
the board. The following code segment is an example of a main() function used with the PCI
SDK. An explanation of each step in the code segment provided follows it.

The Main() Function:

void
main(void)
{
 BEML1_INIT_PARMS bemL1InitData; /* variable for the init of BEM L1 */
 BEML2_INIT_PARMS bemL2InitData; /* variable for the init of BEM L2 */
 PU8 sdkVersion; /* pointer to the SDK Version string */
 PU8 sdkReleaseDate; /* pointer to the SDK Release Date string */
 GetCharsFxPtr BemL1GetChars; /* Points to BemL1GetChars function */
 GetCharsFxPtr BemL2GetChars; /* Points to BemL2GetChars function */

 /* Initialize the MPC860 and its peripherals */
 InitPowerQuicc(); �

 /* Initialize the PLX 9080 device and the IOP API */
 BoardInit9080(); �

 /* Blink the boards LED to show that the board is still alive */
 BlinkLed(2, BLINK_SLOW); �

 /* Print PCI SDK Version and Release Date */
 PlxSdkVersion(&sdkVersion, &sdkReleaseDate); �
 PlxPrintf("\n\n** %s, %s **\n", sdkVersion, sdkReleaseDate);

 /* Initialize BEM L1 buffer structure */
 bemL1InitData.BufPtr = gBemL1Buffer; �
 bemL1InitData.BufLen = PCI9080_BEM_BUFFER;

 /* Initialize BemL1 */
 if (BemL1Init(&bemL1InitData) == FALSE) �
 PlxSdkError(BspFailedToInitBemL1, TRUE); �

 /* Initialize BEM L2 buffer structure */
 bemL2InitData.BufPtr = gBemL2Buffer; �

5-2  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

 bemL2InitData.BufLen = PCI9080_BEM_BUFFER;
 bemL2InitData.EepromType = EEPROM_SELECTED;
 bemL2InitData.Enabled = FALSE;

 /* Initialize BemL2 */
 if (BemL2Init(&bemL2InitData) == FALSE) �
 PlxSdkError(BspFailedToInitBemL2, TRUE); �

 /*
 Check whether the host wants to download an Application to RAM
 and if there is a RAM application, bypass the memory testing.
 */
 if (CheckPciDownloadToRam() == FALSE) �
 {
 /* Test on-board memory */
 if (TestAllMemory())�
 {
 /* Blink the boards LED fast to show something is wrong */
 BlinkLed(2, BLINK_FAST);
 PlxSdkError(BspFailedToTestMemory, TRUE);
 }
 }

 /*
 This While loop is the heart of the SDK. 3 modules are called in
 a round robin style - BemL1, BemL2, AppMain. Each module MUST
 return periodically to allow the other modules to obtain CPU
 cycles.
 */
 while(1) �
 {
 /*
 Make a call to BemL1. BemL1 will return a function pointer to
 its GetChars function. This is used by the next level.
 */
 BemL1(PlxGetChars, &BemL1GetChars);
 /*
 Make a call to BemL2. BemL2 will return a function pointer to
 its GetChars function. This is used by the next level.
 */

 BemL2(BemL1GetChars, &BemL2GetChars);
 /*
 Make a call to AppMain. AppMain is at the end of the chain so
 so it doesn't need to return a function pointer to its GetChars
 */
 AppMain(BemL2GetChars, NULL);
 }
 return;
}

� This function initializes the microprocessor on the board. This function is specific to which
microprocessor is used and will be explained in more detail in section 5.1.2.

� This function initializes the IOP API and the PCI IC. This function will be explained in
more detail in section 5.1.3.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 5-3

� This function is useful for sanity checks. This BSP supplied function blinks an LED on the
board. This function assumes that there is an LED connected to a USERo pin on the PCI
IC. The LED is turned on for a period of time and then turned off. The duty cycle of the
LED is adjustable by changing the parameter to the function.

� This function returns the current version of the PCI SDK.

� Some of the modules of the PCI SDK software require some buffers. The size of these
buffers affects the operation of the module (and sometimes subsequent modules). In this
case the BEM Level 1 and BEM Level 2 Debuggers requires buffers to store the data. Since
this buffer determines how much data can be passed to the following modules the buffer
pointer and its size are passed into the BEM Debugger module when initialized.

� This function initializes the Back-End Monitors. As mentioned in the previous note the
parameters to this function include a buffer to store the filtered data. The size of this buffer
affects the operation of the module and affects other applications reliant on the filtered data
returned. By passing the buffer into the module, the application designer can customize the
buffers for optimal performance of the application.

� This function provides a description of the error that occurred. All API functions return a
specific error code. This function receives that error code and prints the error code value
and a brief description of the error. This function is part of the BSP support functions and
can be modified to support user-defined error codes. This function depends on having the
UART initialized and the PlxPrintf() configured properly.

� This function determines if a PCI download is pending to the IOP RAM memory. If there is
one pending this function waits for the download to complete and, once completes, this
function jumps to the downloaded RAM application. When the RAM application
terminates, this function returns TRUE and the main() routine continues.

� This function tests all the memory available on the board. This is a BSP support function
and can be modified to support other memory configurations and memory types.

� This is the Daisy Chain Main loop. This is the main loop of the applications. This loop
controls the order in which each task runs. This loop is explained in more detail in the next
section.

The Daisy Chain Main Loop:

 while(1)
 {
 /*
 Make a call to BemL1. BemL1 will return a function pointer to
 its GetChars function. This is used by the next level.
 */
 BemL1(PlxGetChars, &BemL1GetChars); �

 /*
 Make a call to BemL2. BemL2 will return a function pointer to
 its GetChars function. This is used by the next level.
 */
 BemL2(BemL1GetChars, &BemL2GetChars); �

 /*
 Make a call to AppMain. AppMain is at the end of the chain so
 so it doesn't need to return a function pointer to its GetChars

5-4  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

 */
 AppMain(BemL2GetChars, NULL); �
 }
� This function corresponds to the BEM Level 1 Monitor task. This task takes two

parameters: the first one is the GetChars() function for the UART Services module, and the
second is its GetChars() function. Normally this is the first task that is run in the loop.
When it is necessary to change the order in which the tasks are run the first parameter of
this function would be the GetChars() function pointer for the previous task (in the daisy
chain). This function supplies a function pointer to its GetChars() function for the next task
in the loop needing data from the serial port.

� This function corresponds to the BEM Level 2 Monitor task. This task takes the same two
parameters as BemL1() task. This task receives the GetChars() function pointer from
BemL1() and uses it to get the filtered data stream and parses though it. The next task can
access the filtered data through the GetChars() function pointer that BEM Level 2 Monitor
task provides as the second parameter.

� This function corresponds to the application’s main routine. This function is replaced by
any new application function. The parameters are the same as the other two tasks, a
GetChars() function provided by the previous task and a GetChars() function for the
AppMain task which other tasks can use. The application task does not need to return a
filtered buffer of data if there are no other applications in the daisy chain. By returning a
stream of data, the application can be placed anywhere in the daisy chain without affecting
the operation of any other task in the loop.

5.1.2 Customizing The Microprocessor Initialization Function

The PCI SDK currently supports two different microprocessors, the Motorola MPC860 and the
IBM 401GF PPC. This section will focus on customizing the BSP specifically for these
microprocessors.

Note: Before customizing the microprocessor initialization function it is recommended to
configure the MiniRom application , program it into the new board’s FLASH and test it. For
more information on customizing the MiniRom application, refer to section 3.4.2.

5.1.2.1 MPC860 Initialization

In the MPC860 Initialization function the following components are initialized:

• The caching of instructions and data;

• The internal memory mapped registers for MPC860;

• The memory banks of the IOP bus and the FLASH, SRAM and DRAM memory controllers;

• The C stack memory;

• The Synchronous External Master (for external master access to the IOP bus) and Retry pin;

• The relocation of code within the FLASH to SRAM;

• The exception handler for system reset;

• The branching from assembly code to C coded functions;

• The MPC860 Clock and the IOP bus speed;

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 5-5

• The System Interface Unit (SIU);

• The Dual-Port internal RAM;

• The interrupt vector table and the ISRs for external and CPM interrupts;

• The Port C pins for RS-232 communication;

• The SCC1 for Serial communication;

• The SDMA and IDMA channel 2; and,

• The RISC timers.

The MPC860 Initialization function was created using the DriveWay tools. This application
allows easy creation of a microprocessor library by choosing the appropriate options within a
Graphical User Interface (GUI). Once all the required options have been chosen the DriveWay
application creates the necessary initialization files that can be linked into any IOP application
destined to run on the MPC860. Some of the files generated by DriveWay were modified to
support some customization. Please see Appendix C. for more information on how the DriveWay
generated files were modified.

Note: It is not necessary to have the DriveWay tools to use the PCI SDK with the MPC860. To
use the PCI SDK without the DriveWay tools modify the microprocessor initialization routine
that is called from the BSP module with another routine that performs the MPC860 initialization
as described in this manual.

5.1.2.2 IBM 401GF Initialization

Building The Binary File

The size of the PLXRom binary provided by the PCI SDK is exactly 128KB, and is shown in
Figure 5-1.

128KB FLASH
Memory

401Init.bin

Jump to Start of ROM401 Entry Point

Jump to 401Init.bin Entry Point

401Init.bin

401Init.bin Entry Point

IOP Address 0xFFFFFFFC

IOP Address 0xFFFFFFF8

ROM401 ROM Application

ROM401 Entry Point IOP Address 0xFFFE0000

Filler Data

Figure 5-1 IBM FLASH Memory Map

5-6  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PLXRom is built from two image files:

• 401init.bin: The microprocessor boot code. This image file initializes the microprocessor’s
registers and tests the SRAM memory on the board.

• ROM401.img: The main application. It contains all the application code (except the
microprocessor boot code).

Note: To build the PLXRom binary it is important that the first object linked into the binary is the
401entry.o. This object contains the exception vector and the microprocessor’s register contents.
The exception vector must be located on a 64K boundary, linking the 401entry.o first forces the
vector to be on the boundary (image must be linked on a 64K boundary).

Each image file is compiled and linked separately. Once 401init.bin and ROM401.IMG are built,
the two image files are joined together to create one binary file along with the Filler Data and the
two jump opcodes are placed at the end of the binary file. The OS/OPEN utility, hbranch.exe,
provides the functionality to build the PLXRom.

The PLX 401 RDK initialization

This section explains the initialization of PLXRom. When the IBM 401GF microprocessor
powers up, it starts execution at 0xFFFF FFFC.

1. Execution starts at 0xFFFF FFFC where a jump instruction pointing to the beginning of
401init.bin, (jumps to the romboot label, inside 401init.s file). 401init.s file sets the
microprocessor’s registers allowing it to work with the specific board. The first register set is
the Exception Vector Prefix (EVPR) which tells the microprocessor on which 64K boundary
the exception vector is located. For the PCI SDK, the exception vector is set to
0xFFFE0000. When PLXRom is relocated to SRAM, this value will be updated with the
equivalent SRAM address.

2. The following registers are set: the Select Little Endian Register (SLER), the Storage
Guarded Register (SGR), the IO Control Register (IOCR), the Data Cache Write-through
Register (DCWR) and the Bus Region Control Registers (BRCR0 – BRCR7). The values for
these registers are loaded from the FLASH.

3. The following registers are setup directly, without loading their values from FLASH: the Bus
Error Syndrome Register (BESR), the Exception Syndrome Register (ESR), the Timer
Control Register (TCR), the Machine State Register (MSR), the Debug Status Register
(DBSR) and the Fixed Point Exception Register (XER). In the PCI SDK, only the Machine
Check Exception is enabled in the MSR register. The critical interrupt (for the PCI LSERR)
and the external interrupt (for the PCI LINTo and UART interrupts) are not enabled at this
time.

4. The reservation bit is cleared. This bit is cleared by accessing address 0x00000000, which
is in the DRAM for the RDK board.

5. The data cache and the instruction cache are invalidated, removing all data that may be in the
cache.

6. The SRAM is tested. If a SRAM error is detected, the board hangs.

7. The Instruction Cache Cacheability Register (ICCR) and the Data Cache Cacheability
Register (DCCR) are setup by loading their values from the FLASH.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 5-7

8. Once all the registers have been setup the microprocessor jumps to the __entry label in
ROM401.img section (jump instruction is located at IOP address 0xFFFFFFF8). The
__entry label is located in the bootrlib.s file.

9. PLXRom is then relocated to SRAM (IOP address 0x10000000) and the data cache is
flushed.

10. The EVPR is set for the new code location in SRAM.

Note: To keep PLXRom running out of the FLASH change the command file (.cmd). Change the
following lines in the command file from:

#Move all sections to SRAM
SECTIONS {
 GROUP ADDRESS 0x10000000 : {
 .text :
 .rodata:
 .data :
 .bss :
 .got :
 }
}

to:

Keep code in flash
SECTIONS {
 GROUP ADDRESS 0xFFFE0000 : {
 .text :
 .rodata:
}
GROUP ADDRESS 0x10000000 : {
 .data :
 .bss :
 .got :
 }
}

11. A jump is made to the label __kernel_start_st, which is located in the module
401intr.s.

12. The stack pointer is initialized and allocated, then the main() C function (in the BSP) is
called. The STACK_SIZE definition defines the stack size in bytes.

OS Open and the PCI SDK

The PCI SDK uses some functions and utilities from IBM’s OS Open mini operating system.
Refer to the OsOpen.txt file for information on the functions and utilities provided by OS Open
used by the PCI SDK.

5.1.3 Customizing The Board Initialization Function

The Board Initialization function configures the PCI IC and initializes the IOP API for the board.
This function should be called after the microprocessor has been initialized. Some of the
initialization function calls can be skipped over when a Configuration EEPROM is installed and

5-8  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

connected to the PCI IC. The initialization functions can only be called before the Init Done Bit
of the PCI IC is set (this causes the negation of the NB# pin). An example of the board
initialization function is provided with explanations for each step following it.

The Board Initialization Function:

void
BoardInit9080(void)
{
 RETURN_CODE rc; /* return code from API functions */
 API_PARMS apiInit; /* API Init structure */
 PCI_BUS_PROP pciBusProp; /* PCI Bus Properties */
 IOP_BUS_PROP iopBus0Prop; /* IOP Space 0 Properties */
 IOP_BUS_PROP iopBus1Prop; /* IOP Space 1 Properties */
 IOP_ARBIT_DESC iopArbitDesc; /* IOP Space Arbitration Properties */
 IOP_ENDIAN_DESC iopEndianDesc; /* IOP Endianness Properties */
 PLX_INTR plxIntr; /* Interrupt Properties */
 U32 value;

 /*
 The PlxInitApi function will initialize the following structures
 with the default bit field settings corresponding to the PCI 9080
 reset values.
 */
 apiInit.PlxIcIopBaseAddr = (void *)EMBED_PLX_MAP_ADDR; �
 apiInit.PtrPciBusProp = &pciBusProp; /* Init Structure */
 apiInit.PtrPciArbitDesc = NULL; /* Unused */
 apiInit.PtrIopBus0Prop = &iopBus0Prop; /* Init Structure */
 apiInit.PtrIopBus1Prop = &iopBus1Prop; /* Init Structure */
 apiInit.PtrIopBus2Prop = NULL; /* Not Applicable to 9080 */
 apiInit.PtrIopBus3Prop = NULL; /* Not Applicable to 9080 */
 apiInit.PtrExpRomBusProp = NULL; /* Unused */
 apiInit.PtrIopArbitDesc = &iopArbitDesc;/* Init Structure */
 apiInit.PtrIopEndianDesc = &iopEndianDesc; /* Init Structure */

 /* Initialize API */
 rc = PlxInitApi(&apiInit);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

/*
 WARNING: All structures used to initialize the 9080 have now been
 initialized with the default bit field settings
 corresponding to the PCI 9080 reset values. Consult the
 PCI 9080 Data Sheet for a detailed description of the
 reset values.
*/

/*
 The PlxInitIopEndian function MUST be called first so that all
 subsequent accesses to PCI 9080 registers are correct. The PCI
 9080RDK-860 changes the endianness using hardware so the 9080
 registers should be left at their default values (little endian
 mode).
 */
 iopEndianDesc.BigEIopSpace0 = 1; /* IOP Space 0 */ �
 iopEndianDesc.BigEIopSpace1 = 1; /* IOP Space 1 */

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 5-9

 iopEndianDesc.BigEDmaChannel0 = 1; /* DMA channel 0 */
 iopEndianDesc.BigEDmaChannel1 = 1; /* DMA channel 1 */
 rc = PlxInitIopEndian(PrimaryPciBus,
 &iopEndianDesc);

 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);
/*
 Read the EEPROM control register. If there is a configuration EEPROM
 present, then we assume the PCI 9080 device local configuration
 registers should be configured using the EEPROM. If the EEPROM is
 not present, then configure the PCI9080 registers using the IOP code
 contained in function Config9080WoEeprom.
 */
 value = PlxRegisterRead(PrimaryPciBus, �
 PCI9080_EEPROM_CTRL_STAT,
 &rc);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 if ((value & EEPROM_PRESENT_BIT) == 0)
 Config9080WoEeprom(&apiInit);
 else
 Config9080WithEeprom();

/* ----------- Init. PCI9080 interrupt control properties ---------- */

 /* Set plxIntr Structure to ZERO before enabling interrupts */
 for (value = 0; value < sizeof(PLX_INTR); value++) �
 ((PU8)&plxIntr)[value] = 0;

 /*
 WARNING: DMA interrupts must be enabled for the IOP API DMA
 Resource Manager to function properly.
 */
 plxIntr.IopDmaChannel0 = 1; /* DMA channel 0 */
 plxIntr.IopDmaChannel1 = 1; /* DMA channel 1 */

 plxIntr.IopDoorbell = 1; /* PCI to IOP doorbell */
 plxIntr.PciDoorbell = 1; /* IOP to PCI doorbell */
 plxIntr.PciMainInt = 1; /* PCI interrupt enable */
 plxIntr.IopMainInt = 1; /* IOP interrupt enable */

 rc = PlxIntrEnable(PrimaryPciBus, &plxIntr);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /* Init DMA Threshold register */
 rc = PlxRegisterWrite(PrimaryPciBus,
 PCI9080_DMA_THRESHOLD,
 0x00020002);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /*
 All PCI 9080 Registers should be initialized before this point.
 Now set the Local Init Done Bit so the computer's BIOS can

5-10  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

 continue the boot process.
 WARNING: If you do not set this bit the computer will never boot.
 */
 rc = PlxInitDone(PrimaryPciBus); �
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /* Initialize DMA manager */
 rc = BspInitDmaManager(); �
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

/* Install the interrupt handlers for PCI9080 LINTo# and LSERR# pins */
 PlxIntrHandlerSet(Pci9080LintHandler, INTR_PCI9080_LINTO); �
 PlxIntrHandlerSet(Pci9080LserrHandler, INTR_PCI9080_LSERR);

 /* turn off the LED */
 rc = PlxUserWrite(PrimaryPciBus,
 USER0,
 Inactive);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 return;
}

� Setup the IOP API Initialization function parameters. This function takes as parameters all
the structures for all the IOP API PCI IC Initialization functions and sets them to the PCI
IC’s default values.

� Setup the IOP Bus Endianness. This function configures endianness of all PCI IC accesses
to the IOP Bus.

� Determine if there is an EEPROM connected to the PCI IC. The PCI IC can determine
when if there is a Configuration EEPROM connected to it. When none are present the
Config9080WoEeprom() is called to configure the PCI IC manually, otherwise
Config9080Eeprom() is called. For more information on configuring the PCI IC manually
see the Manual PCI IC Configuration Function section which describes the steps needed to
configure the PCI IC manually.

� Enable the PCI IC interrupt triggers. This section starts by clearing the PLX_INTR
structure. The necessary interrupt triggers are set within the structure and the interrupts are
enabled. In this example, the following interrupt triggers are enabled: the DMA channels,
the IOP and the PCI doorbells, and the main IOP and PCI interrupt.

Note: If the DMA Resource Manager will be used in an application, it is important to
enable the DMA channel interrupt triggers and that the ISR connected to the PCI IC’s
interrupt line calls PlxDmaIsr() with the appropriate DMA channel number that caused the
DMA interrupt.

� Finish the PCI IC initialization. This function sets the Init Done Bit of the PCI IC (this
asserts the NB# pin low) allowing the accesses to the PCI Configuration registers from the
PCI BIOS. Up until this point the PCI Host system waits until all PCI boards have asserted
the NB# bit before it continues booting.

� Initialize the DMA Resource Manager.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 5-11

� Connect the PCI IC ISRs to the appropriate interrupt lines of the microprocessor.

The Manual PCI IC Configuration Function:

void
Config9080WoEeprom(PAPI_PARMS pInitParams)
{
RETURN_CODE rc; /* Return code from API functions */

 /***************************
 Init PCI bus properties �
 ***************************/

 /* assert DMPAF# when more than 0x1c entries are in write FIFO */
 pInitParams->PtrPciBusProp->WFifoAlmostFullFlagCount = 0x1C;

 rc = PlxInitPciBusProperties(PrimaryPciBus,
 pInitParams->PtrPciBusProp);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /**********************************
 Initialize the IOP arbitration �
 **********************************/

 /* enable latency timer */
 pInitParams->PtrIopArbitDesc->EnableIopBusLatencyTimer = 1;
 /* Disable Local Bus Direct Slave Give Up Bus Mode */
 pInitParams->PtrIopArbitDesc->IopBusDSGiveUpBusMode = 0;
 /*
 number of IOP bus clocks before negating HOLD and
 releasing IOP bus
 */
 pInitParams->PtrIopArbitDesc->IopBusLatencyTimer = 0x0C;

 rc = PlxInitIopArbitration(PrimaryPciBus,
 pInitParams->PtrIopArbitDesc);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /**************************
 Initialize IOP Space 0 �
 **************************/

 /* map Space 0 into memory */
 pInitParams->PtrIopBus0Prop->MapInMemorySpace = 1;
 /* enable Ready input */
 pInitParams->PtrIopBus0Prop->EnableReadyInput = 1;
 /* operate in delayed transaction mode */
 pInitParams->PtrIopBus0Prop->PciRev2_1Mode = 1;
 pInitParams->PtrIopBus0Prop->IopBusWidth = 3; /* 32 bits bus */
 /* BREQo enable so that DS and DM can occur at the same time */
 pInitParams->PtrIopBus0Prop->EnableIopBREQo = 1;

5-12  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

 rc = PlxInitIopBusProperties(PrimaryPciBus,
 IopSpace0,
 pInitParams->PtrIopBus0Prop);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /* IOP space 0 address and size */
 /* By default set the base address of IOP Space 0 to DRAM */
 rc = PlxInitLocalSpace(PrimaryPciBus,
 IopSpace0,
 DRAM_MAP_ADDR, /* DRAM base address */
 LS0_WINDOW_SIZE /* size of window */
);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /**************************
 Initialize IOP Space 1 �
 **************************/
 /* WARNING: IOP Space 1 MUST be initialized if I2O is enabled */

 /* map Space 1 into memory */
 pInitParams->PtrIopBus1Prop->MapInMemorySpace = 1;
 /* enable Ready input */
 pInitParams->PtrIopBus1Prop->EnableReadyInput = 1;
 /* operate in delayed transaction mode */
 pInitParams->PtrIopBus1Prop->PciRev2_1Mode = 1;
 pInitParams->PtrIopBus1Prop->IopBusWidth = 3; /* 32 bits bus */
 /* BREQo enable so that DS and DM can occur at the same time */
 pInitParams->PtrIopBus1Prop->EnableIopBREQo = 1;

 rc = PlxInitIopBusProperties(PrimaryPciBus,
 IopSpace1,
 pInitParams->PtrIopBus1Prop);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /* IOP space 1 address and size */
 rc = PlxInitLocalSpace(PrimaryPciBus,
 IopSpace1,
 DRAM_MAP_ADDR, /* DRAM base address */
 LS1_WINDOW_SIZE /* size of window */
);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /**
 Initialize Direct Master Memory and IO �
 **/

 rc = PlxInitPciSpace(PrimaryPciBus,
 PciMemSpace,
 DM_MEM_MAP_ADDR, /* IOP base address for DM
 memory */
 DM_SIZE); /* size of window */

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 5-13

 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /* one more time for IO space */
 rc = PlxInitPciSpace(PrimaryPciBus,
 PciIoSpace,
 DM_IO_MAP_ADDR, /* IOP base address for DM
 IO/CFG */
 DM_SIZE); /* size of window */

 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /*
 Note: Leave all other PCI configuration registers alone so that
 they are set either by default values or by the system BIOS.
 */

 /********************************
 Miscellaneous Initialization �
 ********************************/

 rc = PlxRegisterWrite(PrimaryPciBus,
 PCI9080_VENDOR_ID,
 PLX_VENDOR_ID|(PLX_9080RDK_860_DEVICE_ID<<16));
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /* Expansion ROM Range Register. No Expansion ROM for PCIRDK-860 */
 rc = PlxRegisterWrite(PrimaryPciBus,
 PCI9080_EXP_ROM_RANGE,
 0x00000000); /* no expansion ROM */
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);
}

� Initialize the access to the PCI Bus. This function takes the PCI_BUS_PROP structure and
configures the PCI IC accordingly for PCI Bus accesses. In the example the number of
entries before asserting DMPAF# was modified from the default values.

� Initialize the IOP Bus Arbitrator. This function takes the IOP_ARBIT_DESC structure and
configures the PCI IC IOP Bus Arbitrator according to the values defined within the
structure. In the example, the IOP Bus Latency Timer was modified from the default
values.

� Initialize the IOP Space Accesses. This function configures the PCI access to the IOP Bus
through the Local Space Registers (BAR 2-5 of the PCI Configuration Registers). In this
example only IOP Space 0 and 1 are used. Both IOP Spaces are configured so that they are
mapped into PCI memory space, with Ready Input and BREQo enabled, with a 32-bit bus
width and that PCI IC works in Delayed Transaction mode for IOP reads.

� Initialize IOP accesses to the PCI bus. This function configures accesses to the PCI Bus
from the IOP bus such as the PCI base addresses and their sizes. In the example, PCI
Memory and IO/CFG accesses are setup.

5-14  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

� Initialize some miscellaneous registers. This section initializes some PCI Configuration
registers that are not covered by the other functions. The first register function configures
the vendor and device IDs. The second configures the IOP Base address for PCI access to
the Local Expansion ROM register.

5.2 IOP Applications
This section discusses how to build IOP applications with the IOP API. The function of the Hello
World application is to blink the LED connected to the USER pin of the PCI IC and to print a
formatted string to the serial port. The application has two different executable files, one that runs
in RAM memory and one that run in ROM. The RAM application is run by downloading it to
RAM memory; the ROM application is run by writing it to FLASH and rebooting the board. The
PCI SDK libraries provide the functionality and support for the Hello World application.

5.2.1 Setup Of The Development Environment

The development environment for the Hello World application and all other applications can be
easily setup and configured. Two files are provided to setup the environment:

• The environment setup batch file: this file sets some environment variables used by the PCI
SDK for compiling and linking IOP applications; and,

• The make file: this file easily compiles and links source code to create the executables for the
application.

The Environment Setup Batch File

The environment setup batch file programs some environment variables that are needed by the
microprocessor’s development tools and the application make files. Some of the variables that are
set are:

• Update the PATH variable to point to the appropriate development tools;

• Set the path for the compiler’s include and library directories; and,

• Set some variables required by the development tools.

The Make File

The make file is an easy way to compile and link applications. It contains all the necessary
information regarding the compiler and linker needed. This file has variables to hold compiler
and linker parameters.

The make files included in the PCI SDK hold most of the information needed to rebuild their
respective applications. Some of the information not included in the make file is the directory
paths for the microprocessor’s development tools (this information is taken from the environment
variables that were set by calling the environment setup batch file explained earlier) and some
command line parameters (this information controls how the make file is executed).

5.2.2 Rebuilding The Hello World Application

To rebuild the Hello World application execute the make file contained within the Hello World
directory. To do this, at a command prompt, run the environment setup batch file for the desired

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 5-15

microprocessor development environment. Change to the Hello World sample directory and type
the following to build the Hello World RAM application:

nmake /f makefile.401

To rebuild the Hello World ROM application, type instead:

nmake /f makefile.401 ROM=”TRUE”

The make file builds the application properly by using the environment variables set by the batch
file and by any parameters passed in from the command prompt.

In the Hello World directory there is only one source file, being the Hello World application’s
main file and a make file for each supported microprocessor. When the application is built the
make file links in the appropriate libraries from the PCI SDK library directory for all the support
functions needed by the application.

5.2.3 Building Custom Applications

Custom applications built with the PCI SDK use the precompiled IOP libraries. These libraries
provide the necessary support functions for the application. To build a custom application it is
recommended to start with the Hello World application. This application is a basic application
that can be easily ported to new boards once the BSP module has been setup for the new boards.
From there, the custom application can be built by replacing the Hello World main application.
The environment setup batch file and the make file of the Hello World application can be
recycled for the custom application and updated accordingly. There is one thing to keep in mind
when porting the make file. The libraries included into the PCI SDK are built with the following
compiler definitions:

• PCI9080: defines the PCI IC type;

• IOP_CODE: code generated is destined for the IOP; and,

• BIG_ENDIAN: code generated is used with a big endian microprocessor.

Depending on the final destination of the code (either RAM or ROM) one of the following
definitions is used:

• IOP_RAM: code generated is destined for RAM; or,

• IOP_ROM: code generated is destined for ROM;

and for the microprocessor (either IBM 401 or MPC860):

• MPC860: code generated is run on the MPC860 microprocessor; or,

• IBM401B: code generated is run on the IBM 401 microprocessor.

The make file includes these compiler definitions already. If the custom application is built
without using the supplied make file these definitions must be included when compiling and
linking the application to the PCI SDK libraries.

5.3 Windows Applications
An example Windows application using the PCI API will be presented along with the design
descriptions. The steps for creating a Windows application will be described into two sections
being:

5-16  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

• Creating A MS Developer’s Studio Project File, which describes the steps involved in
creating a workspace file and the environment setup.

• Building A Custom Application, which describes the steps for building a custom application
for use with the PCI API.

5.3.1 Creating A MS Developer’s Studio Project File

The main steps to creating a new workspace file are as follows:

1. On the File menu tab, choose New… item.

2. Create a new project file by choosing the Projects tab.

3. Choose a Win32 Application project file. Ensure that the Create New Workspace button is
set.

4. Choose a project name and destination location for the project.

5. Setup the project environment.

• Under the Project menu of Developer Studio, choose Settings... This brings up the project
settings dialog box.

• Choose the C/C++ tab.

• Change the Category type to Preprocessor.

• In the Preprocessor definitions window add the following entries:

Ø PCI_CODE

Ø LITTLE_ENDIAN

• In the Additional include directories add a path to the PLX SDK include directory.
Note: It is recommended that a relative path from the workspace project directory to the
PLX SDK include directory be given if both the include directory and the workspace
project are located on the same logical Windows Drive. This makes the workspace
project more compatible between various Windows Systems and Windows Drive
Mappings.

6. Create the application that will use the PLX API.

7. Include all the source files into the project. Copy the PlxApi.lib file in the PLX SDK
directory into the workspace project directory. Include the PlxApi.lib file into the
workspace project files.

8. Build the application.

5.3.2 Building A Custom Application

To start building a custom application with the PCI API create a new project for the application
(see section 5.3.1 for more information). To start accessing a PCI device using the PCI API
follow these steps:

1. Include the following headers:

• PciTypes.h: contains all the data types, enumerated types and constants used by the PCI
API (for Win32 applications only);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 5-17

• PlxTypes.h: contains all the data types, enumerated types and constants used by both
APIs (common for IOP and Win32 applications);

• Plx.h: contains some constants that are common for all development platforms;

• PciApi.h: contains the PCI API function prototypes; and,

• PlxError.h: contains the error codes used by the PCI API.

2. Connect to a device (get a device driver handle). There are several methods for selecting a
PCI device (using the device location structure):

• Method 1: Using the device’s serial number. The serial number is always in this format:
<device driver name>-<index number>

where <device driver name> is the name of the respective device driver for that
PCI device and <index number> is its unique number based on the order in which the
device driver found the PCI device.

• Method 2: Using the Vendor and Device IDs. The PCI device returned would be the first
one that matches the criteria.

• Method 3: Using the bus and slot numbers. The selected PCI device returned would be
the one located at the position specified. If there is no device present, an error is returned.

• Method 4: Using the Vendor and Device IDs along with the bus and slot numbers. The
selected device must match all the criteria, otherwise an error is returned.

• Method 5: Using Method 4 along with the PCI device’s serial number. The selected
device must match all the criteria, otherwise an error is returned.

• Method 6: Using no PCI device criteria. A handle to a device driver is returned. The
handle may or may not be connected to a PCI device. This is useful for accessing generic
PCI devices.

3. Make connections to other PCI devices if necessary. Repeat Step 2.

4. Start using the PCI API function calls.

5. When the application completes close connections to all PCI devices in use.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-1

Appendix A. IOP API Function Description
The IOP API is designed around the features of the PCI IC. The API functions are grouped into
eleven categories, being:

• Initialization Functions: allows initialization of the PCI bus accesses and arbitration, and the
IOP bus accesses and arbitration;

• Register Access Functions: allows access to a PCI device’s registers;

• PCI Device Functions: Allows reading and writing to a PCI device’s configuration registers
and other PCI specific functions;

• Interrupt Support Functions: allows connection and control of all PCI device’s interrupts;

• Bus Memory and I/O Functions: allows Direct Master and Direct Slave accesses between IOP
memory and PCI bus memory using either memory or I/O bus cycles;

• DMA Functions: allows configuration and setup of DMA transfers;

• Messaging Unit Functions: provides support for initializing and accessing the messaging unit
of a PLX device;

• Power Management Functions: provides support for power management;

• Serial EEPROM Access Functions: provides support for accessing the PLX device’s serial
EEPROM;

• USER Pins Functions: provides support for accessing the PLX device’s USER pins; and,

• Miscellaneous Functions: provides some cross platform support functions.

A.1 IOP API Function Quick Reference List
The following table lists all the PCI API functions available. Designers should consult Section
A.2 for detailed descriptions of the API functions.

API Function Name Purpose

PlxInitApi() Initialize the IOP API.

PlxInitPciBusProperties() Initialize the PCI Bus properties.

PlxInitPciArbitration() Initialize the PCI Bus Arbiter.

PlxInitPciSpace() Initialize and enable accesses to the PCI Bus.

PlxInitIopBusProperties() Initialize and enable the IOP Bus properties.

PlxInitIopArbitration() Initialize the IOP Bus Arbiter.

PlxInitLocalSpace() Initialize accesses to the IOP Bus.

PlxInitIopEndian() Initialize the endianness of the IOP Bus

PlxInitDone() Set the Init Done bit of the PCI IC.

PlxRegisterRead() Read from a register.

PlxRegisterWrite() Write to a register.

A-2  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

API Function Name Purpose

PlxRegisterReadAll() Read a set of sequential registers.

PlxRegisterMailboxRead() Read from a Mailbox register.

PlxRegisterMailboxWrite() Write to a Mailbox register.

PlxRegisterDoorbellRead() Clear and read from a Doorbell register.

PlxRegisterDoorbellSet() Write to a Doorbell register.

PlxPciConfigRegisterRead() Read from a PCI Configuration register.

PlxPciConfigRegisterWrite() Write to a PCI Configuration register.

PlxIntrEnable() Enable PCI IC interrupt triggers.

PlxIntrDisable() Disable PCI IC interrupt triggers.

PlxIntrStatusGet() Get the current interrupt status.

PlxBusPciRead() Read from the PCI bus.

PlxBusPciWrite() Write to the PCI bus.

PlxDmaResourceManagerInit() Initialize the DMA Resource Manager.

PlxDmaSglChannelOpen() Open a DMA channel for SGL DMA.

PlxDmaSglBuild() Build a SGL.

PlxDmaSglFill() Fill a SGL element.

PlxDmaSglTransfer() Control a SGL DMA transfer.

PlxDmaSglChannelClose() Close a SGL DMA channel.

PlxDmaBlockChannelOpen() Open a DMA channel for Block DMA.

PlxDmaBlockTransfer() Control a Block DMA transfer.

PlxDmaBlockTransferRestart() Restart the previous Block DMA transfer.

PlxDmaBlockChannelClose() Close a Block DMA channel.

PlxDmaShuttleChannelOpen() Open a DMA channel for Shuttle DMA.

PlxDmaShuttleTransfer() Control a Shuttle DMA transfer.

PlxDmaShuttleTransferRestart() Restart the previous Shuttle DMA transfer element.

PlxDmaShuttleChannelClose() Close a Shuttle DMA channel.

PlxDmaIsr() Service a DMA interrupt.

PlxMuInit() Initialize the Messaging Unit.

PlxMuInboundPortRead() Read from the Inbound Post Tail Pointer.

PlxMuInboundPortWrite() Write to the Inbound Free Head Pointer.

PlxMuOutboundPortRead() Read from the Outbound Free Tail Pointer.

PlxMuOutboundPortWrite() Write to the Outbound Post Head Pointer.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-3

API Function Name Purpose

PlxPowerLevelSet() Set the power level.

PlxPowerLevelGet() Get the power level.

PlxSerialEepromRead() Read from the Serial EEPROM.

PlxSerialEepromWrite() Write to the Serial EEPROM.

PlxUserRead() Read from a USER pin.

PlxUserWrite() Write to a USER pin.

PlxSdkVersion() Get the version and date of the PCI SDK.

PlxPrintf() Write a formatted string of characters to the serial port.

PlxGetChars() Get stream of data from the serial port.

PlxEchoEnable() Enable or disable the character echoing by the UART
Services Module.

A.2 IOP API Functions Details
This section contains a detailed description of each function in the API. The functions are listed
by category.

The following sample entry lists each entry section and describes the information therein.

Note: Devices supported by PCI SDK Version 2.0: PCI 9080

Sample Function Entry

Syntax:

function(modifier parameter[,...]);
This gives the declaration syntax for each function. Each parameter is italicized.

Description:

Summary of the function’s purpose followed by the parameters it takes. Also includes any
relevant information pertaining to the function.

Return Value:

The value returned by the function.

Usage:

A sample is provided to demonstrate the function’s use.

A-4  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Initialization Functions

PlxInitApi

Syntax:

RETURN_CODE PlxInitApi(IN PAPI_PARMS apiParms);

Description:

Initializes the IOP API and sets the data structures used for initialization to the PCI IC’s default
values.

• apiParms is a structure that contains the information that is defined within the BSP needed by
the IOP API.

Note: This function must be called before any other IOP API function.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiAlreadyInitialized The IOP API has been initialized already.

ApiNullParam The apiParms parameter is NULL.

ApiInvalidAddress The PLX PCI IC IOP Base Address provided is not on a
4-byte boundary.

Usage:

 RETURN_CODE rc;
 API_PARMS apiInit; /* API Init structure */
 PCI_BUS_PROP pciBusProp; /* PCI Bus Properties */
 IOP_BUS_PROP localBusProp0; /* IOP Space 0 Properties */
 IOP_BUS_PROP localBusProp1; /* IOP Space 1 Properties */
 IOP_BUS_PROP localBusPropRom; /* Expansion ROM Properties */
 IOP_ARBIT_DESC arbDesc; /* IOP Space Arbitration Properties */
 IOP_ENDIAN_DESC localEndianDesc; /* Endian properties */
 PLX_INTR plxIntr; /* Interrupt to enable at boot */
 U32 value;

 /*
 The PlxInitApi function will initialize the following structures
 with the default bit field settings corresponding to the PCI 9080
 reset values.
 */
 apiInit.PlxIcIopBaseAddr = (void *)EMBED_PLX_MAP_ADDR;
 apiInit.PtrPciBusProp = &pciBusProp; /* Init Structure */
 apiInit.PtrPciArbitDesc = NULL; /* Unused */
 apiInit.PtrIopBus0Prop = &localBusProp0; /* Init Structure */
 apiInit.PtrIopBus1Prop = &localBusProp1; /* Init Structure */
 apiInit.PtrIopBus2Prop = NULL; /* Unused */

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-5

 apiInit.PtrIopBus3Prop = NULL; /* Unused */
 apiInit.PtrExpRomBusProp = &localBusPropRom; /* Init Structure */
 apiInit.PtrIopArbitDesc = &arbDesc; /* Init Structure */
 apiInit.PtrIopEndianDesc = &localEndianDesc; /* Init Structure */

 /* Initialize API and structures */
 rc = PlxInitApi(&apiInit);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

A-6  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxInitPciBusProperties

Syntax:

RETURN_CODE PlxInitPciBusProperties(IN BUS_INDEX busIndex,
IN PPCI_BUS_PROP pciBusProp);

Description:

Initializes the PCI bus properties registers for the PCI IC on the given bus index.

• busIndex is the PCI bus index; and,

• pciBusProp is a structure containing the PCI bus properties for the PCI space specified.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiNullParam The pciBusProp parameter is NULL.

Usage:

 RETURN_CODE rc;
 PCI_BUS_PROP pciBusProp; /* PCI Bus Properties */

 rc = PlxInitPciBusProperties(PrimaryPciBus, &pciBusProp);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-7

PlxInitPciArbitration

Syntax:

RETURN_CODE PlxInitPciArbitration(IN BUS_INDEX busIndex,
IN PPCI_ARBIT_DESC arbDesc);

Description:

Initializes the PCI bus arbitration registers for the PCI IC on the given bus index.

• busIndex is the bus index; and,

• arbDesc is a pointer to a structure containing the PCI bus arbitration information.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiNullParam The arbDesc parameter is NULL.

ApiUnsupportedFunction This function is not supported for this PCI IC.

Usage:

 RETURN_CODE rc;
 PCI_ARBIT_DESC pciArbitDesc; /* PCI Arbitration Desc */

 rc = PlxInitPciArbitration(PrimaryPciBus, &pciArbitDesc);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

A-8  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxInitPciSpace

Syntax:

RETURN_CODE PlxInitPciSpace(IN BUS_INDEX busIndex,
IN PCI_SPACE pciSpace,
IN U64 pciWindowLocalBaseAddress,
IN U64 size);

Description:

Initializes the PCI Space descriptor registers for the PCI IC on the given bus index.

• busIndex is the bus index;

• pciSpace is the specific PCI space;

• pciWindowLocalBaseAddress is the local base address for the PCI bus memory buffer; and,

• size is the size in bytes of the region of access (the window).

Note: size must be a power of 2 and pciWindowLocalBaseAddress must be a multiple of size.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidPciSpace The pciSpace parameter is neither PciMemSpace nor
PciIoSpace.

ApiInvalidSize The size parameter is not a power of 2 or is less than
64K.

ApiInvalidAddress The pciWindowLocalBaseAddress parameter is not a
multiple of size.

Usage:

 #define DM_SIZE 0x08000000
 #define DM_MEM_MAP_ADDR 0xB8000000
 #define DM_IO_MAP_ADDR 0xB0000000

 RETURN_CODE rc;

 /**
 Initialize Direct Master Memory and IO
 **/
 /* Init for Direct Master memory access */
 rc = PlxInitPciSpace(PrimaryPciBus,
 PciMemSpace,
 DM_MEM_MAP_ADDR, /* local base address

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-9

 for DM memory */
 DM_SIZE); /* size of window */
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /* Init for Direct Master IO accesses */
 rc = PlxInitPciSpace(PrimaryPciBus,
 PciIoSpace,
 DM_IO_MAP_ADDR, /* local base address
 for DM IO/CFG */
 DM_SIZE); /* size of window */
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

A-10  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxInitIopBusProperties

Syntax:

RETURN_CODE PlxInitIopBusProperties(IN BUS_INDEX busIndex,
IN IOP_SPACE iopSpace,
IN PIOP_BUS_PROP iopBusProp);

Description:

Initializes the IOP bus properties registers for the PCI IC on the given bus index.

• busIndex is the bus index;

• iopSpace is the specific local space; and,

• iopBusProp is a structure containing the IOP bus properties for the IOP space specified.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiNullParam The iopBusProp parameter is NULL.

ApiInvalidIopSpace The iopSpace parameter is not supported by this PCI IC.

Usage:

 #define DRAM_MAP_ADDR 0x00000000
 #define LS0_WINDOW_SIZE 0x00800000 /* Local Space 0 8MB */

 RETURN_CODE rc;
 IOP_BUS_PROP iopBusProp0; /* IOP Space 0 Properties */

 /***
 Initialize IOP Space 0
 ***/

 /* enable Ready input */
 iopBusProp0.EnableReadyInput = 1;
 /* disable read prefetching */
 iopBusProp0.DisableReadPrefetch = 1;
 /* enable bursting */
 iopBusProp0.EnableBursting = 1;
 /* enables 9080 from asserting BREQo output */
 iopBusProp0.EnableIopBREQo = 1;
 /* 32 bits bus */
 iopBusProp0.IopBusWidth = 3;
 /* Init the Local space 0 bus properties now */
 rc = PlxInitIopBusProperties(PrimaryPciBus,

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-11

 IopSpace0,
 &iopBusProp0);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /* Initialize and enable local space 0. Remap it to DRAM.*/
 rc = PlxInitLocalSpace(PrimaryPciBus,
 IopSpace0,
 DRAM_MAP_ADDR,
 LS0_WINDOW_SIZE);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

A-12  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxInitIopArbitration

Syntax:

RETURN_CODE PlxInitIopArbitration(IN BUS_INDEX busIndex,
IN PIOP_ARBIT_DESC arbDesc);

Description:

Initializes the IOP bus arbitration registers for the PCI IC on the given bus index.

• busIndex is the bus index; and,

• arbDesc is a pointer to a structure containing the IOP bus arbitration information.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiNullParam The arbDesc parameter is NULL.

Usage:

 RETURN_CODE rc;
 IOP_ARBIT_DESC arbDesc; /* IOP Space Arbitration Properties */

 /**************************************
 Initialize the IOP arbitration
 ***************************************/

 /* enable latency timer */
 arbDesc.EnableIopBusLatencyTimer = 1;
 /*
 number of IOP bus clocks before negating HOLD and
 releasing IOP bus
 */
 arbDesc.IopBusLatencyTimer = 0x1C;
 /* Initialize the IOP arbitration now */
 rc = PlxInitIopArbitration(PrimaryPciBus, &arbDesc);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-13

PlxInitLocalSpace

Syntax:

RETURN_CODE PlxInitLocalSpace(IN BUS_INDEX busIndex,
IN IOP_SPACE iopSpace,
IN U64 localBaseAddress,
IN U64 size);

Description:

Initializes the Local Space descriptor registers for the PCI IC on the given bus index.

• busIndex is the bus index;

• iopSpace is the specific local space;

• iopBaseAddress is the IOP base remap address for any PCI access to the local space; and,

• size is the size in bytes of the region of access (the window).

Note: size must be a power of 2 and localBaseAddress must be a multiple of size.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidIopSpace The iopSpace parameter is not supported by this PCI IC.

ApiInvalidSize The size parameter is not a power of 2, or is too small
for iopSpace.

ApiInvalidAddress The localBaseAddress parameter is not a multiple of
size.

Usage:

 #define DRAM_MAP_ADDR 0x00000000
 #define LS0_WINDOW_SIZE 0x00800000 /* Local Space 0 8MB */

 RETURN_CODE rc;
 IOP_BUS_PROP iopBusProp0; /* IOP Space 0 Properties */

 /***
 Initialize IOP Space 0
 ***/

 /* enable Ready input */
 iopBusProp0.EnableReadyInput = 1;
 /* disable read prefetching */
 iopBusProp0.DisableReadPrefetch = 1;

A-14  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

 /* enable bursting */
 iopBusProp0.EnableBursting = 1;
 /* enables 9080 from asserting BREQo output */
 iopBusProp0.EnableIopBREQo = 1;
 /* 32 bits bus */
 iopBusProp0.IopBusWidth = 3;
 /* Init the Local space 0 bus properties now */
 rc = PlxInitIopBusProperties(PrimaryPciBus,
 IopSpace0,
 &iopBusProp0);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

 /* Initialize and enable local space 0. Remap it to DRAM.*/
 rc = PlxInitLocalSpace(PrimaryPciBus,
 IopSpace0,
 DRAM_MAP_ADDR,
 LS0_WINDOW_SIZE);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-15

PlxInitIopEndian

Syntax:

RETURN_CODE PlxInitIopEndian(IN BUS_INDEX busIndex,
IN PIOP_ENDIAN_DESC iopEndianDesc);

Description:

Initializes the IOP Space endian type accesses for the PCI IC on the given bus index.

• busIndex is the bus index; and,

• iopEndianDesc is a pointer to a structure defining the IOP Space endian type accesses.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiNullParam The iopEndianDesc parameter is NULL.

ApiBadConfigRegEndianMode The member BigEIopConfigRegAccess of
iopEndianDesc is invalid for this board configuration.

Usage:

 RETURN_CODE rc;
 IOP_ENDIAN_DESC localEndianDesc; /* Endian properties */

 /* ------------- init. IOP endian properties --------------------- */
 /*
 The PlxInitIopEndian function MUST be called first so that all
 subsequent accesses to PCI 9080 registers are correct.
 */

 /* DMA channel 0 runs in big endian mode */
 localEndianDesc.BigEDmaChannel0 = 1;
 /* DMA channel 1 runs in big endian mode */
 localEndianDesc.BigEDmaChannel1 = 1;
 /* PCI-9080 regs are accessed in big endian mode from local bus */
 localEndianDesc.BigEIopConfigRegAccess = 1;

 /* Now init the endian properties */
 rc = PlxInitIopEndian(PrimaryPciBus, &localEndianDesc);
 if (rc == ApiBadConfigRegEndianMode)
 {
 /*
 The API has returned that the BigEIopConfigRegAccess bit
 was setup wrong. Just switch it and try again.
 */

A-16  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

 localEndianDesc.BigEIopConfigRegAccess =
 1 - localEndianDesc.BigEIopConfigRegAccess;
 rc = PlxInitIopEndian(PrimaryPciBus, &localEndianDesc);
 }
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-17

PlxInitDone

Syntax:

RETURN_CODE PlxInitDone(IN BUS_INDEX busIndex);

Description:

Signals PCI device to allow external PCI masters (i.e. PCI BIOS) access to the PCI device on the

given bus index.

• busIndex is the bus index.

Note: Upon completion of initialization by the IOP processor, this function must be called in
order to give access to external PCI masters to the PCI device. Failure to do so will result in
system hang.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

Usage:

 RETURN_CODE rc;

 /*
 All PCI 9080 Registers should be initialized before this point.
 Now set the Local Init Done Bit so the computer's BIOS can
 continue the boot process.
 WARNING: If you do not set this bit the computer will never boot.
 */
 rc = PlxInitDone(PrimaryPciBus);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

A-18  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Register Access Functions

PlxRegisterRead

Syntax:

U64 PlxRegisterRead(IN BUS_INDEX busIndex,
IN U32 registerOffset,
OUT PRETURN_CODE returnCode);

Description:

Reads any register of the PCI IC on the given bus index.

• busIndex is the bus index;

• registerOffset is the register number offset; and,

• returnCode is a pointer to a buffer to store the return code.

Return Value:

This function returns the value read from the register. The status of the function call is returned
via the returnCode parameter. The return codes are as follows:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidRegister The registerOffset parameter is out of range or is not on
a 4-byte boundary.

Usage:

RETURN_CODE rc; /* Return code from API functions */
 U32 value; /* temporary data holder */

 /*
 The EEPROM is reloaded when bit 28 of the EEPROM_CTRL_STAT
 register goes from 0 to 1. So, first make sure it is 0.
 */
 value = PlxRegisterRead(PrimaryPciBus,
 PCI9080_EEPROM_CTRL_STAT,
 &rc);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

 /* set bit 28 to zero */
 value &= ~(0x20000000);
 rc = PlxRegisterWrite(PrimaryPciBus,
 PCI9080_EEPROM_CTRL_STAT,

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-19

 value);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

A-20  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxRegisterWrite

Syntax:

RETURN_CODE PlxRegisterWrite(IN BUS_INDEX busIndex,
IN U32 registerOffset,
IN U64 data);

Description:

Writes a value to any register of the PCI IC on the given bus index.

• busIndex is the bus index;

• registerOffset is the register offset address; and,

• data is a U64 value to store in the register.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidRegister The registerOffset parameter is out of range or is not on
a 4-byte boundary.

Usage:

RETURN_CODE rc; /* Return code from API functions */
 U32 value; /* temporary data holder */

 /*
 The EEPROM is reloaded when bit 28 of the EEPROM_CTRL_STAT
 register goes from 0 to 1. So, first make sure it is 0.
 */
 value = PlxRegisterRead(PrimaryPciBus,
 PCI9080_EEPROM_CTRL_STAT,
 &rc);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

 /* set bit 28 to zero */
 value &= ~(0x20000000);
 rc = PlxRegisterWrite(PrimaryPciBus,
 PCI9080_EEPROM_CTRL_STAT,
 value);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-21

PlxRegisterReadAll

Syntax:

RETURN_CODE PlxRegisterReadAll(IN BUS_INDEX busIndex,
IN U32 startOffset,
IN U32 registerCount,
OUT PU64 buffer);

Description:

Reads multiple registers of the PCI IC on the given bus index.

• busIndex is the bus index;

• startOffset is the register offset address to start reading at;

• registerCount is the number of bytes to read starting at startOffset; and,

• buffer is the storage location for the register values.

Note: registerCount is the number of bytes to read. buffer must be large enough to store all the
register values read.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidRegister The startOffset and the registerCount parameters
combined exceed the valid range of registers or
startOffset is not on a 4-byte boundary.

ApiNullParam The buffer parameter is NULL.

Usage:

 #define CONFIG_REGS_SIZE 0x40 /* Size in bytes of config regs */

 RETURN_CODE rc; /* Return code from API functions */
 U32 configRegs[CONFIG_REGS_SIZE / 4]; /* Store config regs */

 rc = PlxRegisterReadAll(PrimaryPciBus,
 PCI9080_VENDOR_ID,
 CONFIG_REGS_SIZE,
 &configRegs);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

A-22  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxRegisterMailboxRead

Syntax:

U64 PlxRegisterMailboxRead(IN BUS_INDEX busIndex,
IN MAILBOX_ID mailboxId,
OUT PRETURN_CODE returnCode);

Description:

Reads any mailbox register of the PCI IC on the given bus index.

• busIndex is the bus index;

• mailboxId is the mailbox register ID; and,

• returnCode is a pointer to a buffer to store the return code.

Return Value:

This function returns the value read from the mailbox register. The status of the function call is
returned via the returnCode parameter. The return codes are as follows:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidRegister The mailboxId parameter is not a valid mailbox ID.

Usage:

 RETURN_CODE rc; /* Return code from API functions */
 U64 mailboxHolder; /* holder for Mailbox 0 */

 /* Read Mailbox 0 */
 mailboxHolder = PlxRegisterMailboxRead(PrimaryPciBus,
 MailBox0,
 &rc);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

 /* Write to Mailbox 1 */
 rc = PlxRegisterMailboxWrite(PrimaryPciBus,
 MailBox1,
 mailboxHolder);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-23

PlxRegisterMailboxWrite

Syntax:

RETURN_CODE PlxRegisterMailboxWrite(IN BUS_INDEX busIndex,
IN MAILBOX_ID mailboxId,
IN U64 data);

Description:

Writes a value to any mailbox register of the PCI IC on the given bus index.

• busIndex is the bus index;

• mailboxId is the mailbox register ID; and,

• data is a U64 value to store in the register.

Return Value:

Return Value Description

ApiSuccess The Mailbox was written successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidRegister The mailboxId parameter is not a valid mailbox ID.

Usage:

 RETURN_CODE rc; /* Return code from API functions */
 U64 mailboxHolder; /* holder for Mailbox 0 */

 /* Read Mailbox 0 */
 mailboxHolder = PlxRegisterMailboxRead(PrimaryPciBus,
 MailBox0,
 &rc);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

 /* Write to Mailbox 1 */
 rc = PlxRegisterMailboxWrite(PrimaryPciBus,
 MailBox1,
 mailboxHolder);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

A-24  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxRegisterDoorbellRead

Syntax:

U64 PlxRegisterDoorbellRead(IN BUS_INDEX busIndex,
OUT PRETURN_CODE returnCode);

Description:

Reads and clears the PCI to IOP doorbell register of the PCI IC on the given bus index.

• busIndex is the bus index; and,

• returnCode is a pointer to a buffer to store the return code.

Return Value:

This function returns the value read from the PCI-to-IOP doorbell register. The status of the
function call is returned via the returnCode parameter. The return codes are as follows:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

Usage:

 RETURN_CODE plxReturnStatus; /* Return code from API functions */
 U32 value;

 /* Local doorbell interrupt */
 value = PlxRegisterDoorbellRead(PrimaryPciBus, &plxReturnStatus);
 if (plxReturnStatus != ApiSuccess)
 PlxSdkError((U32)plxReturnStatus, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-25

PlxRegisterDoorbellSet

Syntax:

RETURN_CODE PlxRegisterDoorbellSet(IN BUS_INDEX busIndex,
IN U64 data);

Description:

Writes a value to the IOP to PCI doorbell register of the PCI IC on the given bus index.

• busIndex is the bus index; and,

• data is a U64 value to store in the register.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

Usage:

 RETURN_CODE plxReturnStatus; /* Return code from API functions */
 U64 value;

 /* trigger a PCI doorbell interrupt */
 value = 0x20;
 plxReturnStatus = PlxRegisterDoorbellSet(PrimaryPciBus, value);
 if (plxReturnStatus != ApiSuccess)
 PlxSdkError((U32)plxReturnStatus, TRUE);

A-26  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PCI API Support Functions

PlxPciConfigRegisterRead

Syntax:

RETURN_CODE PlxPciConfigRegisterRead(IN U32 bus,
IN U32 slot,
IN U32 registerNumber,
OUT PU32 data);

Description:

Reads a configuration register from a PCI device.

• bus is the PCI bus number of the desired device;

• slot is the PCI slot number of the desired device;

• registerNumber is the desired configuration register; and,

• data is a pointer to a buffer to store the register value.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidRegister The registerNumber parameter is out of range or not on
a 4-byte boundary.

ApiNullParam The data parameter is NULL.

ApiConfigAccessFailed A PCI Bus Master Abort occurred.

Usage:

 RETURN_CODE rc; /* Return code from API functions */
 U32 logbus, logdev, ven;

 PlxPrintf(" bus:dev VenID:DevID\n");
 for (logbus = 0; logbus <1; logbus++)/*used to loop to MAX_PCI_BUS*/
 {
 for (logdev = 0; logdev < MAX_PCI_DEV; logdev++)
 {
 rc = PlxPciConfigRegisterRead(logbus,
 logdev,
 PCI9080_VENDOR_ID,
 &ven);
 if ((rc == ApiSuccess) && (ven != 0xFFFFFFFF))
 {

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-27

 PlxPrintf(" %02x:0x%02x 0x%04x:0x%04x "
 logbus, logdev,
 ven & 0x0000ffff,
 (ven & 0xffff0000) >> 16);
 }
 }
 }

A-28  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxPciConfigRegisterWrite

Syntax:

RETURN_CODE PlxPciConfigRegisterWrite(IN U32 bus,
IN U32 slot,
IN U32 registerNumber,
IN PU32 data);

Description:

Writes data to a configuration register on a PCI device.

• bus is the PCI bus number of the desired device;

• slot is the PCI slot number of the desired device;

• registerNumber is the desired configuration register; and,

• data is a pointer to the buffer that contains the data for the write.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidRegister The registerNumber parameter is out of range or not on
a 4-byte boundary.

ApiNullParam The data parameter is NULL.

ApiConfigAccessFailed A PCI Bus Master Abort occurred.

Usage:

 RETURN_CODE rc; /* Return code from API functions */
 U32 address, range;

 /* Save the address at BAR 0 */
 rc = PlxPciConfigRegisterRead(0, 0x12, CFG_BAR0, &address);
 if (rc == ApiSuccess)
 {
 /* Get the range of BAR 0 */
 range = 0xFFFFFFFF;
 rc = PlxPciConfigRegisterWrite(0, 0x12, CFG_BAR0, &range);
 if (rc == ApiSuccess)
 PlxPciConfigRegisterRead(0, 0x12, CFG_BAR0, &range);
 }
 /* Restore address to BAR 0 */
 PlxPciConfigRegisterWrite(0, 0x12, CFG_BAR0, &address);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-29

Interrupt Support Functions

PlxIntrEnable

Syntax:

RETURN_CODE PlxIntrEnable(IN BUS_INDEX busIndex,
IN PPLX_INTR plxIntr);

Description:

Enables specific interrupts of the PCI IC for a given bus index.

• busIndex is the bus index; and,

• plxIntr is the interrupt structure that describes which interrupts will be enabled.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiNullParam The plxIntr parameter is NULL.

Usage:

 RETURN_CODE rc; /* Return code from API functions */
 PLX_INTR plxIntr; /* Interrupt to enable at boot */

 /* --------- Init. PCI9080 interrupt control properties ---------- */

 /* Set plxIntr Structure to ZERO before enabling interrupts */
 for (value = 0; value < sizeof(PLX_INTR); value++)
 ((PU8)&plxIntr)[value] = 0;

 /*
 WARNING: DMA interrupts must be enabled for the IOP API DMA
 Resource Manager to function properly.
 */
 plxIntr.IopDmaChannel0 = 1; /* DMA channel 0 */
 plxIntr.IopDmaChannel1 = 1; /* DMA channel 1 */
 plxIntr.IopDoorbell = 1; /* PCI to IOP doorbell */
 plxIntr.PciDoorbell = 1; /* IOP to PCI doorbell */
 plxIntr.PciMainInt = 1; /* PCI interrupt enable */
 plxIntr.IopMainInt = 1; /* IOP interrupt enable */

 rc = PlxIntrEnable(PrimaryPciBus, &plxIntr);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

A-30  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxIntrDisable

Syntax:

RETURN_CODE PlxIntrDisable(IN BUS_INDEX busIndex,
IN PPLX_INTR plxIntr);

Description:

Disables specific interrupts of the PCI IC for a given bus index.

• busIndex is the bus index; and,

• plxIntr is the interrupt structure that describes which interrupts will be disabled.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiNullParam The plxIntr parameter is NULL.

Usage:

RETURN_CODE rc; /* Return code from API functions */
 PLX_INTR plxIntr; /* Interrupt to enable at boot */

 /* Set plxIntr Structure to ZERO before disabling interrupts */
 for (value = 0; value < sizeof(PLX_INTR); value++)
 ((PU8)&plxIntr)[value] = 0;

 /* Disable the DMA interrupts */
 plxIntr.IopDmaChannel0 = 1; /* DMA channel 0 */
 plxIntr.IopDmaChannel1 = 1; /* DMA channel 1 */

 rc = PlxIntrDisable(PrimaryPciBus, &plxIntr);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-31

PlxIntrStatusGet

Syntax:

BOOLEAN PlxIntrStatusGet(IN BUS_INDEX busIndex,
OUT PPLX_INTR plxIntr,
OUT PRETURN_CODE returnCode);

Description:

Determines which interrupts are currently active of the PCI IC for the given bus index.

• busIndex is the bus index;

• plxIntr is the interrupt structure that contains information detailing which interrupts are
active; and,

• returnCode is a pointer to a buffer to store the return code.

Return Value:

This function returns TRUE when an interrupt is active and FALSE when no interrupts are active.
The status of the function call is returned via the returnCode parameter. The return codes are as
follows:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

Usage:

 RETURN_CODE plxReturnStatus; /* Return code from API functions */
 PLX_INTR plxIntr;

 /* Check if there is actually an interrupt */
 if (!PlxIntrStatusGet(PrimaryPciBus, &plxIntr, &plxReturnStatus))
 {
 /* No interrupt, or function failure??? */
 return;
 }

A-32  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Bus Memory and I/O Functions

PlxBusPciRead

Syntax:

RETURN_CODE PlxBusPciRead(IN BUS_INDEX busIndex,
IN PCI_SPACE pciSpace,
IN U64 address,
OUT PU64 destination,
IN U32 transferSize,
IN ACCESS_TYPE accessType);

Description:

Reads values into a buffer from the PCI bus.

• busIndex is the bus index;

• pciSpace states which type of bus cycles to use, being either memory bus cycles or I/O bus
cycles;

• address is the starting PCI address for the read;

• destination is a pointer to the buffer to store the data retrieved;

• transferSize defines the number of bytes you want to read from the PCI bus; and,

• accessType defines the access type size.

Note: This API function remaps the Direct Master Space window (register value is restored when
the function terminates). destination must be large enough to store all the data read.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidPciSpace The pciSpace parameter is neither PciMemSpace nor
PciIoSpace.

ApiInvalidAccessType The accessType size is not supported for this IOP API.

ApiInvalidAddress The address parameter is not aligned based on the
accessType provided.

ApiInvalidSize The transferSize parameter is 0 or is not aligned based
on the accessType provided.

Usage:

 #define DRAM_MAP_ADDR 0x00000000

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-33

 RETURN_CODE rc; /* Return code from API functions */
 U32 length = 0x100;
 U32 bufFrom = DRAM_MAP_ADDR, bufTo = DRAM_MAP_ADDR + length;

 /* Start copying data at address DRAM_MAP_ADDR */
 rc = PlxBusPciWrite(PrimaryPciBus,
 PciMemSpace,
 0x1FC00000,
 (PU64)(bufFrom),
 length,
 BitSize8);

 if (rc != ApiSuccess)
 {
 PlxPrintf("Error: Unable to write data.\n");
 return -1;
 }

 /* Now read back the data to compare */
 rc = PlxBusPciRead(PrimaryPciBus,
 PciMemSpace,
 pciStartOffset,
 (PU64)(bufTo),
 totalSize,
 accessType);

 if (rc != ApiSuccess)
 {
 PlxPrintf("Error: Unable to read data.\n");
 return -1;
 }

 /* Now compare data */
 if (memcmp((const void *)bufFrom,(const void*)bufTo, totalSize) != 0)
 {
 PlxPrintf("Error: Data is corrupted.\n");
 return -1;
 }

A-34  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxBusPciWrite

Syntax:

RETURN_CODE PlxBusPciWrite(IN BUS_INDEX busIndex,
IN PCI_SPACE pciSpace,
IN U64 address,
IN PU64 source,
IN U32 transferSize,
IN ACCESS_TYPE accessType);

Description:

Writes values from the buffer provided to the PCI bus.

• busIndex is the bus index;

• pciSpace states which type of bus cycles to use, being either memory bus cycles or I/O bus
cycles;

• address is the starting PCI address for the write;

• source is a pointer to the buffer containing the data; and,

• transferSize defines the number of bytes you want to write to the PCI bus; and,

• accessType defines the access type size.

Note: This API function remaps the Direct Master Space window (register value is returned when
the function terminates).

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidPciSpace The pciSpace parameter is neither PciMemSpace nor
PciIoSpace.

ApiInvalidAccessType The accessType size is not supported for this IOP API.

ApiInvalidAddress The address parameter is not aligned based on the
accessType provided.

ApiInvalidSize The transferSize parameter is 0 or is not aligned based
on the accessType provided.

Usage:

 #define DRAM_MAP_ADDR 0x00000000

 RETURN_CODE rc; /* Return code from API functions */
 U32 length = 0x100;
 U32 bufFrom = DRAM_MAP_ADDR, bufTo = DRAM_MAP_ADDR + length;

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-35

 /* Start copying data at address DRAM_MAP_ADDR */
 rc = PlxBusPciWrite(PrimaryPciBus,
 PciMemSpace,
 0x1FC00000,
 (PU64)(bufFrom),
 length,
 BitSize8);

 if (rc != ApiSuccess)
 {
 PlxPrintf("Error: Unable to write data.\n");
 return -1;
 }

 /* Now read back the data to compare */
 rc = PlxBusPciRead(PrimaryPciBus,
 PciMemSpace,
 pciStartOffset,
 (PU64)(bufTo),
 totalSize,
 accessType);

 if (rc != ApiSuccess)
 {
 PlxPrintf("Error: Unable to read data.\n");
 return -1;
 }

 /* Now compare data */
 if (memcmp((const void *)bufFrom,(const void*)bufTo, totalSize) != 0)
 {
 PlxPrintf("Error: Data is corrupted.\n");
 return -1;
 }

A-36  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

DMA Functions

PlxDmaResourceManagerInit

Syntax:

RETURN_CODE PlxDmaResourceManagerInit(IN PDMA_PARMS dmaParms);

Description:

Initializes the DMA Resource Manager.

• dmaParms is an array of structures that contains the information that is defined within the
BSP needed by the DMA Resource Manager.

Note: This function must be called before any DMA API function. The DMA Manager requires
control of the DMA ISR to operate properly. For this reason, modifications or replacements of
the main PLX ISR should call the PlxDmaIsr(IN DMA_CHANNEL dmaChannel) function when a
DMA channel is the cause of an interrupt.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNotInitialized The IOP API is not initialized.

ApiNullParam The dmaParms parameter is NULL.

ApiDmaChannelTypeError A DMA channel for which this function is called is not
closed.

ApiDmaManReady The DMA manager is already initialized for this
channel.

ApiInvalidAddress One element in the dmaParms array has its
FirstSglElement pointing to an address that is not
on a 16-byte boundary.

Usage:

 RETURN_CODE rc; /* Return code from API functions */
 DMA_PARMS ourDmaParms[NUMBER_OF_9080_DMA_CHANNELS + 1];

 /*
 DMA manager for channel 0.
 The actual SGL first element address is incremented to the next
 16-bytes boundary.
 */
 ourDmaParms[0].DmaChannel = PrimaryPciChannel0;
 ourDmaParms[0].FirstSglElement = (PDMA_TRANSFER_ELEMENT)0x00700000;
 ourDmaParms[0].WaitQueueBase = Dma0SglQueue;
 ourDmaParms[0].NumberOfElements = DMA_CHANNEL0_SGL_SIZE;

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-37

 /*
 DMA manager for channel 1.
 The actual SGL first element address is incremented to the next
 16-bytes boundary.
 */
 ourDmaParms[1].DmaChannel = PrimaryPciChannel1;
 ourDmaParms[1].FirstSglElement = (PDMA_TRANSFER_ELEMENT)0x00701000;
 ourDmaParms[1].WaitQueueBase = Dma1SglQueue;
 ourDmaParms[1].NumberOfElements = DMA_CHANNEL1_SGL_SIZE;

 /*
 Break-channel. Any of the four next lines is enough to provoke
 the break. You only need to use one of them.
 */
 ourDmaParms[2].DmaChannel = (DMA_CHANNEL)(-1);
 ourDmaParms[2].FirstSglElement = (PDMA_TRANSFER_ELEMENT)NULL;
 ourDmaParms[2].WaitQueueBase = NULL;
 ourDmaParms[2].NumberOfElements = 0;

 rc = PlxDmaResourceManagerInit(ourDmaParms);
 if (rc != ApiSuccess)
 PlxSdkError((U32) rc, TRUE);

A-38  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaSglChannelOpen

Syntax:

RETURN_CODE PlxDmaSglChannelOpen(IN DMA_CHANNEL dmaChannel,
IN PDMA_CHANNEL_DESC dmaChannelDesc);

Description:

Initializes and opens a DMA channel for Scatter-Gather DMA transfers.

• dmaChannel is the DMA channel number; and,

• dmaChannelDesc is a structure containing the DMA channel descriptors.

Note: Before calling this function a call to PlxDmaResourceManagerInit() must be done to
initialize the DMA Resource Manager.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid This dmaChannel parameter is not supported by this
PLX IC.

ApiNullParam The dmaChannelDesc parameter is NULL.

ApiDmaManNotReady The DMA manager is not ready for this DMA channel.

ApiDmaChannelUnavailable The DMA channel is not closed.

ApiDmaInvalidChannelPriority The DmaChannelPriority member of
dmaChannelDesc is not valid.

Usage:

 RETURN_CODE rc;
 DMA_CHANNEL_DESC desc;

 desc.EnableReadyInput = 1;
 desc.EnableBTERMInput = 0;
 desc.EnableIopBurst = 0;
 desc.EnableWriteInvalidMode = 0;
 desc.EnableDmaEOTPin = 0;
 desc.DmaStopTransferMode = AssertBLAST;
 desc.HoldIopAddrConst = 0;
 desc.HoldIopSourceAddrConst = 0;
 desc.HoldIopDestAddrConst = 0;
 desc.DemandMode = 0;
 desc.EnableTransferCountClear = 0; /* don't clear count */
 desc.DmaChannelPriority = Rotational; /* rotational priority */
 desc.WaitStates = 0;
 desc.IopBusWidth = 3; /* 32 bit bus */
 desc.Reserved1 = 0;
 desc.TholdForIopWrites = 0;

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-39

 desc.TholdForIopReads = 0;
 desc.TholdForPciWrites = 0;
 desc.TholdForPciReads = 0;
 desc.Reserved2 = 0;

 rc = PlxDmaSglChannelOpen(PrimaryPciChannel, &desc);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Error opening DMA channel.\n");
 return -1;
 }

A-40  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaSglBuild

Syntax:

RETURN_CODE PlxDmaSglBuild(IN DMA_CHANNEL dmaChannel,
IN U32 numberOfDmaElements,
OUT PSGL_ADDR sglAddress);

Description:

Builds an empty Scatter-Gather List.

• dmaChannel is the DMA channel number;

• numberOfDmaElements is the desired number of DMA Transfer Elements for the Scatter-
Gather List; and,

• sglAddress is a pointer to the Scatter-Gather List address that is built.

Note: Before calling this function the appropriate DMA channel must be successfully opened
using PlxDmaSglChannelOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid This dmaChannel parameter is not supported by this
PLX IC.

ApiNullParam The sglAddress parameter is NULL.

ApiDmaManNotReady The DMA manager is not ready for this channel.

ApiDmaChannelTypeError The DMA channel was not opened for SGL DMA
transfers.

ApiInvalidSize The numberOfDmaElements parameter is 0.

ApiDmaNoMoreElements There are not enough elements in the SGL Free pool to
build the SGL.

ApiDmaManCorrupted The DMA manager is corrupted.

Usage:

 #define DRAM_MAP_ADDR 0x00000000

 RETURN_CODE rc;
 DMA_TRANSFER_ELEMENT dmaData;
 SGL_ADDR *sglBasePtr,
 U32 totalSize = 0x100;
 U32 bufFrom = DRAM_MAP_ADDR, bufTo = DRAM_MAP_ADDR + totalSize;

 /* Then we fill the resulting local buffer with 0.*/
 rc = PlxDmaSglBuild(PrimaryPciChannel, 2, sglBasePtr);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-41

 if (rc != ApiSuccess)
 {
 PlxPrintf("Error opening DMA channel.\n");
 return -1;
 }

 /*
 Preparing a list element to perform a DMA data exchange
 from DRAM_MAP_ADDR of length totalSize to pciStartOffset
 */
 dmaData.Pci9080Dma.LowPciAddr = 0x2BC0000;
 dmaData.Pci9080Dma.IopAddr = bufFrom;
 dmaData.Pci9080Dma.TransferCount = totalSize;
 dmaData.Pci9080Dma.TerminalCountIntr = 0;
 dmaData.Pci9080Dma.IopToPciDma = 1;
 rc = PlxDmaSglFill(*sglBasePtr, 0, &dmaData);
 if (rc != ApiSuccess)
 {
 PlxPrintf("SglFill failed\n");
 return -1;
 }

 /*
 Preparing a list element to perform a DMA data exchange
 from pciStartOffset of length totalSize to DRAM_MAP_ADDR
 */
 dmaData.Pci9080Dma.LowPciAddr = 0x2BC0000;
 dmaData.Pci9080Dma.IopAddr = bufTo;
 dmaData.Pci9080Dma.TransferCount = totalSize;
 dmaData.Pci9080Dma.TerminalCountIntr = 0;
 dmaData.Pci9080Dma.IopToPciDma = 0;
 rc = PlxDmaSglFill(*sglBasePtr, 1, &dmaData);
 if (rc != ApiSuccess)
 {
 PlxPrintf("SglFill failed\n");
 return -1;
 }

 /*
 The DMA Manager has already been initialized.
 2 elements were allocated for channel 0.
 */
 rc = PlxDmaSglTransfer(PrimaryPciChannel,
 DmaStart,
 sglBasePtr,
 FALSE);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Error while performing a SGL DMA with channel.\n");
 return -1;
 }

A-42  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaSglFill

Syntax:

RETURN_CODE PlxDmaSglFill(IN SGL_ADDR sglAddress,
IN U32 sglIndex,
IN PDMA_TRANSFER_ELEMENT dmaData);

Description:

Fills a DMA Transfer Element within a Scatter-Gather List.

• sglAddress is the Scatter-Gather List address;

• sglIndex is the index value for the desired DMA Transfer Element contained within the
Scatter-Gather List; and,

• dmaData is the data for the DMA transfer element.

Note: Before calling this function a valid Scatter-Gather List address must be received from
PlxDmaSglBuild().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNotInitialized The IOP API is not initialized.

ApiNullParam The sglAddress parameter or the dmaData parameter is
NULL.

ApiDmaInvalidElementIndex The DMA Manager cannot find the sglIndex element
within the SGL.

Usage:

 #define DRAM_MAP_ADDR 0x00000000

 RETURN_CODE rc;
 DMA_TRANSFER_ELEMENT dmaData;
 SGL_ADDR *sglBasePtr,
 U32 totalSize = 0x100;
 U32 bufFrom = DRAM_MAP_ADDR, bufTo = DRAM_MAP_ADDR + totalSize;

 /* Then we fill the resulting local buffer with 0.*/
 rc = PlxDmaSglBuild(PrimaryPciChannel, 2, sglBasePtr);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Error opening DMA channel.\n");
 return -1;
 }

 /*
 Preparing a list element to perform a DMA data exchange

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-43

 from DRAM_MAP_ADDR of length totalSize to pciStartOffset
 */
 dmaData.Pci9080Dma.LowPciAddr = 0x2BC0000;
 dmaData.Pci9080Dma.IopAddr = bufFrom;
 dmaData.Pci9080Dma.TransferCount = totalSize;
 dmaData.Pci9080Dma.TerminalCountIntr = 0;
 dmaData.Pci9080Dma.IopToPciDma = 1;
 rc = PlxDmaSglFill(*sglBasePtr, 0, &dmaData);
 if (rc != ApiSuccess)
 {
 PlxPrintf("SglFill failed\n");
 return -1;
 }

 /*
 Preparing a list element to perform a DMA data exchange
 from pciStartOffset of length totalSize to DRAM_MAP_ADDR
 */
 dmaData.Pci9080Dma.LowPciAddr = 0x2BC0000;
 dmaData.Pci9080Dma.IopAddr = bufTo;
 dmaData.Pci9080Dma.TransferCount = totalSize;
 dmaData.Pci9080Dma.TerminalCountIntr = 0;
 dmaData.Pci9080Dma.IopToPciDma = 0;
 rc = PlxDmaSglFill(*sglBasePtr, 1, &dmaData);
 if (rc != ApiSuccess)
 {
 PlxPrintf("SglFill failed\n");
 return -1;
 }

 /*
 The DMA Manager has already been initialized.
 2 elements were allocated for channel 0.
 */
 rc = PlxDmaSglTransfer(PrimaryPciChannel,
 DmaStart,
 sglBasePtr,
 FALSE);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Error while performing a SGL DMA with channel.\n");
 return -1;
 }

A-44  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaSglTransfer

Syntax:

RETURN_CODE PlxDmaSglTransfer(IN DMA_CHANNEL dmaChannel,
IN DMA_COMMAND dmaCommand,
IN SGL_ADDR sglAddress,
IN BOOLEAN returnImmediate);

Description:

Controls the Scatter-Gather DMA transfer for a given DMA channel.

• dmaChannel is the DMA channel number previously opened;

• dmaCommand is the action to perform on this DMA channel;

• sglAddress is the Scatter-Gather List address; and,

• returnImmediate determines if this function waits for the DMA command to complete before
returning.

Note: Before calling this function the appropriate DMA channel must be successfully opened
using PlxDmaSglChannelOpen() and all the DMA Transfer Elements of a Scatter-Gather List
must be filled by PlxDmaSglFill().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid The dmaChannel parameter is not supported by this PCI
IC.

ApiDmaChannelTypeError The DMA channel was not opened for SGL DMA.

ApiDmaManNotReady The DMA manager is not ready for this channel.

ApiDmaSglInvalid The sglAddress parameter is invalid.

ApiDmaSglQueueFull The waiting queue is full.

ApiDmaDone The DMA channel is done.

ApiDmaPaused The DMA channel is paused.

ApiDmaInProgress The DMA channel is in progress.

ApiDmaNotPaused The DMA channel is in progress or done (return code
returned when DmaResume command is requested and
the DMA channel is not paused).

ApiDmaManCorrupted The DMA manager is corrupted.

ApiDmaCommandInvalid The dmaCommand parameter is invalid.

Usage:

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-45

 #define DRAM_MAP_ADDR 0x00000000

 RETURN_CODE rc;
 DMA_TRANSFER_ELEMENT dmaData;
 SGL_ADDR *sglBasePtr,
 U32 totalSize = 0x100;
 U32 bufFrom = DRAM_MAP_ADDR, bufTo = DRAM_MAP_ADDR + totalSize;

 /* Then we fill the resulting local buffer with 0.*/
 rc = PlxDmaSglBuild(PrimaryPciChannel, 2, sglBasePtr);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Error opening DMA channel.\n");
 return -1;
 }

 /*
 Preparing a list element to perform a DMA data exchange
 from DRAM_MAP_ADDR of length totalSize to pciStartOffset
 */
 dmaData.Pci9080Dma.LowPciAddr = 0x2BC0000;
 dmaData.Pci9080Dma.IopAddr = bufFrom;
 dmaData.Pci9080Dma.TransferCount = totalSize;
 dmaData.Pci9080Dma.TerminalCountIntr = 0;
 dmaData.Pci9080Dma.IopToPciDma = 1;
 rc = PlxDmaSglFill(*sglBasePtr, 0, &dmaData);
 if (rc != ApiSuccess)
 {
 PlxPrintf("SglFill failed\n");
 return -1;
 }

 /*
 Preparing a list element to perform a DMA data exchange
 from pciStartOffset of length totalSize to DRAM_MAP_ADDR
 */
 dmaData.Pci9080Dma.LowPciAddr = 0x2BC0000;
 dmaData.Pci9080Dma.IopAddr = bufTo;
 dmaData.Pci9080Dma.TransferCount = totalSize;
 dmaData.Pci9080Dma.TerminalCountIntr = 0;
 dmaData.Pci9080Dma.IopToPciDma = 0;
 rc = PlxDmaSglFill(*sglBasePtr, 1, &dmaData);
 if (rc != ApiSuccess)
 {
 PlxPrintf("SglFill failed\n");
 return -1;
 }

 /*
 The DMA Manager has already been initialized.
 2 elements were allocated for channel 0.
 */
 rc = PlxDmaSglTransfer(PrimaryPciChannel,
 DmaStart,
 sglBasePtr,
 FALSE);

A-46  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

 if (rc != ApiSuccess)
 {
 PlxPrintf("Error while performing a SGL DMA with channel.\n");
 return -1;
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-47

PlxDmaSglChannelClose

Syntax:

RETURN_CODE PlxDmaSglChannelClose(IN DMA_CHANNEL dmaChannel);

Description:

Closes the Scatter-Gather DMA channel.

• dmaChannel is the DMA channel number previously opened.

Note: Before calling this function the appropriate DMA channel must be successfully opened
using PlxDmaSglChannelOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid The dmaChannel parameter is not supported by this PCI
IC.

ApiDmaChannelTypeError The DMA channel was not opened for SGL DMA.

ApiDmaInProgress A DMA transfer is in progress.

ApiDmaPaused The DMA channel is paused.

Usage:

 RETURN_CODE rc;

 rc = PlxDmaSglChannelClose(PrimaryPciChannel);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Error closing DMA channel.\n");
 return -1;
 }

A-48  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaBlockChannelOpen

Syntax:

RETURN_CODE PlxDmaBlockChannelOpen(IN DMA_CHANNEL dmaChannel,
IN PDMA_CHANNEL_DESC dmaChannelDesc);

Description:

Opens and initializes a DMA channel for Block DMA transfers.

• dmaChannel is the DMA channel number; and,

• dmaChannelDesc is a structure containing the DMA channel descriptors.

Note: Before calling this function a call to PlxDmaResourceManagerInit() must be done to
initialize the DMA Resource Manager.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid This dmaChannel parameter is not supported by this
PLX IC.

ApiNullParam The dmaChannelDesc parameter is NULL.

ApiDmaManNotReady The DMA manager is not ready for this DMA channel.

ApiDmaChannelUnavailable The DMA channel is not closed.

ApiDmaInvalidChannelPriority The DmaChannelPriority member of
dmaChannelDesc is not valid.

Usage:

 RETURN_CODE rc;
 DMA_CHANNEL_DESC desc;

 /* Setup DMA configuration structure */
 desc.EnableReadyInput = 1;
 desc.EnableBTERMInput = 0;
 desc.EnableIopBurst = 0;
 desc.EnableWriteInvalidMode = 0;
 desc.EnableDmaEOTPin = 0;
 desc.DmaStopTransferMode = AssertBLAST;
 desc.HoldIopAddrConst = 0;
 desc.HoldIopSourceAddrConst = 0;
 desc.HoldIopDestAddrConst = 0;
 desc.DemandMode = 0;
 desc.EnableTransferCountClear = 0;
 desc.DmaChannelPriority = Rotational; /* rotational priority */
 desc.WaitStates = 0;
 desc.IopBusWidth = 3; /* 32 bit bus */
 desc.Reserved1 = 0;

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-49

 desc.TholdForIopWrites = 0;
 desc.TholdForIopReads = 0;
 desc.TholdForPciWrites = 0;
 desc.TholdForPciReads = 0;
 desc.Reserved2 = 0;

 rc = PlxDmaBlockChannelOpen(PrimaryPciChannel, &desc);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Error opening DMA channel.\n");
 return -1;
 }

A-50  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaBlockTransfer

Syntax:

RETURN_CODE PlxDmaBlockTransfer(IN DMA_CHANNEL dmaChannel,
IN DMA_COMMAND dmaCommand,
IN PDMA_TRANSFER_ELEMENT dmaData,
IN BOOLEAN returnImmediate);

Description:

Controls the Block DMA transfer for a given DMA channel.

• dmaChannel is the DMA channel number previously opened;

• dmaCommand is the action to perform on this DMA channel;

• dmaData is the data for the DMA transfer; and,

• returnImmediate determines if this function waits for the DMA command to complete before
returning.

Note: Before calling this function the appropriate DMA channel must be successfully opened
using PlxDmaBlockChannelOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid The dmaChannel parameter is not supported by this PCI
IC.

ApiNullParam The dmaData parameter is NULL.

ApiDmaChannelTypeError The DMA channel was not opened for Block DMA.

ApiDmaManNotReady The DMA manager is not ready for this channel.

ApiDmaDone The DMA channel is done.

ApiDmaPaused The DMA channel is paused.

ApiDmaInProgress The DMA channel is in progress.

ApiDmaNotPaused The DMA channel is in progress or done (return code
returned when DmaResume command is requested and
the DMA channel is not paused).

ApiDmaManCorrupted The DMA manager is corrupted.

ApiDmaCommandInvalid The dmaCommand parameter is invalid.

Usage:

 #define DRAM_MAP_ADDR 0x00000000

 RETURN_CODE rc;

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-51

 DMA_TRANSFER_ELEMENT dmaData;
 U32 totalSize = 0x100;
 U32 bufFrom = DRAM_MAP_ADDR;

 /* Setting dmaData */
 dmaData.Pci9080Dma.LowPciAddr = 0x14BC0000;
 dmaData.Pci9080Dma.IopAddr = bufFrom;
 dmaData.Pci9080Dma.TransferCount = totalSize;
 dmaData.Pci9080Dma.IopToPciDma = 1;
 dmaData.Pci9080Dma.TerminalCountIntr = 0;/* no interrupts */

 /*
 Start copying data from address bufFrom to pciStartOffset.
 The call returns immediately.
 */
 rc = PlxDmaBlockTransfer(PrimaryPciChannel0,
 DmaStart,
 &dmaData,
 TRUE);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Error while performing a Block DMA with channel 0.\n");
 return -1;
 }

A-52  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaBlockTransferRestart

Syntax:

RETURN_CODE PlxDmaBlockTransferRestart(IN DMA_CHANNEL dmaChannel,
IN U32 transferSize,
IN BOOLEAN returnImmediate);

Description:

Restarts the Block DMA transfer for a pre-programmed Block DMA channel.

• dmaChannel is the DMA channel number previously opened and programmed;

• transferSize is the DMA transfer size; and,

• returnImmediate determines if this function waits for the DMA command to complete before
returning.

Note: Before calling this function the appropriate DMA channel must be successfully
programmed using PlxDmaBlockTransfer().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid The dmaChannel parameter is not supported by this PCI
IC.

ApiDmaChannelTypeError The DMA channel was not opened for Block DMA.

ApiDmaInProgress The DMA channel is in progress.

Usage:

 RETURN_CODE rc;
 U32 totalSize = 0x100;

 rc = PlxDmaBlockTransferRestart(PrimaryPciChannel0, totalSize, TRUE);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Restart failed\n");
 return -1;
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-53

PlxDmaBlockChannelClose

Syntax:

RETURN_CODE PlxDmaBlockChannelClose(IN DMA_CHANNEL dmaChannel);

Description:

Closes the Block DMA channel.

• dmaChannel is the DMA channel number previously opened.

Note: Before calling this function the appropriate DMA channel must be successfully opened
using PlxDmaBlockChannelOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid The dmaChannel parameter is not supported by this PCI
IC.

ApiDmaChannelTypeError The DMA channel was not opened for Block DMA.

ApiDmaInProgress A DMA transfer is in progress.

ApiDmaPaused The DMA channel is paused.

Usage:

 RETURN_CODE rc;

 rc = PlxDmaBlockChannelClose(PrimaryPciChannel);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Error closing DMA channel.\n");
 return -1;
 }

A-54  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaShuttleChannelOpen

Syntax:

RETURN_CODE PlxDmaShuttleChannelOpen(IN DMA_CHANNEL dmaChannel,
IN PDMA_CHANNEL_DESC dmaChannelDesc);

Description:

Opens and initializes a DMA channel for Shuttle DMA transfers.

• dmaChannel is the DMA channel number; and,

• dmaChannelDesc is a structure containing the DMA channel descriptors.

Note: Before calling this function a call to PlxDmaResourceManagerInit() must be done to
initialize the DMA Resource Manager.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid This dmaChannel parameter is not supported by this
PLX IC.

ApiNullParam The dmaChannelDesc parameter is NULL.

ApiDmaManNotReady The DMA manager is not ready for this DMA channel.

ApiDmaChannelUnavailable The DMA channel is not closed.

ApiDmaInvalidChannelPriority The DmaChannelPriority member of
dmaChannelDesc is not valid.

Usage:

 RETURN_CODE rc;
 DMA_CHANNEL_DESC desc;

 /* Setup DMA configuration structure */
 desc.EnableReadyInput = 1;
 desc.EnableBTERMInput = 0;
 desc.EnableIopBurst = 0;
 desc.EnableWriteInvalidMode = 0;
 desc.EnableDmaEOTPin = 0;
 desc.DmaStopTransferMode = AssertBLAST;
 desc.HoldIopAddrConst = 0;
 desc.HoldIopSourceAddrConst = 0;
 desc.HoldIopDestAddrConst = 0;
 desc.DemandMode = 0;
 desc.EnableTransferCountClear = 1;
 desc.DmaChannelPriority = Rotational; /* rotational priority */
 desc.WaitStates = 0;
 desc.IopBusWidth = 3; /* 32 bit bus */
 desc.Reserved1 = 0;

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-55

 desc.TholdForIopWrites = 0;
 desc.TholdForIopReads = 0;
 desc.TholdForPciWrites = 0;
 desc.TholdForPciReads = 0;
 desc.Reserved2 = 0;

 rc = PlxDmaShuttleChannelOpen(PrimaryPciChannel, &desc);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Error opening DMA channel.\n");
 return -1;
 }

A-56  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaShuttleTransfer

Syntax:

RETURN_CODE PlxDmaShuttleTransfer(IN DMA_CHANNEL dmaChannel,
IN U32 shuttleIndex,
IN DMA_COMMAND dmaCommand,
IN PDMA_TRANSFER_ELEMENT dmaData,
IN BOOLEAN returnImmediate);

Description:

Controls the Shuttle DMA transfer for a given DMA channel.

• dmaChannel is the DMA channel number previously opened;

• shuttleIndex is the index value for the desired DMA Transfer Element;

• dmaCommand is the action to perform on this DMA channel;

• dmaData is the data for the DMA transfer; and,

• returnImmediate determines if this function waits for the DMA command to complete before
returning.

Note: Before calling this function the appropriate DMA channel must be successfully opened
using PlxDmaShuttleChannelOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid The dmaChannel parameter is not supported by this PCI
IC.

ApiNullParam The dmaData parameter is NULL.

ApiDmaChannelTypeError The DMA channel was not opened for Shuttle DMA.

ApiDmaInvalidElementIndex The shuttleIndex parameter is out of range.

ApiDmaDone The DMA channel is done.

ApiDmaPaused The DMA channel is paused.

ApiDmaInProgress The DMA channel is in progress.

ApiDmaNotPaused The DMA channel is in progress or done (return code
returned when DmaResume command is requested and
the DMA channel is not paused).

ApiDmaCommandInvalid The dmaCommand parameter is invalid.

Usage:

 #define DRAM_MAP_ADDR 0x00000000

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-57

 RETURN_CODE rc;
 DMA_TRANSFER_ELEMENT dmaData;
 U32 totalSize = 0x100;
 U32 bufFrom = DRAM_MAP_ADDR;

 /* Setting dmaData */
 dmaData.Pci9080Dma.LowPciAddr = 0x555B0000;
 dmaData.Pci9080Dma.IopAddr = bufFrom;
 dmaData.Pci9080Dma.TransferCount = totalSize;
 dmaData.Pci9080Dma.TerminalCountIntr = 0;/* no interrupts */
 dmaData.Pci9080Dma.IopToPciDma = 1;

 /*
 Start copying data from address bufFrom to pciStartOffset.
 The call returns immediately.
 */
 rc = PlxDmaShuttleTransfer(PrimaryPciChannel0,
 0,
 DmaStart,
 &dmaData,
 FALSE);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Error while performing a Shuttle DMA transfer.\n");
 return -1;
 }

A-58  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaShuttleTransferRestart

Syntax:

RETURN_CODE PlxDmaShuttleTransferRestart(IN DMA_CHANNEL dmaChannel,
IN U32 shuttleIndex,
IN U32 transferSize,
IN BOOLEAN returnImmediate);

Description:

Restarts the Shuttle DMA transfer for a pre-programmed DMA channel.

• dmaChannel is the DMA channel number previously opened;

• shuttleIndex is the index value for the desired DMA Transfer Element previously
programmed;

• transferSize is the DMA transfer size; and,

• returnImmediate determines if this function waits for the DMA command to complete before
returning.

Note: Before calling this function the appropriate DMA channel must be successfully
programmed using PlxDmaShuttleTransfer().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid The dmaChannel parameter is not supported by this PCI
IC.

ApiDmaChannelTypeError The DMA channel was not opened for Shuttle DMA.

ApiDmaInProgress The DMA channel is in progress.

ApiDmaInvalidElementIndex The shuttleIndex parameter is out of range.

Usage:

 RETURN_CODE rc;
 U32 totalSize = 0x100;

 rc = PlxDmaShuttleTransferRestart(PrimaryPciChannel0,
 0,
 totalSize,
 FALSE);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Restart failed\n");
 return -1;
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-59

PlxDmaShuttleChannelClose

Syntax:

RETURN_CODE PlxDmaShuttleChannelClose(IN DMA_CHANNEL dmaChannel);

Description:

Closes the Shuttle DMA channel.

• dmaChannel is the DMA channel number previously opened.

Note: Before calling this function the appropriate DMA channel must be successfully opened
using PlxDmaShuttleChannelOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid The dmaChannel parameter is not supported by this PCI
IC.

ApiDmaChannelTypeError The DMA channel was not opened for Shuttle DMA.

ApiDmaInProgress A DMA transfer is in progress.

ApiDmaPaused The DMA channel is paused.

Usage:

 RETURN_CODE rc;

 rc = PlxDmaShuttleChannelClose(PrimaryPciChannel);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Error closing DMA channel.\n");
 return -1;
 }

A-60  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaIsr

Syntax:

void PlxDmaIsr(IN DMA_CHANNEL dmaChannel);

Description:

Services a DMA channel interrupt. If the application is using the DMA Resource Manager to
manage the DMA resources then this function call should be placed into the BSP Lint ISR and
called when the DMA interrupt trigger is the cause of the interrupt.

• dmaChannel is the DMA channel number causing the interrupt.

Return Value:

None.

Usage:

 RETURN_CODE plxReturnStatus;
 PLX_INTR plxIntr;

 /* Check if there is actually an interrupt */
 if (!PlxIntrStatusGet(PrimaryPciBus, &plxIntr, &plxReturnStatus))
 {
 /* No interrupt, or function failure??? */
 return;
 }

 /* Look for IOP DMA channel 0 interrupt */
 if (plxintr.IopDmaChannel0)
 {
 /* DMA channel 0 caused interrupt */
 /* Call the DMA manager */
 PlxDmaIsr(PrimaryPciChannel0);
 }

 /* Look for IOP DMA channel 1 interrupt */
 if (plxintr.IopDmaChannel1)
 {
 /* DMA channel 1 caused interrupt */
 /* Call the DMA manager */
 PlxDmaIsr(PrimaryPciChannel1);
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-61

Messaging Unit Functions

PlxMuInit

Syntax:

RETURN_CODE PlxMuInit(IN BUS_INDEX busIndex,
IN U32 fifoSize,
IN U64 iopAddr);

Description:

Configures the messaging unit’s FIFO addresses of the PCI IC for the given bus index.

• busIndex is the bus index;

• fifoSize is the size of each FIFO in bytes; and

• iopAddr is the base address for the FIFOs. The base address must start on a 1MB boundary.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidAddress The iopAddr parameter is not aligned on a 1-MB
boundary.

ApiInvalidSize The fifoSize parameter is invalid for this PCI IC.

Usage:

 #define FIFO_SIZE_16K 0x00004000

 RETURN_CODE rc;

 rc = PlxMuInit(PrimaryPciBus, FIFO_SIZE_16K, 0x200000);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

A-62  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxMuInboundPortRead

Syntax:

RETURN_CODE PlxMuInboundPortRead(IN BUS_INDEX busIndex,
IN PU32 framePointer);

Description:

Returns a posted message frame from the Inbound Post FIFO of the PCI IC for the given bus
index.

• busIndex is the bus index; and

• framePointer is the address of the Message Frame (MFA).

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiMuNotReady The Messaging Unit is not ready.

ApiNullParam The framePointer parameter is NULL.

ApiMuFifoEmpty The Inbound Post FIFO is empty.

Usage:

 RETURN_CODE rc;
 ULONG framePointer;

 /* Read inbound port */
 rc = PlxMuInboundPortRead(PrimaryPciBus, &framePointer);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-63

PlxMuInboundPortWrite

Syntax:

RETURN_CODE PlxMuInboundPortWrite(IN BUS_INDEX busIndex,
IN PU32 framePointer);

Description:

Places a message frame to the Inbound Free FIFO of the PCI IC for the given bus index.

• busIndex is the bus index; and,

• framePointer is the address of the Message Frame (MFA).

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiMuNotReady The Messaging Unit is not ready.

ApiNullParam The framePointer parameter is NULL.

ApiMuFifoFull The Inbound Free FIFO is full.

Usage:

 RETURN_CODE rc;
 ULONG framePointer;

 /* Write to the inbound port */
 rc = PlxMuInboundPortWrite(PrimaryPciBus, &framePointer);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

A-64  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxMuOutboundPortRead

Syntax:

RETURN_CODE PlxMuOutboundPortRead(IN BUS_INDEX busIndex,
IN PU32 framePointer);

Description:

Returns a message frame from the Outbound Free FIFO of the PCI IC for the given bus index.

• busIndex is the bus index; and

• framePointer is the address of the Message Frame (MFA).

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiMuNotReady The Messaging Unit is not ready.

ApiNullParam The framePointer parameter is NULL.

ApiMuFifoEmpty The Outbound Free FIFO is empty.

Usage:

 RETURN_CODE rc;
 ULONG framePointer;

 /* Read outbound port */
 rc = PlxMuOutboundPortRead(PrimaryPciBus, &framePointer);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-65

PlxMuOutboundPortWrite

Syntax:

RETURN_CODE PlxMuOutboundPortWrite(IN BUS_INDEX busIndex,
IN PU32 framePointer);

Description:

Places a message frame to the Outbound Post FIFO of the PCI IC for the given bus index.

• busIndex is the bus index; and

• framePointer is the address of the Message Frame (MFA).

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiMuNotReady The Messaging Unit is not ready.

ApiNullParam The framePointer parameter is NULL.

ApiMuFifoFull The Outbound Post FIFO is full.

Usage:

 RETURN_CODE rc;
 ULONG framePointer;

 /* Write to the outbound port */
 rc = PlxMuOutboundPortWrite(PrimaryPciBus, &framePointer);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

A-66  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Power Management Functions

PlxPowerLevelSet

Syntax:

RETURN_CODE PlxPowerLevelSet(IN BUS_INDEX busIndex,
IN PLX_POWER_LEVEL powerLevel);

Description:

Sets the power level of the PCI IC for the given bus index.

• busIndex is the bus index;

• powerLevel is the new power level.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiUnsupportedFunction This function is not supported by this PCI IC.

Usage:

 RETURN_CODE rc;

 /* Set PCI IC to DO power level */
 rc = PlxPowerLevelSet(PrimaryPciBus, D0);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-67

PlxPowerLevelGet

Syntax:

PLX_POWER_LEVEL PlxPowerLevelGet(IN BUS_INDEX busIndex,
OUT PRETURN_CODE returnCode);

Description:

Gets the current power level of the PCI IC for the given bus index.

• busIndex is the bus index;

• returnCode is the return code of the function.

Return Value:

This function returns the current power level of the PCI IC. The status of the function call is
returned via the returnCode parameter. The return codes are as follows:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiUnsupportedFunction This function is not supported by this PCI IC.

Usage:

 RETURN_CODE rc;
 PLX_POWER_LEVEL plxPowerLevel;

 /* Set PCI IC to DO power level */
 plxPowerLevel = PlxPowerLevelGet(PrimaryPciBus, &rc);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

A-68  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Serial EEPROM Access Functions

PlxSerialEepromRead

Syntax:

RETURN_CODE PlxSerialEepromRead(IN BUS_INDEX busIndex,
IN EEPROM_TYPE eepromType,
OUT PU64 buffer,
IN U32 size);

Description:

Reads values from the configuration EEPROM of the PCI IC for the given bus index.

• busIndex is the bus index;

• eepromType is the type of EEPROM on the PCI device;

• buffer is a pointer a buffer to store the data read; and,

• size defines the number of bytes you want to read from the EEPROM.

Note: buffer must be large enough to store all the data read from the EEPROM.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiNullParam The buffer parameter is NULL.

ApiEepromNotPresent There is no EEPROM connected to the PCI IC.

ApiEepromTypeNotSupported The eepromType parameter is not supported for this PCI
IC.

ApiInvalidSize The size parameter is 0, is too large for this eepromType,
or is not 2 byte aligned.

Usage:

 RETURN_CODE rc;
 U16 eepromData[0x16]; /* Holding data read from EEPROM */

 /* Reading EEPROM into eepromData buffer */
 rc = PlxSerialEepromRead(PrimaryPciBus,
 Eeprom93CS56,
 (U64 *)eepromData,
 0x16 * sizeof(U16)); /* size in bytes */
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-69

PlxSerialEepromWrite

Syntax:

RETURN_CODE PlxSerialEepromWrite(IN BUS_INDEX busIndex,
IN EEPROM_TYPE eepromType,
OUT PU64 buffer,
IN U32 size);

Description:

Writes values to the configuration EEPROM of the PCI IC for the given bus index.

• busIndex is the bus index;

• eepromType is the type of EEPROM on the PCI device;

• buffer is a pointer a buffer that contains the data; and,

• size defines the number of bytes you want to write to the EEPROM.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiNullParam The buffer parameter is NULL.

ApiEepromNotPresent There is no EEPROM connected to the PCI IC.

ApiEepromTypeNotSupported The eepromType parameter is not supported for this PCI
IC.

ApiInvalidSize The size parameter is 0, is too large for this eepromType,
or is not 2 byte aligned.

Usage:

 RETURN_CODE rc;
 U16 eepromData[0x16]; /* Contains valid data for EEPROM */

 /* Writing to EEPROM from eepromData buffer */
 rc = PlxSerialEepromWrite(PrimaryPciBus,
 Eeprom93CS56,
 (U64 *)eepromData,
 0x16 * sizeof(U16)); /* size in bytes */
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

A-70  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

USER Pins Functions

PlxUserRead

Syntax:

PIN_STATE PlxUserRead(IN BUS_INDEX busIndex,
IN USER_PIN userPin,
OUT PRETURN_CODE returnCode);

Description:

Reads the USERI pins of the PCI IC for the given bus index.

• busIndex is the bus index;

• userPin is the USERI pin number to be read; and,

• returnCode is a pointer to a buffer to store the return code.

Return Value:

This function returns the state of the USER pin, being either Active or Inactive. The status
of the function call is returned via the returnCode parameter. The return codes are as follows:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidUserPin This userPin is not present on this PCI IC.

Usage:

 RETURN_CODE rc;
 PIN_STATE pinState;

 /* Writing to EEPROM from eepromData buffer */
 pinState = PlxUserRead(PrimaryPciBus,
 USER0,
 &rc);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-71

PlxUserWrite

Syntax:

RETURN_CODE PlxUserWrite(IN BUS_INDEX busIndex,
IN USER_PIN userPin,
IN PIN_STATE pinState);

Description:

Writes to USERo pins of the PCI IC for the given bus index, setting them either Active or
Inactive.

• busIndex is the bus index;

• userPin is the USERo pin number to be written; and,

• pinState is the new state to set the USERO pin.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidBusIndex The busIndex value is not valid.

ApiNotInitialized The IOP API is not initialized.

ApiInvalidUserPin This userPin is not present on this PCI IC.

ApiInvalidUserState The pinState is invalid.

Usage:

 U32 loopCounter;
 VU32 value;

 /* Blink the LED */
 for (loopCounter = 0;
 loopCounter < blinkTimes;
 loopCounter++)
 {
 /* Turn ON */
 value = 0;
 while (value < blinkSpeed)
 value ++;
 PlxUserWrite(PrimaryPciBus, USER0, Active);

 /* Turn OFF */
 value = 0;
 while (value < blinkSpeed)
 value ++;
 PlxUserWrite(PrimaryPciBus, USER0, Inactive);
 }

A-72  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Miscellaneous Functions

PlxSdkVersion

Syntax:

RETURN_CODE PlxSdkVersion(const S8 **versionString,
const S8 **dateString);

Description:

Returns the version string of the PCI SDK IOP API.

• versionString is the version string for the IOP API; and,

• dateString is the version date string for the IOP API.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The versionString or dateString parameter is NULL.

Usage:

 RETURN_CODE rc;
 PU8 sdkVersion; /* pointer to the SDK Version string */
 PU8 sdkReleaseDate; /* pointer to the SDK Release Date string */

 /* Print PCI SDK Version and Release Date */
 PlxSdkVersion(&sdkVersion, &sdkReleaseDate);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);
 else
 PlxPrintf("\n\n** %s, %s **\n", sdkVersion, sdkReleaseDate);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-73

PlxPrintf

Syntax:

void PlxPrintf(PS8 ifmt,...);

Description:

Prints a formatted string of character to the serial port. This function works similarly to the
printf() ‘C’ function.

Return Value:

None.

Usage:

 RETURN_CODE rc;
 PU8 sdkVersion; /* pointer to the SDK Version string */
 PU8 sdkReleaseDate; /* pointer to the SDK Release Date string */

 /* Print PCI SDK Version and Release Date */
 PlxSdkVersion(&sdkVersion, &sdkReleaseDate);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);
 else
 PlxPrintf("\n\n** %s, %s **\n", sdkVersion, sdkReleaseDate);

A-74  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxGetChars

Syntax:

U16 PlxGetChars(OUT PU8 outBuffer, IN U16 outBufferSize);

Description:

Gets a stream of data from the serial port.

• outBuffer is a buffer to store the data stream received; and,

• outBufferSize is the number of characters to retrieve from the serial port.

Return Value:

The number of characters placed into the buffer.

Usage:

 #define POWERQUICC_SPEED 40 /* In MHz */

 U32 ulCount = 0x10;
 U8 c;
 S16 resVal;
 ulCount = 10 * POWERQUICC_SPEED * seconds;

 while (ulCount --)
 {
 if (PlxGetChars(&c,1) == 1)
 {
 resVal = ((S16)c) & 0x0FF;
 return (resVal);
 }
 Sleep(1);
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-75

PlxEchoEnable

Syntax:

ECHO_STATE PlxEchoEnable(IN ECHO_STATE echoState);

Description:

Enables or disables echoing of characters received from the serial port by the UART Services
Module.

• echoState is the new echo state for the UART Services Module.

Return Value:

The previous echo state is returned.

Usage:

 ECHO_STATE previousEchoState;

 /* Disable Echoing of Characters */
 previousEchoState = PlxEchoEnable(NoEcho);

A-76  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

A.3 API Data Structures
The following is an example of a data structure or data type definition.

Sample Data Structure
typedef struct _SAMPLE
{
 U32 someRegister;
 U32 someNumber;
 U32 someSize;
 U32 someBuffer[SOME_BUFFER_SIZE];
}SAMPLE, *PSAMPLE;

Affected Register Location

Structure Element PCI 9080 PCI 9054 IOP 480

someRegister xxx, yy xxx, yy xxx, yy

The registers that are affected by changing the values in the structure for each PLX device. All
register offsets are from the IOP side unless otherwise stated. “xxx” is the register offset and “yy”
is the bits in the register that are affected.

Purpose

The reasons for using this structure.

Members

An explanation of the members contained within the structure. Possible values are given when
applicable.

Comments

Extra comments on how and when this structure is used.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-77

S8 and U8 Data Types
typedef char S8, *PS8;
typedef unsigned char U8, *PU8;

Affected Register Location

Not applicable.

Purpose

These data types are used for 8 bit values.

Members

Comments

This data type allows compatibility of all the PCI API functions with all compilers.

A-78  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

S16 and U16 Data Types
typedef short S16, *PS16;
typedef unsigned short U16, *PU16;

Affected Register Location

Not applicable.

Purpose

These data types are used for 16 bit values.

Members

Comments

This data type allows compatibility of the PCI API functions with all compilers.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-79

S32 and U32 Data Types
typedef long S32, *PS32;
typedef unsigned long U32, *PU32;

Affected Register Location

Not applicable.

Purpose

These data types are used for 32 bit values.

Members

Comments

This data type allows compatibility of the PCI API functions with all compilers.

A-80  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

U64 Data Type
#ifdef IOP_CODE
 #ifdef BITS_64
 #ifdef longlong
 typedef union _U64
 {
 struct
 {
 U32 LowPart;
 U32 HighPart;
 }u;
 unsigned longlong QuadPart;
 } U64, *PU64;
 #else /* longlong */
 typedef struct _U64
 {
 U32 LowPart;
 U32 HighPart;
 } U64, *PU64;
 #endif /* longlong */
 #else /* BITS_64 */
 typedef U32 U64, *PU64;
 #endif /* BITS_64 */

#elif PCI_CODE
 #ifdef BITS_64
 typedef LARGE_INTEGER U64, *PU64;
 #else
 typedef U32 U64, *PU64;
 #endif /* BITS_64 */
#endif /* IOP_CODE or PCI_CODE */

Affected Register Location

Not applicable.

Purpose

This data type is used for PCI API function compatibility between 32 bit and 64 bit systems and
compilers.

Members

Comments

This data type allows compatibility with the PCI API functions with 32 bit and 64 bit systems and
compilers.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-81

API Parameters Structure
typedef struct _API_PARMS
{
 VOID *PlxIcIopBaseAddr;
 PPCI_BUS_PROP PtrPciBusProp;
 PPCI_ARBIT_DESC PtrPciArbitDesc;
 PIOP_BUS_PROP PtrIopBus0Prop;
 PIOP_BUS_PROP PtrIopBus1Prop;
 PIOP_BUS_PROP PtrIopBus2Prop;
 PIOP_BUS_PROP PtrIopBus3Prop;
 PIOP_BUS_PROP PtrExpRomBusProp;
 PIOP_ARBIT_DESC PtrIopArbitDesc;
 PIOP_ENDIAN_DESC PtrIopEndianDesc;
}API_PARMS, *PAPI_PARMS;

Affected Register Location

Not applicable.

Purpose

This data type is used to pass data from the BSP to the IOP API and to initialize certain data
structures to the PCI IC’s default values.

Members

PlxIcIopBaseAddr
The base IOP address for the PCI IC.

PtrPciBusProp
A pointer to the PCI_BUS_PROP structure that will be used to initialize the PCI Bus
properties of the PCI IC.

PtrPciArbitDesc
A pointer to the PCI_ARBIT_DESC structure that will be used to initialize the PCI Bus
arbiter of the PCI IC.

PtrIopBus0Prop
A pointer to the IOP_BUS_PROP structure that will be used to initialize the Local Space 0
register accesses to the IOP Bus.

PtrIopBus1Prop
A pointer to the IOP_BUS_PROP structure that will be used to initialize the Local Space 1
register accesses to the IOP Bus.

PtrIopBus2Prop
A pointer to the IOP_BUS_PROP structure that will be used to initialize the Local Space 2
register accesses to the IOP Bus.

PtrIopBus3Prop
A pointer to the IOP_BUS_PROP structure that will be used to initialize the Local Space 3
register accesses to the IOP Bus.

PtrExpRomBusProp
A pointer to the IOP_BUS_PROP structure that will be used to initialize the accesses to the
Expansion ROM.

A-82  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PtrIopArbitDesc
A pointer to the IOP_ARBIT_DESC structure that will be used to initialize the IOP Bus
arbiter of the PCI IC.

PtrIopEndianDesc
A pointer to the IOP_ENDIAN_DESC structure that will be used to initialize the IOP Bus
endianness.

Comments

This data type provides information about the board to the IOP API and initializes initialization
data structures to the PCI IC’s default values.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-83

DMA Channel Descriptor Structure
typedef struct _DMA_CHANNEL_DESC
{
 U32 EnableReadyInput :1;
 U32 EnableBTERMInput :1;
 U32 EnableIopBurst :1;
 U32 EnableWriteInvalidMode :1;
 U32 EnableDmaEOTPin :1;
 U32 DmaStopTransferMode :1;
 U32 HoldIopAddrConst :1;
 U32 HoldIopSourceAddrConst :1;
 U32 HoldIopDestAddrConst :1;
 U32 DemandMode :1;
 U32 EnableTransferCountClear :1;
 U32 WaitStates :4;
 U32 IopBusWidth :2;
 U32 Reserved1 :15;
 U32 TholdForIopWrites :4;
 U32 TholdForIopReads :4;
 U32 TholdForPciWrites :4;
 U32 TholdForPciReads :4;
 U32 Reserved2 :16;
 DMA_CHANNEL_PRIORITY DmaChannelPriority;
} DMA_CHANNEL_DESC, *PDMA_CHANNEL_DESC;

Affected Register Location

Structure Element PCI 9080 PCI 9054 IOP 480

EnableReadyInput 0x100, 6
0x114, 6

0x100, 6
0x114, 6

Currently Not
Defined

EnableBTERMInput 0x100, 7
0x114, 7

0x100, 7
0x114, 7

0x154, 10

EnableIopBurst 0x100, 8
0x114, 8

0x100, 8
0x114, 8

0x154, 8

EnableWriteInvalidMode 0x100, 13
0x114, 13

0x100, 13
0x114, 13

0x200, 13
0x220, 13

EnableDmaEOTPin 0x100, 14
0x114, 14

0x100, 14
0x114, 14

0x200, 14
0x220, 14
0x240, 14

DmaStopTransferMode 0x100, 15
0x114, 15

0x100, 15
0x114, 15

0x200, 15
0x220, 15
0x240, 15

HoldIopAddrConst 0x100, 11
0x114, 11

0x100, 11
0x114, 11

0x200, 11
0x220, 11

HoldIopSourceAddrConst N/A N/A 0x240, 7
HoldIopDestAddrConst N/A N/A 0x240, 8
DemandMode 0x100, 12

0x114, 12
0x100, 12 0x200, 12

0x220, 12
0x240, 12

EnableTransferCountClear
*Note: Can clear transfer count only if
DMA chain is located on the IOP bus.
Cannot clear transfer count on DMA
chains located on the PCI bus.

0x100, 16*
0x114, 16*

0x100, 16
0x114, 16

0x200, 16
0x220, 16
0x240, 16

WaitStates 0x100, 2-5
0x114, 2-5

0x100, 2-5
0x114, 2-5

Currently Not
Defined

IopBusWidth 0x100, 0-1 0x100, 0-1 0x154, 0-1*

A-84  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Structure Element PCI 9080 PCI 9054 IOP 480

* Note: Bus width is shared for all DMA
channels.

0x114, 0-1 0x114, 0-1

TholdForIopWrites 0x130, 0-3
0x130, 16-19

0x130, 0-3
0x130, 16-19

0x21C, 0-3
0x23C, 0-3

TholdForIopReads 0x130, 4-7
0x130, 20-23

0x130, 4-7
0x130, 20-23

0x21C, 4-7
0x23C, 4-7

TholdForPciWrites 0x130, 8-11
0x130, 24-27

0x130, 8-11
0x130, 24-27

0x21C, 8-11
0x23C, 8-11

TholdForPciReads 0x130, 12-15
0x130, 28-30

0x130, 12-15
0x130, 28-30

0x21C, 12-15
0x23C, 12-15

DmaChannelPriority 0x88, 19-20 0x88, 19-20 0x90, 4-5

Purpose

Structure containing the DMA channel descriptors used to configure the DMA channel.

Members

EnableReadyInput
The Ready Input is enabled if this value is set.

EnableBTERMInput
The BTERM# Input is enabled if this value is set.

EnableIopBurst
Bursting is enabled on the IOP’s local bus if this value is set.

EnableWriteInvalidMode
The write and invalidate cycles will be performed on the PCI bus for DMA transfers when
this value is set.

EnableDmaEOTPin
The EOT input pin is enabled if this value is set.

DmaStopTransferMode
This value states which type of DMA termination is implemented. There are two options,
one is to send a BLAST to terminate the DMA transfer (for CBUS and JBUS) or negate
BDIP at the nearest 16-byte boundary (for MBUS). Set the value to AssertBLAST for
this option.
The other option is that the EOT will be asserted or DREQ# will be negated to indicate a
DMA termination. Set the value to EOTAsserted for this option.

HoldIopAddrConst
During a DMA transfer the IOP address will stay constant (not increment) if this value is
set.

HoldIopSourceAddrConst
During a DMA transfer the source IOP address will stay constant (not increment) if this
value is set.

HoldIopDestAddrConst
During a DMA transfer the destination IOP address will stay constant (not increment) if
this value is set.

DemandMode
The DMA controller will work in demand mode if this value is set.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-85

EnableTransferCountClear
When DMA chaining is enabled and this value is set the DMA controller will clear the
transfer count value of a DMA descriptor block when the DMA transfer described by that
DMA descriptor block is terminated.

WaitStates
The wait states inserted after the address strobe and before the data is ready on the bus is
defined with this value.

IopBusWidth
The width of the IOP’s local bus for the DMA channel is defined by this value.

Reserved1
This value is reserved for future definitions.

TholdForIopWrites
The number of pairs of full entries (minus 1) in the FIFO before requesting the IOP’s local
bus for writes.

TholdForIopReads
The number of pairs of empty entries (minus 1) in the FIFO before requesting the IOP’s
local bus for reads.

TholdForPciWrites
The number of pairs of full entries (minus 1) in the FIFO before requesting the PCI bus for
writes.

TholdForPciReads
The number of pairs of empty entries (minus 1) in the FIFO before requesting the PCI bus
for reads.

Reserved2
This value is reserved for future definitions.

DmaChannelPriority
The DMA channel priority scheme is set with this value.

Comments

The DMA channel descriptor structure is used to configure the DMA channel.

A-86  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

DMA Transfer Element Structure And SGL Address Structure
typedef union _DMA_TRANSFER_ELEMENT
{
 struct
 {
 U32 LowPciAddr;
 U32 IopAddr;
 U32 TransferCount;
 #ifdef LITTLE_ENDIAN
 U32 PciSglLoc :1;
 U32 LastSglElement :1;
 U32 TerminalCountIntr :1;
 U32 IopToPciDma :1;
 U32 NextSglPtr :28;
 #elif BIG_ENDIAN
 U32 NextSglPtr :28;
 U32 IopToPciDma :1;
 U32 TerminalCountIntr :1;
 U32 LastSglElement :1;
 U32 PciSglLoc :1;
 #else
 #error Need To Define Endian Type Used.
 #endif /* LITTLE_ENDIAN or BIG_ENDIAN */
 } Pci9080Dma;

 struct
 {
 U32 LowPciAddr;
 U32 IopAddr;
 U32 TransferCount;
 #ifdef LITTLE_ENDIAN
 U32 PciSglLoc :1;
 U32 LastSglElement :1;
 U32 TerminalCountIntr :1;
 U32 IopToPciDma :1;
 U32 NextSglPtr :28;
 #elif BIG_ENDIAN
 U32 NextSglPtr :28;
 U32 IopToPciDma :1;
 U32 TerminalCountIntr :1;
 U32 LastSglElement :1;
 U32 PciSglLoc :1;
 #else
 #error Need To Define Endian Type Used.
 #endif /* LITTLE_ENDIAN or BIG_ENDIAN */
 U32 HighPciAddr;
 } Pci9054Dma;

 struct
 {
 U32 LowPciAddr;
 U32 HighPciAddr;
 U32 IopAddr;
 U32 TransferCount;
 #ifdef LITTLE_ENDIAN
 U32 PciSglLoc :1;

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-87

 U32 LastSglElement :1;
 U32 TerminalCountIntr :1;
 U32 IopToPciDma :1;
 U32 NextSglPtr :28;
 #elif BIG_ENDIAN
 U32 NextSglPtr :28;
 U32 IopToPciDma :1;
 U32 TerminalCountIntr :1;
 U32 LastSglElement :1;
 U32 PciSglLoc :1;
 #else
 #error Need To Define Endian Type Used.
 #endif /* LITTLE_ENDIAN or BIG_ENDIAN */
 } Iop480Dma;

 /*
 The DMA Transfer Element must always start on a 16 byte
 boundary so the following reserve field ensures this.
 */
 U32 Reserved[12];
}DMA_TRANSFER_ELEMENT, *PDMA_TRANSFER_ELEMENT;

typedef PDMA_TRANSFER_ELEMENT SGL_ADDR, *PSGL_ADDR;

Affected Register Location

Structure Element PCI 9080 PCI 9054 IOP 480

LowPciAddr 0x104
0x118

0x104
0x118

0x208
0x228

HighPciAddr N/A 0x134
0x138

0x20C
0x22C

IopAddr 0x108
0x11C

0x108
0x11C

0x210
0x230

TransferCount 0x10C
0x120

0x10C
0x120

0x214
0x234

PciSglLoc 0x110, 0
0x124, 0

0x110, 0
0x124, 0

0x218, 0
0x238, 0

LastSglElement 0x110, 1
0x124, 1

0x110, 1
0x124, 1

0x218, 1
0x238, 1

TerminalCountIntr 0x110, 2
0x124, 2

0x110, 2
0x124, 2

0x218, 2
0x238, 2

IopToPciDma 0x110, 3
0x124, 3

0x110, 3
0x124, 3

0x218, 3
0x238, 3

NextSglPtr 0x110, 4-31
0x124, 4-31

0x110, 4-31
0x124, 4-31

0x218, 4-31
0x238, 4-31

Purpose

Structure containing the DMA data used to program the DMA registers.

Members

Pci9080Dma
The structure containing the DMA data specific for the PCI 9080.

Pci9054Dma
The structure containing the DMA data specific for the PCI 9054.

A-88  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Iop480Dma
The structure containing the DMA data specific for the IOP 480.

Pci9080Dma.LowPciAddr, Pci9054Dma.LowPciAddr and Iop480Dma.LowPciAddr
The PCI buffer lower address for the DMA transfer. This value is used to program the PCI
Lower Address Register for a given DMA channel.

Pci9054Dma.HighPciAddr and Iop480Dma.HighPciAddr
The PCI buffer upper address for the DMA transfer. This value is used to program the Dual
Address Cycle Address Register for a given DMA channel.

Pci9080Dma.IopAddr, Pci9054Dma.IopAddr and Iop480Dma.IopAddr
The IOP buffer address for the DMA transfer. This value is used to program the Local
Address Register for a given DMA channel.

Pci9080Dma.TransferCount, Pci9054Dma.TransferCount and Iop480Dma.TransferCount
The number of bytes to be transferred. This value is used to program the Transfer Count
Register for a given DMA channel.

Pci9080Dma.PciSglLoc, Pci9054Dma.PciSglLoc and Iop480Dma.PciSglLoc
The next SGL element is located in PCI memory if this value is set. Otherwise, the next
SGL element is located in IOP memory.

Pci9080Dma.LastSglElement, Pci9054Dma.LastSglElement and Iop480Dma.LastSglElement
This is the last SGL element in the SGL if this value is set. Otherwise, the Descriptor
Pointer Register points to the next SGL element in the SGL.

Pci9080Dma.TerminalCountIntr, Pci9054Dma.TerminalCountIntr and
Iop480Dma.TerminalCountIntr
A DMA interrupt will be generated after completing this SGL element’s DMA transfer if
this value is set.

Pci9080Dma.IopToPciDma, Pci9054Dma.IopToPciDma and Iop480Dma.IopToPciDma
The DMA transfer will transfer data from IOP memory space to PCI memory space if this
value is set. Otherwise, the data will be transferred from PCI memory space to IOP
memory space.

Pci9080Dma.NextSglPtr, Pci9054Dma.NextSglPtr, and Iop480Dma.NextSglPtr
The pointer that points to the next SGL element in the SGL. This value is used to program
the Descriptor Pointer Register for a given DMA channel.

Comments

The DMA Transfer Element structure is used to program the DMA Registers.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-89

DMA Resource Manager Parameters Structure
typedef struct _DMA_PARMS
{
 DMA_CHANNEL DmaChannel;
 PDMA_TRANSFER_ELEMENT FirstSglElement;
 PU32 WaitQueueBase;
 U32 NumberOfElements;
}DMA_PARMS, *PDMA_PARMS;

Affected Register Location

Not applicable.

Purpose

This data type is used for passing information from the BSP module into the DMA Resource
Manager when it is initialized.

Members

DmaChannel
The DMA channel number for the given information.

FirstSglElement
The address of the memory block that will be used for all the SGLs.

WaitQueueBase
The address of the memory block allocated for the Wait Queue.

NumberOfElements
The total number of SGL elements available in the SGL memory block provided.

Comments

This data type provides memory block addresses needed by the DMA Resource Manager for each
DMA channel. The DMA Resource Manager determines the end of the DMA_PARMS array by
one of the follow criteria:

• The DmaChannel member is invalid;

• The FirstSglElement member is NULL;

• The WaitQueueBase member is NULL; or,

• The NumberOfElements is 0.

A-90  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PLX Interrupt Structure
typedef struct _PLX_INTR
{
 U32 InboundPost :1;
 U32 OutboundPost :1;
 U32 OutboundOverflow :1;
 U32 IopDmaChannel0 :1;
 U32 PciDmaChannel0 :1;
 U32 IopDmaChannel1 :1;
 U32 PciDmaChannel1 :1;
 U32 IopDmaChannel2 :1;
 U32 PciDmaChannel2 :1;
 U32 Mailbox0 :1;
 U32 Mailbox1 :1;
 U32 Mailbox2 :1;
 U32 Mailbox3 :1;
 U32 Mailbox4 :1;
 U32 Mailbox5 :1;
 U32 Mailbox6 :1;
 U32 Mailbox7 :1;
 U32 IopDoorbell :1;
 U32 PciDoorbell :1;
 U32 SerialPort1 :1;
 U32 SerialPort2 :1;
 U32 BIST :1;
 U32 PowerManagement :1;
 U32 PciMainInt :1;
 U32 IopToPciInt :1;
 U32 IopMainInt :1;
 U32 PciAbort :1;
 U32 PciReset :1;
 U32 PciPME :1;
 U32 PciENUM :1;
 U32 IopBusTimout :1;
 U32 AbortLSERR :1;
 U32 ParityLSERR :1;
 U32 RetryAbort :1;
 U32 Reserved :30;
} PLX_INTR, *PPLX_INTR;

Affected Register Location

E: Enable interrupt bit location

A: Active interrupt bit location

Structure Element PCI 9080 PCI 9054 IOP 480

InboundPost E 0x168, 4
A 0x168, 5

E 0x168, 4
A 0x168, 5

E 0x28, 4
A 0x28, 5

OutboundPost E 0xB4, 3
A 0xB0, 3

E 0xB4, 3
A 0xB0, 3

E 0x30, 3
A 0x34, 3

OutboundOverflow E 0x168, 6
A 0x168, 7

E 0x168, 6
A 0x168, 7

E 0x28, 6
A 0x28, 7

PciDmaChannel0
* Note: DMA Interrupt is routed to
PCI interrupt.

E 0x100*, 17
A 0xE8, 21

E 0x100*, 17
A 0xE8, 21

E 0x1B4, 8
A 0x1B0, 8

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-91

Structure Element PCI 9080 PCI 9054 IOP 480

IopDmaChannel0 E 0xE8, 18
A 0xE8, 21

E 0xE8, 18
A 0xE8, 21

E 0x1BC, 8
A 0x1B8, 8

PciDmaChannel1
* Note: DMA Interrupt is routed to
PCI interrupt.

E 0x114*, 17
A 0xE8, 22

E 0x114*, 17
A 0xE8, 22

E 0x1B4, 9
A 0x1B0, 9

IopDmaChannel1 E 0xE8, 19
A 0xE8, 22

E 0xE8, 19
A 0xE8, 22

E 0x1BC, 9
A 0x1B8, 9

PciDmaChannel2 N/A N/A E 0x1B4, 10
A 0x1B0, 10

IopDmaChannel2 N/A N/A E 0x1BC, 10
A 0x1B8, 10

Mailbox0
* Note: Only one bit enables Mailbox
0-3 Interrupts. No individual enabling
of interrupts.

E 0xE8, 3*
A 0xE8, 28

E 0xE8, 3*
A 0xE8, 28

E 0x1BC, 24
A 0x1B8, 24

Mailbox1
* Note: Only one bit enables Mailbox
0-3 Interrupts. No individual enabling
of interrupts.

E 0xE8, 3*
A 0xE8, 28

E 0xE8, 3*
A 0xE8, 28

E 0x1BC, 25
A 0x1B8, 25

Mailbox2
* Note: Only one bit enables Mailbox
0-3 Interrupts. No individual enabling
of interrupts.

E 0xE8, 3*
A 0xE8, 28

E 0xE8, 3*
A 0xE8, 28

E 0x1BC, 26
A 0x1B8, 26

Mailbox3
* Note: Only one bit enables Mailbox
0-3 Interrupts. No individual enabling
of interrupts.

E 0xE8, 3*
A 0xE8, 28

E 0xE8, 3*
A 0xE8, 28

E 0x1BC, 27
A 0x1B8, 27

Mailbox4 N/A N/A E 0x1BC, 28
A 0x1B8, 28

Mailbox5 N/A N/A E 0x1BC, 29
A 0x1B8, 29

Mailbox6 N/A N/A E 0x1BC, 30
A 0x1B8, 30

Mailbox7 N/A N/A E 0x1BC, 31
A 0x1B8, 31

IopDoorbell E 0xE8, 17
A 0xE8, 20

E 0xE8, 17
A 0xE8, 20

E 0x1BC, 11
A 0x1B8, 11

PciDoorbell E 0xE8, 9
A 0xE8, 13

E 0xE8, 9
A 0xE8, 13

E 0x1B4, 11
A 0x1B0, 11

SerialPort1 N/A N/A E 0x1BC, 4
A 0x1B8, 4

SerialPort2 N/A N/A E 0x1BC, 5
A 0x1B8, 5

BIST A 0xE8, 23 A 0xE8, 23 E 0x1BC, 12
A 0x1B8, 12

PowerManagement N/A E 0xE8, 4
A 0xE8, 5

E 0x1BC, 13
A 0x1B8, 13

PciMainInt E 0xE8, 8
A 0xE8, 13

E 0xE8, 8
A 0xE8, 13

E 0x1BC, 14
A 0x1B8, 14

IopToPciInt E 0xE8, 11
A 0xE8, 15

E 0xE8, 11
A 0xE8, 15

E 0x1B4, 7
E 0x1BC, 7
A 0x1B8, 7

IopMainInt
Note: There is no master bit that
shows that the IOP interrupt is active.
Each interrupt trigger’s active bit must
be checked to determine the interrupt
source.

E 0xE8, 16 E 0xE8, 11 E 0x1BC, 0

A-92  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Structure Element PCI 9080 PCI 9054 IOP 480

PciAbort E 0xE8, 10
A 0xE8, 14

E 0xE8, 10
A 0xE8, 14

Currently Not
Defined.

PciReset N/A N/A E 0x1BC, 6
A 0x1B8, 6

PciPME N/A E 0xE8, 4
A 0xE8, 5

E 0x1BC, 15
A 0x1B8, 15

PciENUM N/A N/A E 0x1BC, 16
A 0x1B8, 16

IopBusTimout N/A N/A A 0x1B8, 3
AbortLSERR E 0xE8, 0

A 0x06, 12-13
E 0xE8, 0
A 0x06, 12-13

E 0x1BC, 1
A 0x06, 12-13

ParityLSERR E 0xE8, 1
A 0x06, 15

E 0xE8, 1
A 0x06, 15

E 0x1BC, 2
A 0x06, 15

RetryAbort E 0xE8, 12
A 0x06, 12-13

E 0xE8, 12
A 0x06, 12-13

Currently Not
Defined.

Purpose

Structure containing the various PLX device interrupts that are used to return active interrupts or
to enable or select certain interrupts.

Members

InboundPost
The value represents the messaging unit’s inbound post FIFO interrupt.

OutboundPost
The value represents the messaging unit’s outbound post FIFO interrupt.

OutboundOverflow
The value represents the messaging unit’s outbound FIFO overflow interrupt.

IopDmaChannel0, IopDmaChannel1 and IopDmaChannel2
The value represents DMA channel interrupt on the IOP side.

PciDmaChannel0, PciDmaChannel1 and PciDmaChannel2
The value represents DMA channel interrupt on the PCI side.

Mailbox0, Mailbox1, Mailbox2, Mailbox3, Mailbox4, Mailbox5, Mailbox6, and Mailbox7
The value represents mailbox interrupt.

IopDoorbell
The value represents the PCI to IOP doorbell interrupt.

PciDoorbell
The value represents the IOP to PCI doorbell interrupt.

SerialPort1
The value represents the serial port 1 interrupt.

SerialPort2
The value represents the serial port 2 interrupt.

BIST
The value represents the BIST interrupt.

PowerManagement
The value represents the power management interrupt.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-93

PciMainInt
The value represents the INTA interrupt line which is the master interrupt for all PCI
interrupts.

IopToPciInt
The value represents the INTI interrupt line which is an input line for the IOP to trigger
PCI interrupts.

IopMainInt
The value represents the INTo interrupt line which is the master interrupt for all IOP
interrupts.

PciAbort
The value represents the PCI abort interrupt.

PciReset
The value represents the PCI reset interrupt.

PciPME
The value represents the PCI PME interrupt.

PciENUM
The value represents the PCI ENUM interrupt.

IopBusTimout
The value represents the IOP bus timeout interrupt.

AbortLSERR
The value represents the IOP LSERR interrupt caused by PCI bus Target Aborts or by
Master Aborts.

ParityLSERR
The value represents the IOP LSERR interrupt caused by PCI bus Target Aborts or by
Master Aborts.

RetryAbort
The value enables the PCI IC to generate a Target Abort after 256 Master consecutive
retries to the target.

Reserved
This value is reserved for future definitions.

Comments

The PLX interrupt structure is used to return the active interrupts or to enable or select specific
interrupts.

A-94  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PCI Bus Properties Structure
typedef struct _PCI_BUS_PROP
{
 U32 PciRequestMode :1;
 U32 DmPciReadMode :1;
 U32 EnablePciArbiter :1;
 U32 EnableWriteInvalidMode :1;
 U32 DmPrefetchLimit :1;
 U32 PciReadNoWriteMode :1;
 U32 PciReadWriteFlushMode :1;
 U32 PciReadNoFlushMode :1;
 U32 EnableRetryAbort :1;
 U32 WFifoAlmostFullFlagCount :5;
 U32 DmWriteDelay :2;
 U32 ReadPrefetchMode :3;
 U32 IoRemapSelect :3;
 U32 Reserved1 :8;
 U32 ReservedForFutureUse;
} PCI_BUS_PROP, *PPCI_BUS_PROP;

Affected Register Location

Structure Element PCI 9080 PCI 9054 IOP 480

PciRequestMode 0x88, 23 0x88, 23 0x98, 26
DmPciReadMode 0xA8, 4 0xA8, 4 0xD0, 6
EnablePciArbiter N/A N/A 0x98, 16
EnableWriteInvalidMode 0xA8, 9 0xA8, 9 0xD0, 7
DmPrefetchLimit 0xA8, 11 0xA8, 11 0xD0, 5
PciAddressSpaceBusWidth N/A N/A Currently Not

Defined.
PciReadNoWriteMode 0x88, 25 0x88, 25 0x98, 24
PciReadWriteFlushMode 0x88, 26 0x88, 26 0x98, 23
PciReadNoFlushMode 0x88, 28 0x88, 28 0x98, 22
EnableRetryAbort N/A N/A 0x98, 21
WFifoAlmostFullFlagCount 0xA8, 5-8

0xA8, 10
0xA8, 5-8
0xA8, 10

0xD0, 8-15

DmWriteDelay 0xA8, 14-15 0xA8, 14-15 0xD0, 13-14
ReadPrefetchMode 0xA8, 3

0xA8, 12
0xA8, 3
0xA8, 12

0xD0, 3-4

IoRemapSelect 0xA8, 13 0xA8, 13 0xD0, 15

Purpose

Structure used to describe the PCI bus characteristics.

Members

PciRequestMode
When this value is set the PCI device negates REQ0# when it asserts FRAME# during a
bus master cycle. Otherwise, the PCI device leaves REQ0# asserted for the entire bus
master cycle.

DmPciReadMode
When this value is set the PCI device should keep the PCI bus and de-assert IRDY# when

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-95

the read FIFO becomes full. Otherwise, the PCI device should release the PCI bus when the
read FIFO becomes full.

EnablePciArbiter
The PCI arbiter is enabled when this value is set. Otherwise, the PCI arbiter is disabled and
the PCI device uses REQ0# and GNT0# to acquire the PCI bus.

EnableWriteInvalidMode
The write and invalidate cycles will be performed on the PCI bus for Direct Master
accesses when this value is set.

DmPrefetchLimit
The prefetching is terminated at 4K boundaries when this value is set.

PciAddressSpaceBusWidth
When this value is set the PCI bus width for PCI space is 64 bits. Otherwise, the PCI bus
width is 32 bits.

PciReadNoWriteMode
When this value is set PCI device forces a retry on writes if read is pending. Otherwise, the
PCI device allows writes while a read is pending.

PciReadWriteFlushMode
When this value is set PCI device submits a request to flush a pending read cycle if a write
cycle is detected. Otherwise, the PCI device submits a request to not effect pending reads
when a write cycle occurs.

PciReadNoFlushMode
When this value is set PCI device submits a request to not flush the read FIFO if the PCI
read cycle completes. Otherwise, the PCI device submits a request to flush the read FIFO if
the PCI read cycle completes.

EnableRetryAbort
The IOP 480 treats 256 Master consecutive retries to a Target as a Target Abort when this
value is set. Otherwise, the IOP 480 attempts Master Retries indefinitely.

WFifoAlmostFullFlagCount
This value sets the retry limit before asserting an IOP NMI signal.

DmWriteDelay
This value sets the delay clocks placed between the PCI bus request and the start of direct
master burst write cycle.

ReadPrefetchMode
This value sets the amount of data that can be prefetched from the PCI bus and enables or
disables read prefetching.

IoRemapSelect
When this value is set the PCI address bits 31:16 are forced to zero. Otherwise, the address
bits 31:16 in the Direct Master Remap register will be used on the PCI bus.

Reserved1
This value is reserved for future definitions.

ReservedForFutureUse
This value is reserved for future definitions.

Comments

A-96  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

The PCI bus properties structure is used to describe the PCI bus characteristics.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-97

PCI Arbitration Descriptor Structure
typedef struct _PCI_ARBIT_DESC
{
 U32 Tbd;
} PCI_ARBIT_DESC, *PPCI_ARBIT_DESC;

Affected Register Location

Structure Element PCI 9080 PCI 9054 IOP 480

Purpose

Structure used to describe the PCI bus arbitration.

Note: This structure will be determined at a future date.

Members

Tbd
This value and the other values of this structure will be determined at a future date.

Comments

A-98  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

IOP Bus Properties Structure
typedef struct _IOP_BUS_PROP
{
 U32 EnableReadyInput :1;
 U32 EnableBTERMInput :1;
 U32 DisableReadPrefetch :1;
 U32 EnableReadPrefetchCount :1;
 U32 ReadPrefetchCounter :4;
 U32 EnableBursting :1;
 U32 EnableIopBusTimeoutTimer :1;
 U32 BREQoTimerResolution :1;
 U32 EnableIopBREQo :1;
 U32 BREQoDelayClockCount :4;
 U32 MapInMemorySpace :1;
 U32 OddParitySelect :1;
 U32 EnableParityCheck :1;
 U32 MemoryWriteProtect :1;
 U32 InternalWaitStates :4;
 U32 PciRev2_1Mode :1;
 U32 IopBusWidth :2;
 U32 Reserved1 :5;
 U32 Iop480WADWaitStates :4;
 U32 Iop480WDDWaitStates :4;
 U32 Iop480WDLYDelayStates :3;
 U32 Iop480WHLDHoldStates :3;
 U32 Iop480WRCRecoverStates :3;
 U32 Reserved2 :15;
 U32 Iop480RADWaitStates :4;
 U32 Iop480RDDWaitStates :4;
 U32 Iop480RDLYDelayStates :3;
 U32 Iop480RRCRecoverStates :3;
 U32 Reserved3 :18;
} IOP_BUS_PROP, *PIOP_BUS_PROP;

Affected Register Location

Structure Element PCI 9080 PCI 9054 IOP 480

EnableReadyInput 0x98, 6
0x98, 22
0x178, 6

0x98, 6
0x98, 22
0x178, 6

0x100, 9
0x110, 9
0x120, 9

EnableBTERMInput 0x98, 7
0x98, 23
0x178, 7

0x98, 7
0x98, 23
0x178, 7

0x100, 10
0x110, 10
0x120, 10
0x130, 10

DisableReadPrefetch
* Note: By setting the Read Prefetch
Count to 00 disables Read
Prefetching.

0x98, 8
0x98, 9
0x178, 9

0x98, 8
0x98, 9
0x178, 9

0x100, 17-18*
0x110, 17-18*
0x120, 17-18*
0x130, 17-18*

EnableReadPrefetchCount 0x98, 10
0x178, 10

0x98, 10
0x178, 10

0x100, 16
0x110, 16
0x120, 16
0x130, 16

ReadPrefetchCounter 0x98, 11-14
0x178, 11-14

0x98, 11-14
0x178, 11-14

0x100, 17-18
0x110, 17-18
0x120, 17-18
0x130, 17-18

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-99

Structure Element PCI 9080 PCI 9054 IOP 480

EnableBursting 0x98, 24
0x98, 26
0x178, 8

0x98, 24
0x98, 26
0x178, 8

0x100, 8
0x110, 8
0x120, 8
0x130, 8

EnableIopBusTimeoutTimer N/A N/A 0x88, 15
BREQoTimerResolution 0x94, 5 0x94, 5 N/A
EnableIopBREQo 0x94, 4 0x94, 4 N/A
BREQoDelayClockCount 0x94, 0-3 0x94, 0-3 N/A
MapInMemorySpace 0x80, 0

0x170,0
0x80, 0
0x170,0

0xA8, 0
0xB0, 0

OddParitySelect N/A N/A 0x100, 13
0x110, 13
0x120, 13
0x130, 13

EnableParityCheck N/A N/A 0x100, 12
0x110, 12
0x120, 12
0x130, 12

MemoryWriteProtect N/A N/A 0x100, 11
0x110, 11
0x120, 11
0x130, 11

PciRev2_1Mode 0x88, 24 0x88, 24 0x98, 25
IopBusWidth 0x98, 0-1

0x98, 16-17
0x178, 0-1

0x98, 0-1
0x98, 16-17
0x178, 0-1

0x100, 0-1
0x110, 0-1
0x120, 0-1
0x130, 0-1

InternalWaitStates 0x98, 2-5
0x98, 18-21
0x178, 2-5

0x98, 2-5
0x98, 18-21
0x178, 2-5

Currently Not
Defined.

Iop480WADWaitStates N/A N/A 0x104, 0-3
0x114, 0-3
0x124, 0-3
0x134, 0-3

Iop480WDDWaitStates N/A N/A 0x104, 4-7
0x114, 4-7
0x124, 4-7
0x134, 4-7

Iop480WDLYDelayStates N/A N/A 0x104, 8-10
0x114, 8-10
0x124, 8-10
0x134, 8-10

Iop480WHLDHoldStates N/A N/A 0x104, 11-13
0x114, 11-13
0x124, 11-13
0x134, 11-13

Iop480WRCRecoverStates N/A N/A 0x104, 16-18
0x114, 16-18
0x124, 16-18
0x134, 16-18

Iop480RADWaitStates N/A N/A 0x108, 0-3
0x118, 0-3
0x128, 0-3
0x138, 0-3

Iop480RDDWaitStates N/A N/A 0x108, 4-7
0x118, 4-7
0x128, 4-7
0x138, 4-7

Iop480RDLYDelayStates N/A N/A 0x108, 8-10

A-100  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Structure Element PCI 9080 PCI 9054 IOP 480

0x118, 8-10
0x128, 8-10
0x138, 8-10

Iop480RRCRecoverStates N/A N/A 0x108, 16-18
0x118, 16-18
0x128, 16-18
0x138, 16-18

Purpose

Structure used to describe the local bus characteristics.

Members

EnableReadyInput
The Ready input is enabled when this value is set.

EnableBTERMInput
The BTERM input is enabled when this value is set.

DisableReadPrefetch
Read prefetching is disabled when this value is set.

EnableReadPrefetchCount
The read prefetch counter is enabled when this bit is set. If enabled the PCI device reads up
to the number of U32s specified in the prefetch counter. If disabled the PCI device ignores
the prefetch counter and reads continuously until terminated by the PCI bus.

ReadPrefetchCounter
Stores the number of values that can be prefetched.

EnableBursting
Bursting is enabled if this value is set. If bursting is disabled then the PCI device performs
continuous single cycle accesses for burst PCI read/write cycles.

EnableIopBusTimeoutTimer
The IOP bus timeout timer is enabled if an external master controls the IOP bus when this
value is set.

BREQoTimerResolution
When this value is set the LSB of the BREQo timer changes from 8 to 64 clocks.

EnableIopBREQo
The PCI device can assert the BREQo output to the IOP bus when this value is set.

BREQoDelayClockCount
The value represents the number of IOP bus clocks in which a Direct Slave HOLD request
is pending and a Direct Master access is in progress and not being granted the bus before
asserting BREQo.

MapInMemorySpace
The local space region is mapped into PCI memory space when this value is set.

OddParitySelect
Select odd parity checking on the IOP bus when this value is set. Otherwise, select even
parity checking.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-101

EnableParityCheck
The parity of the IOP bus data will be checked when this value is set.

MemoryWriteProtect
When this value is set, MDQM[3:0]# and WR# signals are not asserted during write cycles
(write-protected). Otherwise, these signals are asserted.

PciRev2_1Mode
The PCI device operates in Delayed Transaction mode for Direct Slave reads when this
value is set. Otherwise, the PCI device does not return a TRDY# signal to the PCI host
until the read data are available.

IopBusWidth
The width of the IOP bus.

InternalWaitStates
The number of wait states inserted after the address is presented on the IOP bus until the
data is ready. The value must be between 0-15.

Reserved1
This value is reserved for future definitions.

Iop480WADWaitStates
This value contains the number of Write Address-to-Data wait states to insert for the IOP
480. The value must be between 0-15.

Iop480WDDWaitStates
This value contains the number of Write Data-to-Data wait states (used when bursting) to
insert for the IOP 480. The value must be between 0-15.

Iop480WDLYWaitStates
This value contains the number of Write Enable Delay states to insert for the IOP 480. The
value must be between 0-15.

Iop480WHLDWaitStates
This value contains the number of Write Hold states to insert for the IOP 480. The value
must be between 0-15.

Iop480WRCVWaitStates
This value contains the number of Write Recovery states to insert for the IOP 480. The
value must be between 0-15.

Reserved2
This value is reserved for future definitions.

Iop480RADWaitStates
This value contains the number of Read Address-to-Data wait states to insert for the IOP
480. The value must be between 0-15.

Iop480RDDWaitStates
This value contains the number of Read Data-to-Data wait states (used when bursting) to
insert for the IOP 480. The value must be between 0-15.

Iop480RDLYWaitStates
This value contains the number of Read Enable Delay states to insert for the IOP 480. The
value must be between 0-15.

A-102  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Iop480RRCVWaitStates
This value contains the number of Read Recovery states to insert for the IOP 480. The
value must be between 0-15.

Reserved3
This value is reserved for future definitions.

Comments

The IOP bus properties structure is used to describe the IOP bus characteristics.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-103

IOP Arbitration Descriptor Structure
typedef struct _IOP_ARBIT_DESC
{
 U32 IopBusDSGiveUpBusMode :1;
 U32 EnableDSLockedSequence :1;
 U32 GateIopLatencyTimerBREQo :1;
 U32 EnableWAITInput :1;
 U32 EnableBOFF :1;
 U32 BOFFTimerResolution :1;
 U32 EnableIopBusLatencyTimer :1;
 U32 EnableIopBusPauseTimer :1;
 U32 EnableIopArbiter :1;
 U32 IopArbitrationPriority :3;
 U32 BOFFDelayClocks :4;
 U32 IopBusLatencyTimer :8;
 U32 IopBusPauseTimer :8;
} IOP_ARBIT_DESC, *PIOP_ARBIT_DESC;

Affected Register Location

Structure Element PCI 9080 PCI 9054 IOP 480

IopBusDSGiveUpBusMode 0x88, 21 0x88, 21 0x90, 8
EnableDSLockedSequence 0x88, 22 0x88, 22 0x90, 9
GateIopLatencyTimerBREQo 0x88, 27 0x88, 27 0x90, 10
EnableWAITInput N/A 0x88, 31 Currently Not

Defined.
EnableBOFF N/A N/A 0x90, 16
BOFFTimerResolution N/A N/A 0x90, 21
EnableIopBusLatencyTimer 0x88, 16 0x88, 16 0x8C, 8
EnableIopBusPauseTimer 0x88, 17 0x88, 17 0x8C, 24
EnableIopArbiter N/A N/A 0x90, 0
IopArbitrationPriority N/A N/A 0x90, 1-3
BOFFDelayClocks N/A N/A 0x90, 17-20
IopBusLatencyTimer 0x88, 0-7 0x88, 0-7 0x8C, 0-7
IopBusPauseTimer 0x88, 8-15 0x88, 8-15 0x8C, 16-23

Purpose

Structure used to describe the IOP bus arbitration.

Members

IopBusDSGiveUpBusMode
The Direct Slave access releases the IOP bus when the Direct Slave write FIFO becomes
empty or the Direct Slave read FIFO becomes full when this value is set.

EnableDSLockedSequence
The Direct Slave locked sequences mode is enabled when this value is set.

GateIopLatencyTimerBREQo
The IOP bus latency timer is gated with BREQo when this value is set.

EnableWAITInput
The WAIT# input is enabled when this bit is set.

A-104  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

EnableBOFF
the IOP 480 can assert the BOFF# pin when this value is set.

BOFFTimerResolution
When this value is set the LSB of the IOP 480’s BOFF timer is set to be 64 clocks.
Otherwise, the LSB is set to 8 clocks.

EnableIopBusLatencyTimer
The IOP bus latency timer is enabled when this value is set.

EnableIopBusPauseTimer
The IOP bus pause timer is enabled when this value is set.

EnableIopArbiter
The IOP bus arbiter is enabled when this value is set.

IopArbitrationPriority
The IOP bus arbitration priority is set with this value.

BOFFDelayClocks
This value contains the number of delay clocks in which a Direct Slave bus request is
pending and a Local Direct Master access is in progress and not being granted the bus
before asserting BOFF#.

IopBusLatencyTimer
This value contains the number of IOP bus clocks cycles that the PCI device will hold the
IOP bus before releasing it to another requester.

IopBusPauseTimer
This value contains the number of IOP bus clocks cycles before requesting the IOP bus
after releasing the IOP bus for internal masters.

Comments

The IOP arbitration descriptor structure is used to describe the IOP bus arbitration.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-105

IOP Endian Descriptor Structure
typedef struct _IOP_ENDIAN_DESC
{
 U32 BigEIopSpace0 :1;
 U32 BigEIopSpace1 :1;
 U32 BigEExpansionRom :1;
 U32 BigEIopBusRegion0 :1;
 U32 BigEIopBusRegion1 :1;
 U32 BigEIopBusRegion2 :1;
 U32 BigEIopBusRegion3 :1;
 U32 BigEDramBusRegion :1;
 U32 BigEDefaultBusRegion :1;
 U32 BigEDirectMasterAccess :1;
 U32 BigEDmaChannel0 :1;
 U32 BigEDmaChannel1 :1;
 U32 BigEIopConfigRegAccess :1;
 U32 BigEByteLaneMode :1;
 U32 BigEByteLaneModeLBR0 :1;
 U32 BigEByteLaneModeLBR1 :1;
 U32 BigEByteLaneModeLBR2 :1;
 U32 BigEByteLaneModeLBR3 :1;
 U32 BigEByteLaneModeDRAMBR :1;
 U32 BigEByteLaneModeDefBR :1;
 U32 Reserved1 :12;
 U32 ReservedForFutureUse;
} IOP_ENDIAN_DESC, *PIOP_ENDIAN_DESC;

Affected Register Location

Structure Element PCI 9080 PCI 9054 IOP 480

BigELocalSpace0 0x8C, 2 0x8C, 2 N/A
BigELocalSpace1 0x8C, 5 0x8C, 5 N/A
BigEExpansionRom 0x8C, 3 0x8C, 3 N/A
BigELocalBusRegion0 N/A N/A 0x100, 4
BigELocalBusRegion1 N/A N/A 0x110, 4
BigELocalBusRegion2 N/A N/A 0x120, 4
BigELocalBusRegion3 N/A N/A 0x130, 4
BigEDramBusRegion N/A N/A 0x140, 4
BigEDefaultBusRegion N/A N/A 0x154, 4
BigEDirectMasterAccess 0x8C, 1 0x8C, 1 0x94, 1
BigEDmaChannel0 0x8C, 7 0x8C, 7 N/A
BigEDmaChannel1 0x8C, 6 0x8C, 6 N/A
BigEIopConfigRegAccess 0x8C, 0 0x8C, 0 0x94, 0
BigEByteLaneMode 0x8C, 4 0x8C, 4 N/A
BigEByteLaneModeLBR0 N/A N/A 0x100, 3
BigEByteLaneModeLBR1 N/A N/A 0x110, 3
BigEByteLaneModeLBR2 N/A N/A 0x120, 3
BigEByteLaneModeLBR3 N/A N/A 0x130, 3
BigEByteLaneModeDRAMBR N/A N/A 0x140, 3
BigEByteLaneModeDefBR N/A N/A 0x154, 3

Purpose

Structure used to describe the IOP bus endian data ordering.

A-106  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Members

BigELocalSpace0
The local space 0 is configured with big endian data ordering if this value is set.

BigELocalSpace1
The local space 1 is configured with big endian data ordering if this value is set.

BigEExpansionRom
The Expansion ROM is configured with big endian data ordering if this value is set.

BigELocalBusRegion0
The local bus region 0 is configured with big endian data ordering if this value is set.

BigELocalBusRegion1
The local bus region 1 is configured with big endian data ordering if this value is set.

BigELocalBusRegion2
The local bus region 2 is configured with big endian data ordering if this value is set.

BigELocalBusRegion3
The local bus region 3 is configured with big endian data ordering if this value is set.

BigEDramBusRegion
The DRAM bus region is configured with big endian data ordering if this value is set.

BigEDefaultBusRegion
The default bus region is configured with big endian data ordering if this value is set.

BigEDirectMasterAccess
The direct master access is configured with big endian data ordering if this value is set.

BigEDmaChannel0
The DMA channel 0 is configured with big endian data ordering if this value is set.

BigEDmaChannel1
The DMA channel 1 is configured with big endian data ordering if this value is set.

BigEIopConfigRegAccess
The IOP configuration register access is configured with big endian data ordering if this
value is set.

BigEByteLaneMode
When this value is set use D31:16 for 16-bit bus and D31:24 for 8-bit bus. Otherwise, use
D15:0 for 16-bit bus and D7:0 for 8-bit bus.

BigEByteLaneModeLBR0
When this value is set use D31:16 for 16-bit bus and D31:24 for 8-bit bus for local bus
region 0. Otherwise, use D15:0 for 16-bit bus and D7:0 for 8-bit bus.

BigEByteLaneModeLBR1
When this value is set use D31:16 for 16-bit bus and D31:24 for 8-bit bus for local bus
region 1. Otherwise, use D15:0 for 16-bit bus and D7:0 for 8-bit bus.

BigEByteLaneModeLBR2
When this value is set use D31:16 for 16-bit bus and D31:24 for 8-bit bus for local bus
region 2. Otherwise, use D15:0 for 16-bit bus and D7:0 for 8-bit bus.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-107

BigEByteLaneModeLBR3
When this value is set use D31:16 for 16-bit bus and D31:24 for 8-bit bus for local bus
region 3. Otherwise, use D15:0 for 16-bit bus and D7:0 for 8-bit bus.

BigEByteLaneModeDRAMBR
When this value is set use D31:16 for 16-bit bus and D31:24 for 8-bit bus for DRAM bus
region. Otherwise, use D15:0 for 16-bit bus and D7:0 for 8-bit bus.

Reserved1
This value is reserved for future definitions.

ReservedForFutureUse
This value is reserved for future definitions.

Comments

The IOP endian descriptor structure is used to configure the IOP bus endian data ordering.

A-108  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Access Type Enumerated Data Type
typedef enum _ACCESS_TYPE
{
 BitSize8,
 BitSize16,
 BitSize32,
 BitSize64
} ACCESS_TYPE;

Affected Register Location

Not applicable.

Purpose

Enumerated type used for determining the access type size.

Members

BitSize8
Use 8 bits (char) for the access type size.

BitSize16
Use 16 bits (short) for the access type size.

BitSize32
Use 32 bits (long) for the access type size.

BitSize64
Use 64 bits (longlong) for the access type size.

Comments

The access type enumerated type is used to state the access type size for a data transfer.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-109

IOP Space Enum Data Type
typedef enum _IOP_SPACE
{
 IopSpace0,
 IopSpace1,
 IopSpace2,
 IopSpace3,
 ExpansionRom
} IOP_SPACE, *PIOP_SPACE;

Affected Register Location

Not applicable.

Purpose

Enumerated type used for choosing the desired Local Address Space registers when accessing the
IOP memory space.

Members

IopSpace0
Use Local Space 0 base address register.

IopSpace1
Use Local Space 1 base address register.

IopSpace2
Use Local Space 2 base address register.

IopSpace3
Use Local Space 3 base address register.

ExpansionRom
Use Expansion ROM base address register.

Comments

The IOP space enumerated type is used to choose the Local Space Base Address register.

A-110  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

BAR Space Enum Data Type
typedef enum _BAR_SPACE
{
 Bar0,
 Bar1,
 Bar2,
 Bar3,
 Bar4,
 Bar5,
 IopExpansionRom
} IOP_SPACE, *PIOP_SPACE;

Affected Register Location

Not applicable.

Purpose

Enumerated type used for choosing the desired Base Address Register when accessing the IOP
memory space.

Members

Bar0
Use Base Address Register 0.

Bar1
Use Base Address Register 1.

Bar2
Use Base Address Register 2.

Bar3
Use Base Address Register 3.

Bar4
Use Base Address Register 4.

Bar5
Use Base Address Register 5.

IopExpansionRom
Use Expansion ROM base address register.

Comments

The BAR space enumerated type is used to choose the Base Address Register when accessing the
IOP Bus.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-111

PCI Space Enum Data Type
typedef enum _PCI_SPACE
{
 PciMemSpace,
 PciIoSpace
} PCI_SPACE;

Affected Register Location

Not applicable.

Purpose

Enumerated type used for choosing the desired PCI Address Space access.

Members

PciMemSpace
Use PCI memory cycles when accessing the PCI bus.

PciIoSpace
Use PCI I/O cycles when accessing the PCI bus.

Comments

The PCI space enumerated type is used to select the type of bus cycles when accessing the PCI
bus.

A-112  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Bus Index Enum Data Type
typedef enum _BUS_INDEX
{
 PrimaryPciBus,
 SecondaryPciBus
} BUS_INDEX;

Affected Register Location

Not applicable.

Purpose

Enumerated type used for choosing the desired PCI bus.

Members

PrimaryPciBus
Use the primary PCI bus.

SecondaryPciBus
Use the secondary PCI bus.

Comments

The bus index enumerated type is used to select the PCI bus.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-113

Mailbox ID Enum Data Type
typedef enum _MAILBOX_ID
{
 Mailbox0,
 Mailbox1,
 Mailbox2,
 Mailbox3,
 Mailbox4,
 Mailbox5,
 Mailbox6,
 Mailbox7
} MAILBOX_ID;

Affected Register Location

Structure Element PCI 9080 PCI 9054 IOP 480

Mailbox0 0xC0 0xC0 0x180
Mailbox1 0xC4 0xC4 0x184
Mailbox2 0xC8 0xC8 0x188
Mailbox3 0xCC 0xCC 0x18C
Mailbox4 0xD0 0xD0 0x190
Mailbox5 0xD4 0xD4 0x194
Mailbox6 0xD8 0xD8 0x198
Mailbox7 0xDC 0xDC 0x19C

Purpose

Enumerated type used for choosing the desired mailbox register.

Members

Mailbox0
Use mailbox 0 register.

Mailbox1
Use mailbox 1 register.

Mailbox2
Use mailbox 2 register.

Mailbox3
Use mailbox 3 register.

Mailbox4
Use mailbox 4 register.

Mailbox5
Use mailbox 5 register.

Mailbox6
Use mailbox 6 register.

Mailbox7
Use mailbox 7 register.

Comments

A-114  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

The mailbox ID enumerated type is used to select a specific mailbox register.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-115

DMA Channel Enum Data Type
typedef enum _DMA_CHANNEL
{
 IopChannel0,
 IopChannel1,
 PrimaryPciChannel0,
 PrimaryPciChannel1,
 SecondaryPciChannel0,
 SecondaryPciChannel1
} DMA_CHANNEL, *PDMA_CHANNEL;

Affected Register Location

Not applicable.

Purpose

Enumerated type used for requesting a DMA channel.

Members

IopChannel0
Request the IOP-IOP DMA channel 0.

IopChannel1
Request the IOP-IOP DMA channel 1.

PrimaryPciChannel0
Request the Primary PCI-IOP DMA channel 0.

PrimaryPciChannel1
Request the Primary PCI-IOP DMA channel 1.

SecondaryPciChannel0
Request the Secondary PCI-IOP DMA channel 0.

SecondaryPciChannel1
Request the Secondary PCI-IOP DMA channel 1.

Comments

The DMA channel enumerated type is used to request a DMA channel.

A-116  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

DMA Direction Enum Data Type
typedef enum _DMA_DIRECTION
{
 IopToIop,
 IopToPrimaryPci,
 PrimaryPciToIop,
 IopToSecondaryPci,
 SecondaryPciToIop,
 PrimaryPciToSecondaryPci,
 SecondaryPciToPrimaryPci
} DMA_DIRECTION, *PDMA_DIRECTION;

Affected Register Location

Not applicable.

Purpose

Enumerated type used for providing the DMA transfer direction.

Members

IopToIop
Transfer between two IOP bus addresses.

IopToPrimaryPci
Transfer from an IOP bus address to a Primary PCI bus address.

PrimaryPciToIop
Transfer from a Primary PCI bus address to an IOP bus address.

IopToSecondaryPci
Transfer from an IOP bus address to a Secondary PCI bus address.

SecondaryPciToIop
Transfer from a Secondary PCI bus address to an IOP bus address.

PrimaryPciToSecondaryPci
Transfer from a Primary PCI bus address to a Secondary PCI bus address.

SecondaryPciToPrimaryPci
Transfer from a Secondary PCI bus address to a Primary PCI bus address.

Comments

The DMA direction enumerated type is used to state the DMA transfer direction.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-117

DMA Command Enum Data Type
typedef enum _DMA_COMMAND
{
 DmaStart,
 DmaPause,
 DmaResume,
 DmaAbort,
 DmaStatus
} DMA_COMMAND, *PDMA_COMMAND;

Affected Register Location

Not applicable.

Purpose

Enumerated type used to control a DMA transfer.

Members

DmaStart
Start a DMA transfer.

DmaPause
Suspend a DMA transfer.

DmaResume
Resume a DMA transfer.

DmaAbort
Abort a DMA transfer.

DmaStatus
Determine the status of a DMA transfer.

Comments

The DMA command enumerated type is used to control a DMA transfer.

A-118  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

DMA Channel Priority Enum Data Type
typedef enum _DMA_CHANNEL_PRIORITY
{
 Channel0Highest,
 Channel1Highest,
 Channel2Highest,
 Channel3Highest,
 Rotational
} DMA_CHANNEL_PRIORITY;

Affected Register Location

Not applicable.

Purpose

Enumerated type used for choosing the desired DMA channel priority scheme.

Members

Channel0Highest
DMA channel 0 has the highest priority.

Channel1Highest
DMA channel 1 has the highest priority.

Channel2Highest
DMA channel 2 has the highest priority.

Channel3Highest
DMA channel 3 has the highest priority.

Rotational
Rotate the channel priority.

Comments

The DMA channel priority enumerated type is used to select the DMA channel priority scheme.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-119

Power Level Enum Data Type
typedef enum _PLX_POWER_LEVEL
{
 D0Uninitialized,
 D0,
 D1,
 D2,
 D3Hot,
 D3Cold
} PLX_POWER_LEVEL, *PPLX_POWER_LEVEL;

Affected Register Location

Not applicable.

Purpose

Enumerated type used to state the power level.

Members

D0Uninitialized
Change to uninitialized state. This state is the full power state and is the state for normal
operation.

D0
Change to active state. This state is the full power state and is the state for normal
operation.

D1
Change to light sleep state. This state will allow the IOP to only PCI configuration
accesses. Responses to other accesses are disabled. Other background tasks on the IOP may
still be running such as monitoring a network. Function context should be maintained to
support transitions back to the D0 state.

D2
Change to deeper sleep state. This state will allow the IOP to only PCI configuration
accesses. Responses to other accesses are disabled. This state should consume less power
than D1 state. Function context should be maintained to support transitions back to the D0
state.

D3Hot
Change to power down state. This state prepares the IOP for a hot swap. Configuration
space accesses must provide responses as long as the power and clock are supplied so that
the software can change the power level state back to D0 state. This state should consume
very little power (while still connected to the PCI bus).

D3Cold
Change to no power state. This states only supports bus reset. All context is lost in this
state.

Comments

The power level enumerated type is used to control the transition between the power states.

A-120  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

EEPROM Type Enum Data Type
typedef enum _EEPROM_TYPE
{
 Eeprom93CS46,
 Eeprom93CS56,
 EepromX24012,
 EepromX24022,
 EepromX24042,
 EepromX24162
} EEPROM_TYPE;

Affected Register Location

Not applicable.

Purpose

Enumerated type used to state the EEPROM type used to program the configuration registers at
power-up.

Members

Eeprom93CS46
Use a compatible EEPROM to the National NM93CS46 EEPROM.

Eeprom93CS56
Use a compatible EEPROM to the National NM93CS56 EEPROM.

EepromX24012
Use a compatible EEPROM to the Xicor X24012 EEPROM.

EepromX24022
Use a compatible EEPROM to the Xicor X24022 EEPROM.

EepromX24042
Use a compatible EEPROM to the Xicor X24042 EEPROM.

EepromX24162
Use a compatible EEPROM to the Xicor X24162 EEPROM.

Comments

The EEPROM type enumerated type is used to state the type of EEPROM used to program the
configuration registers at power-up.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-121

USER Pin Enum Data Type
typedef enum _USER_PIN
{
 USER0,
 USER1,
 USER2,
 USER3,
 USER4,
 USER5
} USER_PIN;

Affected Register Location

I represents input pins.

O represents output pins.

Structure Element PCI 9080 PCI 9054 IOP 480

USER0 I 0xEC, 17
O 0xEC, 16

I 0xEC, 17
O 0xEC, 16

0x84, 0-3

USER1 N/A N/A 0x84, 1
0x84, 4-6

USER2 N/A N/A 0x84, 4
0x84, 8-10

USER3 N/A N/A 0x84, 16
USER4 N/A N/A 0x84, 17
USER5 N/A N/A 0x84, 18

Purpose

Enumerated type used to select a USER pin.

Members

USER0
Select USER0 pin.

USER1
Select USER1 pin.

USER2
Select USER2 pin.

USER3
Select USER3 pin.

USER4
Select USER4 pin.

USER5
Select USER5 pin.

Comments

The USER pin enumerated type is used to select a USER pin.

A-122  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Pin State Enum Data Type
typedef enum _PIN_STATE
{
 Inactive,
 Active
} PIN_STATE;

Affected Register Location

Not applicable.

Purpose

Enumerated type used to set the state of a USER pin.

Members

Inactive
Set the USER pin to inactive state. If the USER pin is active low then setting the USER pin
inactive would cause it to go high.

Active
Set the USER pin to active state. If the USER pin is active low then setting the USER pin
active would cause it to go low.

Comments

The pin state enumerated type is used to set the state of a USER pin.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 A-123

Echo State Enum Data Type
typedef enum _ECHO_STATE
{
 Echo,
 NoEcho
} ECHO_STATE, *PECHO_STATE;

Affected Register Location

Not applicable.

Purpose

Enumerated type used to set the echo state of the UART Services functions.

Members

Echo
All characters received through the serial port are echoed back to the originator.

NoEcho
No characters received through the serial port are echoed back.

Comments

The echo state enumerated type is used to set the echo state of UART Services functions.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-1

Appendix B. PCI API Function Description
The IOP API is designed around the features of the PCI IC. The API functions are grouped into
ten categories, being:

• PCI Device Functions: Allows reading and writing to a PCI device’s configuration registers,
connection to specific PLX devices and allows Physical Memory allocation for user
applications (used with Direct Master accesses and DMA transfers);

• Register Access Functions: allows access to a PCI device’s registers;

• Interrupt Support Functions: allows connection and control of all PCI device’s interrupts;

• Bus Memory and I/O Functions: allows Direct Master and Direct Slave accesses between IOP
memory and PCI bus memory using either memory or I/O bus cycles;

• DMA Functions: allows configuration and setup of DMA transfers;

• Messaging Unit Functions: provides support for initializing and accessing the messaging unit
of a PLX device;

• Power Management Functions: provides support for power management;

• Serial EEPROM Access Functions: provides support for accessing the PLX device’s serial
EEPROM;

• USER Pins Functions: provides support for accessing the PLX device’s USER pins; and,

• Miscellaneous Functions: provides some cross platform support functions.

B.1 PCI API Function Quick Reference List
The following table lists all the PCI API functions available. Designers should consult Section
B.2 for detailed descriptions of the API functions.

API Function Name Purpose

PlxPciDeviceOpen() Open a PLX device channel.

PlxPciDeviceClose() Close a PLX device channel.

PlxPciConfigRegisterRead() Read the configuration registers of a PCI device.

PlxPciConfigRegisterWrite() Write the configuration registers of a PCI device.

PlxPciConfigRegisterReadAll() Read all the configuration registers of a PCI device.

PlxPciDeviceFind() Find a PLX device on the PCI bus.

PlxPciBusSearch() Search for a non-PLX device on the PCI bus.

PlxPciBaseAddressesGet() Get the virtual addresses for the base address registers.

PlxPciBarRangeGet() Get the memory range for a base address register.

PlxPciCommonBufferGet() Get the information for the device driver’s common buffer.

PlxRegisterRead() Read a register.

PlxRegisterWrite() Write a register.

B-2  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

API Function Name Purpose

PlxRegisterReadAll() Read a register group.

PlxRegisterMailboxRead() Read a mailbox register.

PlxRegisterMailboxWrite() Write a mailbox register.

PlxRegisterDoorbellRead() Clear and read a doorbell register.

PlxRegisterDoorbellSet() Set a doorbell register.

PlxIntrAttach() Attach a wait event to a PLX interrupt.

PlxIntrEnable() Enable specific PLX interrupts.

PlxIntrDisable() Disable specific PLX interrupts.

PlxIntrStatusGet() Get the status of the PLX interrupts.

PlxBusIopRead() Read data from the IOP bus.

PlxBusIopWrite() Write data to the IOP bus.

PlxIoPortRead() Read data from an I/O port.

PlxIoPortWrite() Write data to an I/O port.

PlxDmaBlockChannelOpen() Open a DMA channel.

PlxDmaBlockTransfer() Fill a DMA descriptor block for DMA chains.

PlxDmaBlockTransferRestart() Control DMA transfer.

PlxDmaBlockChannelClose() Close a DMA channel.

PlxMuInboundPortRead() Read the inbound port.

PlxMuInboundPortWrite() Write the inbound port.

PlxMuOutboundPortRead() Read the outbound port.

PlxMuOutboundPortWrite() Write the outbound port.

PlxPowerLevelSet() Set the power level.

PlxPowerLevelGet() Get the power level.

PlxSerialEepromRead() Read the serial EEPROM.

PlxSerialEepromWrite() Write to the serial EEPROM.

PlxUserRead() Read a USER pin value.

PlxUserWrite() Write a value to a USER pin.

PlxSdkVersion Get the version string for the PCI API.

B.2 PCI API Functions Details
This section contains a detailed description of each function in the API. The functions are listed
by category.

The following sample entry lists each entry section and describes the information therein.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-3

Note: Devices supported by PCI SDK Version 2.0: PCI 9080

Sample Function Entry

Syntax:

function(modifier parameter[,...]);
This gives the declaration syntax for each function. Each parameter is italicized.

Description:

Summary of the function’s purpose followed by the parameters it takes. Also includes any
relevant information pertaining to the function.

Return Value:

The value returned by the function.

Usage:

A sample is provided to demonstrate the function’s use.

B-4  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PCI Functions

PlxPciDeviceOpen

Syntax:

RETURN_CODE PlxPciDeviceOpen(IN PDEVICE_LOCATION pDevice,
OUT PHANDLE pDrvHandle);

Description:

Opens a PLX device channel. When the function returns device will contain the information for
the specified device.

• pDevice is the structure that contains device information necessary to open a unique device;
and,

• pDrvHandle is the handle of the device driver that the PCI API is using.

Note: This function should be used to open a channel to a PLX device and get a handle to the
device driver before any PCI API functions that require a handle can be used. The handle
returned by this API function should be closed using the PlxPciDeviceClose() API function before
the user application exits.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The pDevice or pDrvHandle parameter is NULL.

ApiInvalidDeviceInfo The information in pDevice is not valid for any device
in the system.

ApiNoActiveDevice There is no device driver installed into the system.

ApiInsufficientResources There is no memory available for the PCI API.

Usage:

 RETURN_CODE rc;
 DEVICE_LOCATION device;
 HANDLE myPlxDevice;

 /* Open a handle to the first PLX device found */
 device.BusNumber = MINUS_ONE_LONG;
 device.SlotNumber = MINUS_ONE_LONG;
 device.DeviceId = MINUS_ONE_LONG;
 device.VendorId = MINUS_ONE_LONG;
 strcpy (device.SerialNumber, "pci9080-0");
 rc = PlxPciDeviceOpen (&device, &myPlxDevice);
 if (rc != ApiSuccess)
 {
 printf ("\n\nErrors in opening device.\n");

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-5

 printf ("Returned code is %d\n",rc);
 printf ("Press any key to exit.....");
 getch();
 return;
 }

B-6  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxPciDeviceClose

Syntax:

RETURN_CODE PlxPciDeviceClose(IN HANDLE drvHandle);

Description:

Closes a PLX device channel.

• drvHandle is the handle of the device driver.

Note: This function should be preceded by a call to PlxPciDeviceOpen() and should be used to
close a PLX device channel before the application terminates.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiInvalidDeviceInfo The device was not closed properly.

Usage:

 RETURN_CODE rc;
 HANDLE myPlxDevice;

 /* Close a handle to the PLX device */
 rc = PlxPciDeviceClose(myPlxDevice);
 if (rc != ApiSuccess)
 {
 printf ("\n\nErrors in closing device.\n");
 printf ("Returned code is %d\n",rc);
 printf ("Press any key to exit.....");
 getch();
 return;
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-7

PlxPciConfigRegisterRead

Syntax:

U64 PlxPciConfigRegisterRead(IN U32 bus,
IN U32 slot,
IN U32 registerNumber,
OUT PPRETURN_CODE pReturnCode);

Description:

Reads a configuration register from a PCI device.

• bus is the PCI bus number of the device to read;

• slot is the PCI slot number of the device to read;

• registerNumber is the configuration register to read; and,

• pReturnCode is a pointer to the return code of the function.

Note: This function can access any PCI device present on the PCI bus.

Return Value:

This function returns the value read from the register. The status of the function call is returned
via the returnCode parameter. The return codes are as follows:

Return Value Description

ApiSuccess The function returned successfully.

ApiNoActiveDevice There is no device driver installed into the system.

ApiInvalidRegister The registerNumber parameter is out of range or not on
a 4-byte boundary.

ApiConfigAccessFailed A PCI Bus Master Abort occurred.

Usage:

 RETURN_CODE rc;
 U64 range, address;

 /* Save a copy of the address */
 address = PlxPciConfigRegisterRead(0x0,
 0x12,
 PCI9080_LOCAL_BASE0,
 &rc);
 if (rc != ApiSuccess)
 {
 printf("\a\nPlxPciConfigRegisterRead failed.");
 PlxSdkError((U32) rc);
 exit(2);
 }

 /* Get the BAR range */
 range = 0xFFFFFFFF;

B-8  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

 rc = PlxPciConfigRegisterWrite(0x0,
 0x12,
 PCI9080_LOCAL_BASE0,
 &range);
 if (rc != ApiSuccess)
 {
 printf("\a\nPlxPciConfigRegisterWrite failed.");
 PlxSdkError((U32) rc);
 exit(2);
 }

 range = PlxPciConfigRegisterRead(0x0,
 0x12,
 PCI9080_LOCAL_BASE0,
 &rc);
 if (rc != ApiSuccess)
 {
 printf("\a\nPlxPciConfigRegisterRead failed.");
 PlxSdkError((U32) rc);
 exit(2);
 }

 rc = PlxPciConfigRegisterWrite(0x0,
 0x12,
 PCI9080_LOCAL_BASE0,
 &address);
 if (rc != ApiSuccess)
 {
 printf("\a\nPlxPciConfigRegisterWrite failed.");
 PlxSdkError((U32) rc);
 exit(2);
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-9

PlxPciConfigRegisterWrite

Syntax:

RETURN_CODE PlxPciConfigRegisterWrite(IN U32 bus,
IN U32 slot,
IN U32 registerNumber,
IN PU32 data);

Description:

Writes data to a configuration register on a PCI device.

• bus is the PCI bus number of the device to write;

• slot is the PCI slot number of the device to write;

• registerNumber is the configuration register to write to; and,

• data is a pointer to the buffer that contains the data to write.

Note: This function can access any PCI device present on the PCI bus.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNoActiveDevice There is no device driver installed into the system.

ApiInvalidRegister The registerNumber parameter is out of range or not on
a 4-byte boundary.

ApiNullParam The data parameter is NULL.

ApiConfigAccessFailed Communication to the device driver failed.

Usage:

 RETURN_CODE rc;
 U64 range, address;

 /* Save a copy of the address */
 address = PlxPciConfigRegisterRead(0x0,
 0x12,
 PCI9080_LOCAL_BASE0,
 &rc);
 if (rc != ApiSuccess)
 {
 printf("\a\nPlxPciConfigRegisterRead failed.");
 PlxSdkError((U32) rc);
 exit(2);
 }

 /* Get the BAR range */
 range = 0xFFFFFFFF;
 rc = PlxPciConfigRegisterWrite(0x0,

B-10  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

 0x12,
 PCI9080_LOCAL_BASE0,
 &range);
 if (rc != ApiSuccess)
 {
 printf("\a\nPlxPciConfigRegisterWrite failed.");
 PlxSdkError((U32) rc);
 exit(2);
 }

 range = PlxPciConfigRegisterRead(0x0,
 0x12,
 PCI9080_LOCAL_BASE0,
 &rc);
 if (rc != ApiSuccess)
 {
 printf("\a\nPlxPciConfigRegisterRead failed.");
 PlxSdkError((U32) rc);
 exit(2);
 }

 rc = PlxPciConfigRegisterWrite(0x0,
 0x12,
 PCI9080_LOCAL_BASE0,
 &address);
 if (rc != ApiSuccess)
 {
 printf("\a\nPlxPciConfigRegisterWrite failed.");
 PlxSdkError((U32) rc);
 exit(2);
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-11

PlxPciConfigRegisterReadAll

Syntax:

RETURN_CODE PlxPciConfigRegisterReadAll(IN U32 bus,
IN U32 slot,
OUT PU32 buffer);

Description:

Reads all PCI Configuration registers on a PCI device.

• bus is the PCI bus number of the device to read;

• slot is the PCI slot number of the device to read; and,

• buffer is the storage location for the configuration register values.

Note: buffer MUST be already allocated and must hold enough room for all PCI Configuration
registers. This function can access any PCI device present on the PCI bus.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNoActiveDevice There is no device driver installed into the system.

ApiNullParam The buffer parameter is NULL.

ApiConfigAccessFailed Communication to the device driver failed.

ApiInsufficientResources There is no memory available for the PCI API.

Usage:

 RETURN_CODE rc;
 U32 pciRegsBuffer[0x20];

 rc = PlxPciConfigRegisterReadAll(0x0,
 0x12,
 pciRegsBuffer);

 if (rc != ApiSuccess)
 {
 printf("\a\nPlxPciConfigRegisterReadAll failed.");
 PlxSdkError((U32) rc);
 exit(1);
 }

B-12  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxPciDeviceFind

Syntax:

RETURN_CODE PlxPciDeviceFind(IN OUT PDEVICE_LOCATION device,
IN OUT PU32 requestLimit);

Description:

Finds PLX devices on the PCI bus given a combination of bus number, slot number; vendor ID,
and device ID, or by giving the serialNumber. This function does two things:

The first time this function is called the requestLimit contains the value
FIND_AMOUNT_MATCHED. The function looks for all devices that matches the
search criteria (given in device) and returns the total number of matches in requestLimit.

The next time this function is called requestLimit contains the desired device number
(numbering starts at zero). When the function returns device will contain the information
for the specified device.

• device is a pointer to the device information to search for, as well as the buffer pointer (as an
array of DEVICE_LOCATIONs); and,

• requestLimit is a pointer to a U32 value.

Note: If the serialNumber element within the DEVICE_LOCATION structure is not being
used as a search criteria it should be set to NULL.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The device parameter is NULL.

ApiInvalidDeviceInfo The information in device is not valid for any device in
the system.

ApiNoActiveDevice There is no device driver installed into the system.

ApiInsufficientResources There is no memory available for the PCI API.

Usage:

 RETURN_CODE rc;
 DEVICE_LOCATION device; /* Device Location Information */
 U32 reqLimit;

 /* Set the limit to zero to find out the memory space required */
 reqLimit = FIND_AMOUNT_MATCHED;

 if ((rc = PlxPciDeviceFind (&device, &reqLimit) != ApiSuccess) ||
 (reqLimit < 1))
 {
 printf("\a\nCould not find the 0x%04x:0x%04x board in system. ",
 device.VendorID, device.DeviceId);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-13

 PlxSdkError((U32) rc);
 exit (2);
 }

B-14  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxPciBusSearch

Syntax:

RETURN_CODE PlxPciBusSearch(IN OUT PDEVICE_LOCATION pDevData);

Description:

Searches for a non-PLX device on the PCI bus. When the function returns device will contain the
information for the specified device.

• pDevData contains the search data for the desired device.

Note: This function should only be used if PlxPciDeviceFind() function could not locate a desired
PCI device.

Return Value:

On success, pDevData contains valid device information.

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The device parameter is NULL.

ApiInvalidDeviceInfo The information in device is not valid for any device in
the system.

ApiNoActiveDevice There is no device driver installed into the system.

ApiInsufficientResources There is no memory available for the PCI API.

Usage:

 RETURN_CODE rc;
 DEVICE_LOCATION device; /* Device Location Information */

 device.VendorId = PLX_VENDOR_ID;
 device.DeviceId = PLX_9080RDK_860_DEVICE_ID;
 device.BusNumber = 0xFFFFFFFF;
 device.SlotNumber = 0xFFFFFFFF;
 device.SerialNumber[0] = '\0';
 rc = PlxPciBusSearch(&device);
 if (rc != ApiSuccess)
 {
 printf("\a\nPlxPciBusSearch failed.");
 PlxSdkError((U32) rc);
 }
 else
 {
 printf("\nU32 DeviceId is %08lX", device.DeviceId);
 printf("\nU32 VendorId is %08lX", device.VendorId);
 printf("\nU32 BusNumber is %08lX", device.BusNumber);
 printf("\nU32 SlotNumber is %08lX", device.SlotNumber);
 printf("\nU8 SerialNumber [16] is %s", device.SerialNumber);
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-15

PlxPciBaseAddressesGet

Syntax:

RETURN_CODE PlxPciBaseAddressesGet(IN HANDLE drvHandle,
OUT PVIRTUAL_ADDRESSES virtAddr);

Description:

Gets the user virtual addresses for the PCI base address register values of the PLX device.

• drvHandle is the handle of the PLX device; and,

• virtAddr is a pointer to the virtual address information. If this function is used by the IOP the
address returned is the physical PCI address instead of the virtual PCI address.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Comments

The virtual address structure contains all the user virtual addresses for the various PCI base
addresses including the DMA buffer allocated in the device driver. This structure is filled by
calling the PlxPciBaseAddressesGet() function.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or virtAddr parameter is NULL.

Usage:

 RETURN_CODE rc; /* Return code */
 HANDLE plxHandle; /* Device Handle */
 VIRTUAL_ADDRESSES virtualAddresses;

 rc = PlxPciBaseAddressesGet(plxHandle, &virtualAddresses);
 if (rc != ApiSuccess)
 {
 printf("\a\nFailed to get virtual address with error code %08lX",
 rc);
 exit(0);
 }
 else
 {
 printf("\n U32 Va0 is %08lX", virtualAddresses.Va0);
 printf("\n U32 Va1 is %08lX", virtualAddresses.Va1);
 printf("\n U32 Va2 is %08lX", virtualAddresses.Va2);
 printf("\n U32 Va3 is %08lX", virtualAddresses.Va3);
 printf("\n U32 Va4 is %08lX", virtualAddresses.Va4);
 printf("\n U32 Va5 is %08lX", virtualAddresses.Va5);
 printf("\n U32 VaRom is %08lX", virtualAddresses.VaRom);
 }

B-16  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxPciBarRangeGet

Syntax:

RETURN_CODE PlxPciBarRangeGet(IN HANDLE drvHandle,
IN U32 barRegisterNumber,
OUT PU32 data);

Description:

Retrieves the range of any PCI base address register.

• drvHandle is the handle of the PLX device;

• barRegisterNumber is the base address register number; and,

• data is a pointer to a buffer that stores the range.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or virtAddr parameter is NULL.

ApiInvalidRegister The registerNumber parameter is out of range or does
not contain a range.

Usage:

 #define GETBARRANGE_MAX 6

 RETURN_CODE rc; /* Return code */
 HANDLE plxHandle; /* Device Handle */
 U32 BarRanges[GETBARRANGE_MAX];

 for (i = 0; i < GETBARRANGE_MAX; i ++)
 {
 rc = PlxPciBarRangeGet(plxHandle, i, & BarRanges[i]);
 if (rc != ApiSuccess)
 {
 PlxSdkError((U32) rc);
 printf("\a\nFailed to get bar range for %08lx", i);
 }
 else
 printf("\nBar range for %d is %08lX", i, BarRanges[i]);
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-17

PlxPciCommonBufferGet

Syntax:

RETURN_CODE PlxPciCommonBufferGet(IN HANDLE drvHandle,
OUT PPCI_MEMORY pMemoryInfo);

Description:

Provides the memory information on the physical memory buffer that can be shared between the
application, device driver or the PCI device.

• drvHandle is the handle of the PLX device;

• pMemoryInfo is a structure containing the information for the physical memory buffer.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or pMemoryInfo parameter is NULL.

Usage:

 HANDLE plxHandle;
 PCI_MEMORY PciMemory;

 rc = PlxPciCommonBufferGet(plxHandle, &PciMemory);
 if (rc != ApiSuccess)
 {
 PlxSdkError((U32) rc);
 printf("\a\nPlxPciCommonBufferGet tested: FAILED.");
 }
 else
 {
 printf("\nCommon Buffer User address is %08lX",
 PciMemory.UserAddr);
 printf("\nCommon Buffer PCI physical address is %08lX",
 PciMemory.PhysicalAddr);
 printf("\nCommon Buffer Size is %08lX", PciMemory.Size);
 }

B-18  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Register Access Functions

PlxRegisterRead

Syntax:

U64 PlxRegisterRead(IN HANDLE drvHandle,
IN U32 registerOffset,
OUT PRETURN_CODE returnCode);

Description:

Reads any register on the currently selected PCI device.

• drvHandle is the handle of the PCI device;

• registerOffset is the register number offset; and,

• returnCode is a pointer to a buffer to store the return code.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

This function returns the value read from the register. The status of the function call is returned
via the returnCode parameter. The return codes are as follows:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or pMemoryInfo parameter is NULL.

ApiInvalidRegister The registerOffset parameter is out of range or is not on
a 4-byte boundary.

Usage:

 RETURN_CODE rc;
 HANDLE myPlxDevice;
 U64 value;

 value = PlxRegisterRead(myPlxDevice, 0x18, &rc);
 if (rc != ApiSuccess)
 {
 printf("\n Error Reading a valid Register");
 getch();
 }
 else
 printf("\n OK: Valid register Read succeeded with a value of %x",
 value);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-19

PlxRegisterWrite

Syntax:

RETURN_CODE PlxRegisterWrite(IN HANDLE drvHandle,
IN U32 registerOffset,
IN U64 data);

Description:

Writes a value to any register on a PCI device.

• drvHandle is the handle of the PCI device;

• registerNumber is the register number; and,

• data is a U64 value to store in the register.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or pMemoryInfo parameter is NULL.

ApiInvalidRegister The registerOffset parameter is out of range or is not on
a 4-byte boundary.

Usage:

 RETURN_CODE rc;
 HANDLE myPlxDevice;

 rc = PlxRegisterWrite(myPlxDevice, 0x18, 0x234980C4);
 if (rc != ApiSuccess)
 {
 printf("\n Error Writing a valid Register");
 getch();
 }
 else
 printf("\n OK: Valid register Write succeeded");

B-20  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxRegisterReadAll

Syntax:

RETURN_CODE PlxRegisterReadAll(IN HANDLE drvHandle,
IN U32 startOffset,
IN U32 registerCount,
OUT PU64 buffer);

Description:

Reads multiple registers on a PCI device.

• drvHandle is the handle of the PCI device;

• startOffset is the register offset to start reading at;

• registerCount is the number of bytes to read starting at startOffset; and,

• buffer is the storage location for the register values.

Note: registerCount is the number of bytes to read. Before this function can be used, a PCI device
must be selected using PlxPciDeviceOpen(). This function will not read the PCI configuration
registers (use PlxPciConfigRegisterReadAll())

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or the buffer parameter is NULL.

ApiInsufficientResources There is no memory available for the PCI API.

ApiInvalidRegister The startOffset and the registerCount parameters
combined exceed the valid range of registers or
startOffset is not on a 4-byte boundary.

Usage:

 RETURN_CODE rc;
 HANDLE myPlxDevice;
 U32 buffer[0x40];

 rc = PlxRegisterReadAll(myPlxDevice, 0x0, 0x100, buffer);
 if (rc != ApiSuccess)
 {
 printf("\n ERROR: Reading All registers failed API call");
 getch();
 }
 else
 printf("\n OK: Read All registers worked");

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-21

PlxRegisterMailboxRead

Syntax:

U64 PlxRegisterMailboxRead(IN HANDLE drvHandle,
IN MAILBOX_ID mailboxId,
OUT PRETURN_CODE returnCode);

Description:

Reads any mailbox register on the currently selected PCI device.

• drvHandle is the handle of the PCI device;

• mailboxId is the mailbox register ID; and,

• returnCode is a pointer to a buffer to store the return code.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

This function returns the value read from the mailbox register. The status of the function call is
returned via the returnCode parameter. The return codes are as follows:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle parameter is NULL.

ApiInvalidRegister The mailboxId parameter is not a valid mailbox ID.

Usage:

 RETURN_CODE rc;
 HANDLE myPlxDevice;
 U64 value;

 value = PlxRegisterMailboxRead(myPlxDevice, MailBox0, &rc);
 if (rc != ApiSuccess)
 {
 printf("\n Error Reading a valid Mailbox");
 getch();
 }
 else
 printf("\n OK: Valid Mailbox Read succeeded with a value of %x",
 value);

B-22  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxRegisterMailboxWrite

Syntax:

RETURN_CODE PlxRegisterMailboxWrite(IN HANDLE drvHandle,
IN MAILBOX_ID mailboxId,
IN U64 data);

Description:

Writes a value to any mailbox register on a PCI device.

• drvHandle is the handle of the PCI device;

• mailboxId is the mailbox register ID; and,

• data is a U64 value to store in the register.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle parameter is NULL.

ApiInvalidRegister The mailboxId parameter is not a valid mailbox ID.

Usage:

 RETURN_CODE rc;
 HANDLE myPlxDevice;

 rc = PlxRegisterMailboxWrite(myPlxDevice, MailBox0, 0x3DC87A00);
 if (rc != ApiSuccess)
 {
 printf("\n Error Writing a valid Mailbox");
 getch();
 }
 else
 printf("\n OK: Valid Mailbox Write succeeded");

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-23

PlxRegisterDoorbellRead

Syntax:

U64 PlxRegisterDoorbellRead(IN HANDLE drvHandle,
OUT PRETURN_CODE pReturnCode);

Description:

Clears and reads value to any doorbell register on a PCI device.

• drvHandle is the handle of the PCI device;

• data is a U64 value to store in the register.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

This function returns the value read from the PCI-to-IOP doorbell register. The status of the
function call is returned via the returnCode parameter. The return codes are as follows:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle parameter is NULL.

Usage:

 RETURN_CODE rc;
 HANDLE myPlxDevice;
 U64 value;

 value = PlxRegisterDoorbellRead(myPlxDevice, &rc);
 if (rc != ApiSuccess)
 {
 printf("\n ERROR: Reading Doorbell did not work");
 getch();
 }
 else
 printf("\n OK: Doorbell Read succeeded. Value is %x", value);

B-24  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxRegisterDoorbellSet

Syntax:

RETURN_CODE PlxRegisterDoorbellSet(IN HANDLE drvHandle,
IN PU64 data);

Description:

Writes a value to any doorbell register on a PCI device.

• drvHandle is the handle of the PCI device;

• data is a U64 value to store in the register.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle parameter is NULL.

Usage:

 RETURN_CODE rc;
 HANDLE myPlxDevice;
 U64 value;

 rc = PlxRegisterDoorbellSet(myPlxDevice, 0x1234567);
 if (rc != ApiSuccess)
 {
 printf("\n ERROR: Setting Doorbell did not work");
 getch();
 }
 else
 {
 if (PlxRegisterRead(myPlxDevice, 0x60, &rc) == 0x1234567)
 printf("\n OK: DoorbellSet succeeded");
 else
 {
 printf("\n ERROR: After setting doorbell and reading the "
 "register the return data was wrong!");
 printf("\n ERROR: This is normal since the BSP will clear "
 "the doorbell immediately!");
 getch();
 }
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-25

Interrupt Support Functions

PlxIntrAttach

Syntax:

RETURN_CODE PlxIntrAttach(IN HANDLE drvHandle,
IN PLX_INTR intrTypes,
OUT PHANDLE pEventHdl);

Description:

This function is used by applications when they need to wait for an interrupt to occur. It will send
an event handle to the device driver and wait until the event is set (the PCI API creates the event).
The driver will set the event when the interrupt occurs. After an interrupt happens and signals the
event this function must be called again to create another interrupt event.

• drvHandle is the handle of the PCI device;

• intrTypes is a structure containing the sources of interrupts associated to the event (contained
within the overlapped structure); and,

• pEventHdl is a pointer to an event created by the PCI API.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or the pEventHdl parameter is NULL.

ApiUnsupportedFunction The PCI API function call is not supported by the
current device.

ApiInsufficientResources The number of attached events has been exceeded.

Usage:

 RETURN_CODE rc;
 HANDLE myPlxDevice;
 PLX_INTR intfield;
 HANDLE eventHandle;

 if ((rc=PlxIntrAttach(myPlxDevice,
 intfield,
 &eventHandle)) != ApiSuccess)
 {
 printf ("\n\nErrors in attaching interupt.\n");
 printf ("Returned code %d\n",rc);
 getch();
 exit(1);
 }

B-26  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

 intfield.PciDmaChannel1 = 1;
 if((rc=PlxIntrEnable(myPlxDevice, &intfield)) != ApiSuccess)
 {
 printf ("\n\nErrors in enabling interupt.\n");
 printf ("Returned code %d\n",rc);
 getch();
 exit(1);
 }

/* Wait for signal at end of transfer. */
 val = WaitForSingleObject(eventHandle, 5000 /* msec */);
 if (val == WAIT_TIMEOUT)
 printf("\n5 seconds timeout exceeded...");
 else
 printf("\nReceived the interrupt");

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-27

PlxIntrEnable

Syntax:

RETURN_CODE PlxIntrEnable(IN HANDLE drvHandle,
IN PPLX_INTR plxIntr);

Description:

Enables specific interrupts of a PCI device.

• drvHandle is the handle of the PCI device; and,

• plxIntr is the interrupt structure that describes which interrupts will be enabled.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or the plxIntr parameter is NULL.

Usage:

 RETURN_CODE rc;
 HANDLE plxHandle;
 PLX_INTR plxIntrStatus;

 plxIntrStatus.InboundPost = 1;
 plxIntrStatus.OutboundPost = 1;
 plxIntrStatus.IopDmaChannel0 = 1;
 plxIntrStatus.PciDmaChannel0 = 1;
 plxIntrStatus.IopDmaChannel1 = 1;
 plxIntrStatus.PciDmaChannel1 = 1;

 rc = PlxIntrEnable(plxHandle, &plxIntrStatus);
 if (rc != ApiSuccess)
 {
 printf("\a\nPlxIntrEnable failed with error code %08lx.",
 rc);
 PlxSdkError((U32) rc);
 }
 else
 printf("\nPlxIntrEnable tested: OK.");

B-28  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxIntrDisable

Syntax:

RETURN_CODE PlxIntrDisable(IN HANDLE drvHandle,
IN PPLX_INTR plxIntr);

Description:

Disables specific interrupts of a PCI device.

• drvHandle is the handle of the PCI device; and,

• plxIntr is the interrupt structure that describes which interrupts will be disabled.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or the plxIntr parameter is NULL.

Usage:

 RETURN_CODE rc;
 HANDLE plxHandle;
 PLX_INTR plxIntrStatus;

 plxIntrStatus.InboundPost = 1;
 plxIntrStatus.OutboundPost = 1;
 plxIntrStatus.IopDmaChannel0 = 1;
 plxIntrStatus.PciDmaChannel0 = 1;
 plxIntrStatus.IopDmaChannel1 = 1;
 plxIntrStatus.PciDmaChannel1 = 1;

 rc = PlxIntrDisable(plxHandle, plxIntrStatus);
 if (rc != ApiSuccess)
 {
 printf("\a\nPlxIntrDisable failed with error code %08lx.",
 rc);
 PlxSdkError((U32) rc);
 }
 else
 printf("\nPlxIntrDisable tested: OK.");

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-29

PlxIntrStatusGet

Syntax:

RETURN_CODE PlxIntrStatusGet(IN HANDLE drvHandle,
OUT PPLX_INTR plxIntr);

Description:

Returns the interrupts of the PCI device are were last active. The interrupts are cleared once they
are read.

• drvHandle is the handle of the PCI device; and,

• plxIntr is the interrupt structure that contains information detailing which interrupts are
active.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or the plxIntr parameter is NULL.

Usage:

 RETURN_CODE rc;
 HANDLE plxHandle;
 PLX_INTR plxIntrStatus;

 rc = PlxIntrStatusGet(plxHandle, &plxIntrStatus);
 if (rc != ApiSuccess)
 {
 printf("\a\nPlxIntrStatusGet failed with error code %08lx.", rc);
 }
 else
 {
 printf("\nInterrupted with following interrupt status.");
 printf("\nInboundPost %s",
 (plxIntrStatus.InboundPost)?"Yes":"NO");
 printf("\nOutboundPost %s",
 (plxIntrStatus.OutboundPost)?"Yes":"NO");
 printf("\nOutboundOverflow %s",
 (plxIntrStatus.OutboundOverflow)?"Yes":"NO");
 printf("\nIopDmaChannel0 %s",
 (plxIntrStatus.IopDmaChannel0)?"Yes":"NO");
 printf("\nPciDmaChannel0 %s",
 (plxIntrStatus.PciDmaChannel0)?"Yes":"NO");
 printf("\nIopDmaChannel1 %s",
 (plxIntrStatus.IopDmaChannel1)?"Yes":"NO");
 printf("\nPciDmaChannel1 %s",
 (plxIntrStatus.PciDmaChannel1)?"Yes":"NO");
 }

B-30  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Bus Memory and I/O Functions

PlxBusIopRead

Syntax:

RETURN_CODE PlxBusIopRead(IN HANDLE drvHandle,
IN IOP_SPACE iopSpace,
IN U64 address,
IN BOOLEAN remapAddress,
OUT PU64 destination,
IN U32 transferSize,
IN ACCESS_TYPE accessType);

Description:

Reads a range of values from the local bus of a PCI device.

• drvHandle is the handle of the PCI device;

• iopSpace defines which Local Address Space register to used;

• address is the starting offset from the IOP space PCI remap address or the actual IOP bus
address to start reading from;

• remapAddress states how to treat the IOP address given, being either an offset from the IOP
space PCI remap address or as the actual IOP bus address;

• destination is a pointer to the storage buffer for the data read;

• transferSize defines the number of bytes to read from the IOP bus; and,

• accessType defines the access type size.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().
If remapAddress is set to TRUE, this API function will remap the IOP space window according
to the address given.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or the destination parameter is NULL.

ApiInsufficientResources There is no memory available for the PCI API.

ApiInvalidAccessType The accessType size is not supported for this device.

ApiInvalidAddress The address parameter is not aligned based on the
accessType provided.

ApiInvalidSize The transferSize parameter is 0 or is not aligned based
on the accessType provided.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-31

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;
 U32 length = 0x100;
 U32 buf[0x40], localStartOffset = 0x20000;

 rc = PlxBusIopRead(drvHandle,
 IopSpace0,
 localStartOffset,
 TRUE, /* remap */
 (PU64)buf,
 length,
 BitSize32);
 if (rc != ApiSuccess)
 {
 printf("Error: Unable to read data.\n");
 return -1;
 }

 rc = PlxBusIopWrite(drvHandle,
 IopSpace0,
 localStartOffset,
 TRUE,
 (PU64)buf,
 length,
 BitSize32);

 if (rc != ApiSuccess)
 {
 printf("Error: Unable to write data.\n");
 return -1;
 }

B-32  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxBusIopWrite

Syntax:

RETURN_CODE PlxBusIopWrite(IN HANDLE drvHandle,
IN IOP_SPACE iopSpace,
IN U64 address,
IN BOOLEAN remapAddress,
IN PU64 source,
IN U32 transferSize,
IN ACCESS_TYPE accessType);

Description:

Writes a range of values to the local bus of a PCI device.

• drvHandle is the handle of the PCI device;

• iopSpace defines which Local Address Space register to used;

• address is the starting offset from the IOP space PCI remap address or the actual IOP bus
address to start writing to;

• remapAddress states how to treat the IOP address given, being either an offset from the IOP
space PCI remap address or as the actual IOP bus address;

• source is a pointer to the data buffer;

• transferSize defines the number of bytes to write to the IOP bus; and,

• accessType defines the access type size.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().
If remapAddress is set to TRUE this API function will remap the IOP space window according to
the address given.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or the source parameter is NULL.

ApiInsufficientResources There is no memory available for the PCI API.

ApiInvalidAccessType The accessType size is not supported for this device.

ApiInvalidAddress The address parameter is not aligned based on the
accessType provided.

ApiInvalidSize The transferSize parameter is 0 or is not aligned based
on the accessType provided.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-33

 U32 length = 0x100;
 U32 buf[0x40], localStartOffset = 0x20000;

 rc = PlxBusIopRead(drvHandle,
 IopSpace0,
 localStartOffset,
 TRUE, /* remap */
 (PU64)buf,
 length,
 BitSize32);
 if (rc != ApiSuccess)
 {
 printf("Error: Unable to read data.\n");
 return -1;
 }

 rc = PlxBusIopWrite(drvHandle,
 IopSpace0,
 localStartOffset,
 TRUE,
 (PU64)buf,
 length,
 BitSize32);

 if (rc != ApiSuccess)
 {
 printf("Error: Unable to write data.\n");
 return -1;
 }

B-34  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxIoPortRead

Syntax:

RETURN_CODE PlxIoPortRead(IN HANDLE drvHandle,
IN U32 address,
IN ACCESS_TYPE bits,
OUT PVOID pOutData);

Description:

Reads a value from an I/O port.

• drvHandle is the handle of the PCI device;

• address is the I/O port address to read from;

• accessType defines the access type size; and,

• pOutData is the data read from the I/O port.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or the pOutData parameter is NULL.

ApiInvalidAccessType The accessType size is not supported for this device.

ApiInvalidAddress The address parameter is not aligned based on the
accessType provided.

ApiInvalidSize The transferSize parameter is 0 or is not aligned based
on the accessType provided.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;
 U32 value;

 rc = PlxIoPortRead(drvHandle, 0x6F00, BitSize32, &value);
 if (rc != ApiSuccess)
 {
 printf("Error: Unable to read data.\n");
 return -1;
 }

 rc = PlxIoPortWrite(drvHandle, 0x6F04, BitSize32, &value);
 if (rc != ApiSuccess)
 {
 printf("Error: Unable to write data.\n");
 return -1;
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-35

PlxIoPortWrite

Syntax:

RETURN_CODE PlxIoPortWrite(IN HANDLE drvHandle,
IN U32 address,
IN ACCESS_TYPE bits,
IN PVOID pValue);

 Description:

Writes a value to an I/O port.

• drvHandle is the handle of the PCI device;

• address is the I/O port address to write to;

• accessType defines the access type size; and,

• pOutData is the data to write to the I/O port.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or the pValue parameter is NULL.

ApiInvalidAccessType The accessType size is not supported for this device.

ApiInvalidAddress The address parameter is not aligned based on the
accessType provided.

ApiInvalidSize The transferSize parameter is 0 or is not aligned based
on the accessType provided.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;
 U32 value;

 rc = PlxIoPortRead(drvHandle, 0x6F00, BitSize32, &value);
 if (rc != ApiSuccess)
 {
 printf("Error: Unable to read data.\n");
 return -1;
 }

 rc = PlxIoPortWrite(drvHandle, 0x6F04, BitSize32, &value);
 if (rc != ApiSuccess)
 {
 printf("Error: Unable to write data.\n");
 return -1;
 }

B-36  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

DMA Functions

PlxDmaBlockChannelOpen

Syntax:

RETURN_CODE PlxDmaBlockChannelOpen(IN HANDLE drvHandle,
IN DMA_CHANNEL dmaChannel,
IN PDMA_CHANNEL_DESC dmaChannelDesc);

Description:

Opens and initializes a DMA channel for Block DMA transfers.

• drvHandle is the handle of the PCI device;

• dmaChannel is the DMA channel number; and,

• dmaChannelDesc is a structure containing the DMA channel descriptors.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().
If the dmaChannelDesc parameter is NULL the function uses the current setting for the channel
(set by the IOP application).

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid This dmaChannel parameter is not supported by this
PLX IC.

ApiNullParam The drvHandle parameter is NULL.

ApiDmaChannelUnavailable The DMA channel is not closed.

ApiDmaInvalidChannelPriority The DmaChannelPriority member of
dmaChannelDesc is not valid.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;
 DMA_CHANNEL_DESC desc;

 /* Setup DMA configuration structure */
 desc.EnableReadyInput = 1;
 desc.EnableBTERMInput = 0;
 desc.EnableIopBurst = 0;
 desc.EnableWriteInvalidMode = 0;
 desc.EnableDmaEOTPin = 0;
 desc.DmaStopTransferMode = AssertBLAST;
 desc.HoldIopAddrConst = 0;
 desc.HoldIopSourceAddrConst = 0;

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-37

 desc.HoldIopDestAddrConst = 0;
 desc.DemandMode = 0;
 desc.EnableTransferCountClear = 0;
 desc.DmaChannelPriority = Rotational; /* rotational priority */
 desc.WaitStates = 0;
 desc.IopBusWidth = 3; /* 32 bit bus */
 desc.Reserved1 = 0;
 desc.TholdForIopWrites = 0;
 desc.TholdForIopReads = 0;
 desc.TholdForPciWrites = 0;
 desc.TholdForPciReads = 0;
 desc.Reserved2 = 0;

 if ((rc=PlxDmaBlockChannelOpen(drvHandle,
 PrimaryPciChannel0,
 &desc))
 != ApiSuccess)
 {
 printf ("\n\nErrors in opening channel.\n");
 printf ("Returned code %d\n",rc);
 printf ("Press any key to exit.....");
 getch();
 return;
 }

B-38  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaBlockTransfer

Syntax:

RETURN_CODE PlxDmaBlockTransfer(IN HANDLE drvHandle,
IN DMA_CHANNEL dmaChannel,
IN DMA_COMMAND dmaCommand,
IN PDMA_TRANSFER_ELEMENT dmaData,
IN BOOLEAN returnImmediate);

Description:

Controls the Block DMA transfer for a given DMA channel.

• drvHandle is the handle of the PCI device;

• dmaChannel is the DMA channel number previously opened;

• dmaCommand is the action to perform on this DMA channel;

• dmaData is the data for the DMA transfer being either a DMA descriptor block or a Scatter-
Gather List; and,

• returnImmediate determines if this function returns immediately after the DMA command is
completed.

Note: Before calling this function the appropriate DMA channel must be successfully opened
using PlxDmaBlockChannelOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiDmaChannelInvalid The dmaChannel parameter is not supported by this PCI
IC.

ApiNullParam The drvHandle or dmaData (if dmaCommand is not
DmaStart) parameters are NULL.

ApiDmaChannelTypeError The DMA channel was not opened for Block DMA.

ApiDmaDone The DMA channel is done.

ApiDmaPaused The DMA channel is paused.

ApiDmaInProgress The DMA channel is in progress.

ApiDmaNotPaused The DMA channel is in progress or done (return code
returned when DmaResume command is requested and
the DMA channel is not paused).

ApiDmaManCorrupted The DMA manager is corrupted.

ApiDmaCommandInvalid The dmaCommand parameter is invalid.

Usage:

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-39

 HANDLE plxHandle;
 PCI_MEMORY PciMemory;
 DMA_TRANSFER_ELEMENT dmaData;

 rc = PlxPciCommonBufferGet(plxHandle, &PciMemory);
 if (rc != ApiSuccess)
 {
 PlxSdkError((U32) rc);
 printf("\a\nPlxPciCommonBufferGet tested: FAILED.");
 }

 dmaData.Pci9080Dma.LowPciAddr = PciMemory.PhysicalAddr;
 dmaData.Pci9080Dma.IopAddr = 0x10010000;
 dmaData.Pci9080Dma.TransferCount = 0x1000;
 dmaData.Pci9080Dma.IopToPciDma = 0;
 dmaData.Pci9080Dma.TerminalCountIntr = 0;

 if((rc=PlxDmaBlockTransfer(plxHandle,
 PrimaryPciChannel0,
 DmaStart,
 &dmaData,
 FALSE /* return upon completion */))
 != ApiSuccess)
 {
 printf ("\n\nErrors in Block Dma.\n");
 printf ("Returned code %d\n",rc);
 getch();
 return -1;
 }

B-40  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxDmaBlockTransferRestart

Syntax:

RETURN_CODE PlxDmaBlockTransferRestart(IN HANDLE drvHandle,
IN DMA_CHANNEL dmaChannel,
IN U32 transferSize,
IN BOOLEAN returnImmediate);

Description:

Restarts the Block DMA transfer for a pre-programmed DMA channel.

• drvHandle is the handle of the PCI device;

• dmaChannel is the DMA channel number previously opened and programmed;

• transferSize is the DMA transfer size; and,

• returnImmediate determines if this function waits for the DMA command to complete before
returning.

Note: Before calling this function the appropriate DMA channel must be successfully
programmed using PlxDmaBlockTransfer().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle parameter is NULL.

ApiDmaChannelInvalid The dmaChannel parameter is not supported by this PCI
IC.

ApiDmaChannelTypeError The DMA channel was not opened for Block DMA.

ApiDmaInProgress The DMA channel is in progress.

Usage:

 RETURN_CODE rc;
 HANDLE plxHandle;
 U32 totalSize = 0x100;

 rc = PlxDmaBlockTransferRestart(plxHandle,
 PrimaryPciChannel0,
 totalSize,
 TRUE);
 if (rc != ApiSuccess)
 {
 PlxPrintf("Restart failed\n");
 return -1;
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-41

PlxDmaBlockChannelClose

Syntax:

RETURN_CODE PlxDmaBlockChannelClose(IN HANDLE drvHandle,
IN DMA_CHANNEL dmaChannel);

Description:

Closes the Block DMA channel.

• drvHandle is the handle of the PCI device; and,

• dmaChannel is the DMA channel number previously opened.

Note: Before calling this function the appropriate DMA channel must be successfully opened
using PlxDmaBlockChannelOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle parameter is NULL.

ApiDmaChannelInvalid The dmaChannel parameter is not supported by this PCI
IC.

ApiDmaChannelTypeError The DMA channel was not opened for Block DMA.

ApiDmaInProgress A DMA transfer is in progress.

ApiDmaPaused The DMA channel is paused.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;

 if ((rc= PlxDmaBlockChannelClose(drvHandle, PrimaryPciChannel0))
 != ApiSuccess)
 {
 printf ("\n\nErrors in closing channel.\n");
 printf ("Returned code %d\n",rc);
 printf ("Press any key to exit.....");
 getch();
 return;
 }

B-42  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Messaging Unit Functions

PlxMuInboundPortRead

Syntax:

RETURN_CODE PlxMuInboundPortRead(IN HANDLE drvHandle,
IN PU32 framePointer);

Description:

Reads the Inbound Port and gets a Free Message Frame.

• drvHandle is the handle of the PCI device; and

• framePointer is the address of the Message Frame (MFA).

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen()
and the Messaging Unit must be initialized (initialized by the IOP application).

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or framePointer parameters are NULL.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;

 /* Read inbound port */
 rc = PlxMuInboundPortRead(drvHandle, &framePointer);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-43

PlxMuInboundPortWrite

Syntax:

RETURN_CODE PlxMuInboundPortWrite(IN HANDLE drvHandle,
IN PU32 framePointer);

Description:

Writes to the Inbound Port with a posted message frame.

• drvHandle is the handle of the PCI device;

• framePointer is the address of the Message Frame (MFA) to write.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen()
and the Messaging Unit must be initialized (initialized by the IOP application).

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or framePointer parameters are NULL.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;

 /* Write to the inbound port */
 rc = PlxMuInboundPortWrite(drvHandle, &framePointer);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

B-44  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PlxMuOutboundPortRead

Syntax:

RETURN_CODE PlxMuOutboundPortRead(IN HANDLE drvHandle,
IN PU32 framePointer);

Description:

Reads the Outbound Port and gets a posted message frame.

• drvHandle is the handle of the PCI device; and

• framePointer is the address of the Message Frame (MFA).

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen()
and the Messaging Unit must be initialized (initialized by the IOP application).

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or framePointer parameters are NULL.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;

 /* Read outbound port */
 rc = PlxMuOutboundPortRead(drvHandle, &framePointer);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-45

PlxMuOutboundPortWrite

Syntax:

RETURN_CODE PlxMuOutboundPortWrite(IN HANDLE drvHandle,
IN PU32 framePointer);

Description:

Writes to the Outbound Port with a free message frame.

• drvHandle is the handle of the PCI device; and

• framePointer is the address of the Message Frame (MFA) to write.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen()
and the Messaging Unit must be initialized (initialized by the IOP application).

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or framePointer parameters are NULL.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;

 /* Write to the outbound port */
 rc = PlxMuOutboundPortWrite(drvHandle, &framePointer);
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

B-46  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Power Management Functions

PlxPowerLevelSet

Syntax:

RETURN_CODE PlxPowerLevelSet(IN HANDLE drvHandle,
IN PLX_POWER_LEVEL plxPowerLevel);

Description:

Sets the power level of a PCI device.

• drvHandle is the handle of the PCI device; and,

• plxPowerLevel is the new power level.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle parameter is NULL.

ApiInvalidPowerState The plxPowerLevel parameter is invalid for this PCI IC.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;

 rc = PlxPowerLevelSet(drvHandle, D0);
 if (rc != ApiSuccess)
 {
 printf("\n Error Setting a valid Power Level (D0). RC = %x", rc);
 getch();
 }
 else
 printf("\n OK: Valid Power Level Set");

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-47

PlxPowerLevelGet

Syntax:

PLX_POWER_LEVEL PlxPowerLevelGet(IN HANDLE drvHandle,
OUT PRETURN_CODE returnCode);

Description:

Gets the current power level of a PCI device.

• drvHandle is the handle of the PCI device; and,

• returnCode is the return code of the function.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

This function returns the current power level of the PCI IC. The status of the function call is
returned via the returnCode parameter. The return codes are as follows:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle parameter is NULL.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;
 PLX_POWER_LEVEL powerLevel;

 powerLevel = PlxPowerLevelGet(myPlxDevice, &rc);
 if (rc != ApiSuccess)
 {
 printf("\n Error Getting Power Level. RC = %x", rc);
 getch();
 }
 else
 {
 if (powerLevel == D0)
 printf("\n OK: Power Level received as D0");
 else
 {
 printf("\n ERROR: Power Level received as %d", powerLevel);
 getch();
 }
 }

B-48  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Serial EEPROM Access Functions

PlxSerialEepromRead

Syntax:

RETURN_CODE PlxSerialEepromRead(IN HANDLE drvHandle,
IN EEPROM_TYPE eepromType,
OUT PU64 buffer,
IN U32 size);

Description:

Reads values from the configuration EEPROM.

• drvHandle is the handle of the PCI device;

• eepromType is the type of EEPROM on the PCI device;

• buffer is a pointer a buffer to store the data read; and,

• size defines the number of bytes you want to read from the EEPROM.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or buffer parameters are NULL.

ApiInvalidSize The size parameter is 0, is too large for this eepromType,
or is not 2 byte aligned.

ApiInsufficientResources There is no memory available for the PCI API.

ApiEepromNotPresent There is no EEPROM connected to the PCI IC.

ApiEepromTypeNotSupported The eepromType parameter is not supported for this PCI
IC.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;
 U16 eepromData[0x16]; /* Holding data read from EEPROM */

 /* Reading EEPROM into eepromData buffer */
 rc = PlxSerialEepromRead(plxHandle,
 Eeprom93CS56,
 (U64 *)eepromData,
 0x16 * sizeof(U16)); /* size in bytes */
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-49

PlxSerialEepromWrite

Syntax:

RETURN_CODE PlxSerialEepromWrite(IN HANDLE drvHandle,
IN EEPROM_TYPE eepromType,
OUT PU64 buffer,
IN U32 size);

Description:

Writes values to the configuration EEPROM.

• drvHandle is the handle of the PCI device;

• eepromType is the type of EEPROM on the PCI device;

• buffer is a pointer a buffer that contains the data; and,

• size defines the number of bytes you want to write to the EEPROM.

Note: Before this function can be used, a PCI device must be selected using PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle or buffer parameters are NULL.

ApiInvalidSize The size parameter is 0, is too large for this eepromType,
or is not 2 byte aligned.

ApiInsufficientResources There is no memory available for the PCI API.

ApiEepromNotPresent There is no EEPROM connected to the PCI IC.

ApiEepromTypeNotSupported The eepromType parameter is not supported for this PCI
IC.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;
 U16 eepromData[0x16]; /* Contains valid data for EEPROM */

 /* Reading EEPROM into eepromData buffer */
 rc = PlxSerialEepromWrite(plxHandle,
 Eeprom93CS56,
 (U64 *)eepromData,
 0x16 * sizeof(U16)); /* size in bytes */
 if (rc != ApiSuccess)
 PlxSdkError((U32)rc, TRUE);

B-50  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

USER Pins Functions

PlxUserRead

Syntax:

PIN_STATE PlxUserRead(IN HANDLE drvHandle,
IN USER_PIN_NUM userPin,
OUT PRETURN_CODE returnCode);

Description:

Reads the PCI device’s USERI pins.

• drvHandle is the handle of the PCI device.

• userPin is the USERI pin number to be read; and,

• returnCode is a pointer to a buffer to store the return code.

 Note: Before this function can be used, a PCI device must be selected using
PlxPciDeviceOpen().

Return Value:

This function returns the state of the USER pin, being either Active or Inactive. The status
of the function call is returned via the returnCode parameter. The return codes are as follows:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle parameter is NULL.

ApiInvalidUserPin This userPin is not present on this PCI IC.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;
 PIN_STATE pinState;

 pinState = PlxUserRead(drvHandle, USER0, &rc);
 if (rc != ApiSuccess)
 {
 printf("\n ERROR: Cannot Read USER In . RC = %x", rc);
 getch();
 }
 else
 printf("\n OK: USER0 pin was read as %x", pinState);

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-51

PlxUserWrite

Syntax:

RETURN_CODE PlxUserWrite(IN HANDLE drvHandle,
IN USER_PIN_NUM userPin,
IN PIN_STATE pinState);

Description:

Writes to the PCI device’s USERO pins, setting them either ACTIVE or INACTIVE.

• drvHandle is the handle of the PCI device;

• userPin is the USERO pin number to be written; and,

• pinState is the new state to set the USERO pin.

 Note: Before this function can be used, a PCI device must be selected using
PlxPciDeviceOpen().

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The drvHandle parameter is NULL.

ApiInvalidUserPin This userPin is not present on this PCI IC.

Usage:

 RETURN_CODE rc;
 HANDLE drvHandle;

 rc = PlxUserWrite(drvHandle, USER0, Active);
 if (rc != ApiSuccess)
 {
 printf("\n ERROR: Cannot Write to USER Out. RC = %x", rc);
 getch();
 }
 else
 printf("\n OK: USER0 pin was written");

B-52  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Miscellaneous Functions

PlxSdkVersion

Syntax:

RETURN_CODE PlxSdkVersion(const S8 **versionString,
const S8 **dateString);

Description:

Returns the version string of the PCI SDK PCI API.

• versionString is the version string for the PCI API; and,

• dateString is the version date string for the PCI API.

Return Value:

Return Value Description

ApiSuccess The function returned successfully.

ApiNullParam The versionString or dateString parameter is NULL.

Usage:

 PS8 ptrDate;
 PS8 ptrVer;

 rc = PlxSdkVersion(&ptrVer, &ptrDate);
 if (rc != ApiSuccess)
 {
 printf("\n ERROR: Getting SDK Version Number. RC = %x", rc);
 getch();
 }
 else
 {
 if (strcmp(ptrVer, "PCI SDK Version 2.0"))
 {
 printf("\n ERROR: Incorrect Version Number: %s", ptrVer);
 getch();
 }
 else
 printf("\n OK: Correct Version Number: %s", ptrVer);

 if (strcmp(ptrDate, "June 22, 1998"))
 {
 printf("\n ERROR: Incorrect date: %s", ptrDate);
 getch();
 }
 else
 printf("\n OK: Correct Release Date: %s", ptrDate);
 }

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-53

B.3 PCI API Specific Data Structures
The following is an example of a data structure or data type definition.

Sample Data Structure
typedef struct _SAMPLE
{
 U32 someRegister;
 U32 someNumber;
 U32 someSize;
 U32 someBuffer[SOME_BUFFER_SIZE];
}SAMPLE, *PSAMPLE;

Purpose

The reasons for using this structure.

Members

An explanation of the members contained within the structure. Possible values are given when
applicable.

Comments

Extra comments on how and when this structure is used.

B-54  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Device Location Data Type
typedef struct _DEVICE_LOCATION
{
 U32 DeviceId;
 U32 VendorId;
 U32 BusNumber;
 U32 SlotNumber;
 U8 SerialNumber [16];
} DEVICE_LOCATION, *PDEVICE_LOCATION;

Purpose

This data type provides information on PCI devices.

Members

DeviceId
The Device ID for the PCI device.

VendorId
The Vendor ID for the PCI device.

BusNumber
The Bus Number where the PCI device is located.

SlotNumber
The Slot Number where the PCI device is located.

SerialNumber
A unique identifier for the PCI device.

Comments

This data type contains information on each PCI device and provides the appropriate driver name
(used when connecting to a device, see PlxPciDeviceOpen() function).

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 B-55

Virtual Addresses Data Type
typedef struct _VIRTUAL_ADDRESSES
{
 U32 Va0;
 U32 Va1;
 U32 Va2;
 U32 Va3;
 U32 Va4;
 U32 Va5;
 U32 VaRom;
} VIRTUAL_ADDRESSES, *PVIRTUAL_ADDRESSES;

Purpose

This data type provides a list of User Virtual Addresses (UVA) for a PCI device. The UVAs
correspond to the device’s Base Address Registers (BAR)

Members

Va0
UVA for BAR 0.

Va1
UVA for BAR 1.

Va2
UVA for BAR 2.

Va3
UVA for BAR 3.

Va4
UVA for BAR 4.

Va5
UVA for BAR 5.

VaRom
UVA for the Expansion ROM.

Comments

This data type contains the UVAs for all the BARs of a PCI device.

B-56  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

PCI Memory Data Type
typedef struct _PCI_MEMORY
{
 U32 UserAddr;
 U64 PhysicalAddr;
 U32 Size;
} PCI_MEMORY, *PPCI_MEMORY;

Purpose

This data type provides information on a Physical Memory Buffer (PBM) located in the device
driver code.

Members

UserAddr
User Virtual Address for the PMB.

PhysicalAddr
Physical Address for the PMB.

Size
The size for the PMB.

Comments

This data type contains information on a Physical Memory Buffer.

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 C-1

Appendix C. Modifications Made To The
DriveWay Library Files
This section assumes that a general understanding of the Motorola MPC860 microprocessor and
the DriveWay application are known.

C.1 Modified DriveWay Files
The DriveWay application generates all the necessary library files for the MPC860. Some of
these files require modifications to support the PLX PCI RDK-860 board. The following files are
required for the PLX PCI RDK-860 BSP module:

• Scc1.c: Modifications made must be done every time this file is generated using DriveWay;

• Portc.c: Modifications made are optional;

• Boot.as: Modifications made must be done every time this file is generated using DriveWay;
and,

• Pq_hand.c: Modifications made are optional.

Some modifications that were made to these files are contained within the DWS_USER_CODE
tags so that when the files are regenerated using DriveWay the modifications are saved in the new
files.

The following files listed are not required for the PLX PCI RDK-860 BSP module:

• Link.cmd;

• Makefile;

• Bsp.c;

If a stand-alone ROM image is required, some modifications to these files are needed to make
them work properly.

Modifications made to the fore mentioned files are detailed in the following section.

C.2 Detailed Explanation
This section explains how the files mentioned in section C.1 were modified.

C.2.1 File: Scc1.c
This file contains functions for initializing SCC1 as a UART device. This file provides functions
for:

• Handling interrupts generated by SCC1;

• Enabling or disabling SCC channels; and,

• Setting up UART Transmit Buffer Descriptor for sending data.

The following sections explain the modifications made to the functions contained within this file.

CD1 and CTS1 Assertions

C-2  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

To ensure that CD1 and CTS1 are always asserted, the following lines were compiled out so that
Port C Special Options Register uses the value defined in Portc.c file.

#if (0)
/* CTS signal setup (Port C pin 11) */
Quicc->PortC.Pso |= HALF_WORD_BIT11;

/* CD signal setup (Port C pin 10) */
Quicc->PortC.Pso |= HALF_WORD_BIT10;
#endif

Function: Scc1UartHandler()

Originally in the SCC1 interrupt service routine (ISR) Scc1UartHandler(), when there is an
interrupt originated from Transmit Buffer Description (BD), it frees the buffer pointed to by the
buffer pointer in the Transmit Buffer Description. If there is an interrupt from a Receive BD, it
frees the buffer pointed to by the buffer pointer in the Receive BD, tries to allocate another buffer
with size being equal to SCC1_MRBLR and attaches the buffer to the same Receive BD if the
allocation is successful.

This method does not meet the requirements of the PLX PCI RDK-860. The ISR was modified:

• Statically allocate a two-dimensional array for Receive Buffer Descriptors where the buffer
size for each element is SCC1_MRBLR (equal to 1).

char BdRxBuffers[SCC1_NUM_OF_RX_BUFF][SCC1_MRBLR]; /* single char */

• Statically allocate a two-dimensional array for Transmit Buffer Descriptors where the buffer
size for each element is PLX_MAX_TX_BUFFER (equal to 0x100).

/* big buffer */
char BdTxBuffers[SCC1_NUM_OF_TX_BUFF][PLX_MAX_TX_BUFFER];

• Allocate a queue for handing all the received characters from SCC1. This queue is accessed
by IO860.c in the BSP module. Add the following the constant and the three global variables.

#define PLX_MAX_RECEIVED_BUFFER 0x100 /* MUST be power of 2 */

U32 plxReceivedHead, plxReceivedTail;
char plxReceivedBuffer[PLX_MAX_RECEIVED_BUFFER];

• When there is an interrupt from Transmit BD (BdRxBuffers), set the length of the transmit
buffer to zero for these BD’s that have been transmitted over the SCC1 channel (if the
generation of a transmit interrupt is chosen).

• When there is an interrupt from Receive BD (BdTxBuffers), queue all the characters in the
Receive buffer into the queue buffer (plxReceivedBuffer).

Note: Data may be lost if the receive queue is not emptied fast enough.

Function: Scc1UartInit()

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 C-3

The Scc1UartInit() function initializes SCC1 as a UART and initializes all the Receive BDs
buffer pointers to point to their corresponding BdRxBuffers. The buffer lengths of the
BdRxBuffers are initialized to SCC1_MRBLR:

for (i = 0; i < SCC1_NUM_OF_RX_BUFF; i++)
{
 BdPtr->Status = RX_BD_E | BD_I | NO_BD_CM;
 BdPtr->Buffer = BdRxBuffers[i];
 BdPtr->Length = SCC1_MRBLR;
 BdPtr++;
}
For the Transmit BDs, all the buffer pointers are initialized to point to their corresponding
BdTxBuffers, and the buffer lengths were initialized to 0:

for (i = 0; i < SCC1_NUM_OF_TX_BUFF; i++)
{
 BdPtr->Status = BD_I | NO_BD_CM | NO_TX_BD_CR | NO_TX_BD_P;
 BdPtr->Buffer = BdTxBuffers[i];
 BdPtr->Length = 0;
 BdPtr++;
}

Both plxReceivedHead and plxReceivedTail global variables are initialized to 0 in the
Scc1UartInit() function.

Function: SccTxBuffer()

Transmit Buffer Descriptors are arranged as a queue. SccBdManagement[Scc1].Ntd
always points to the Buffer Descriptor tail. Modifications to the SccTxBuffer() function are as
follows (because the dynamic deallocation of the Transmit BDs buffer is not allowed):

1. Determine whether SccId (SCC Port ID) is the proper port ID that was configured for the
SCC.

2. Determine whether the buffer provided by the user needs to be broken into multiple
transmission sessions or not;

3. Get the Transmit BD tail pointer through SccBdManagement[Scc1].Ntd;

BD_P Ntd = SccBdManagement [SccId].Ntd;

4. Wait until this BD is ready for a new transfer;

while(Ntd->Status & TX_BD_R);

5. Once this BD is ready for another transfer, disable the core interrupts, copy data from the user
buffer into the Transmit Buffer, set up the BD parameters, update the Transmit BD tail
pointer, and restore the interrupts state.

Msr = _PpcDisable(); /* disable interrupts */

for (i = 0; i < iSessionSize; i++)
 Ntd->Buffer[i] = Buffer[i]; /* copy data */

Buffer += iSessionSize; /* update the pointer */

C-4  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

Ntd->Length = iSessionSize; /* sets BD parameters */
Ntd->Status &= BD_W;
Ntd->Status |= (Status | TX_BD_R);

if (Ntd->Status & BD_W) /* Update Ntd pointer */
 Ntd = (BD_P) (DPRBASE + Quicc->SccParam [SccId].Tbase);
else
 Ntd++;
SccBdManagement [SccId].Ntd = Ntd;

PpcMsrRestore(Msr); /* Restore the core interrupts state */

6. Repeat steps 1 through 5 while there is still more data to be transmitted over SCC1.

7. Return the size of the buffer;

Note: The above modifications are not made within the DWS_USER_CODE tags, the
modifications MUST be made every time the files are regenerated DriveWay.

C.2.2 File: Portc.c
This file contains a function initializing Port C pins. Unfortunately, the function provided by
DriveWay seems to be have bugs.

Original Port C pin setup

The following code segment describes the current configuration for the Port C pin setup.

#define PORTC_PINS (PC4_INPUT_PIN | \
 PC5_INPUT_PIN | \
 PC6_INPUT_PIN | \
 PC7_SDACK2_PIN | \
 PC8_INPUT_PIN | \
 PC9_INPUT_PIN | \
 PC10_CD1_PIN | \
 PC11_CTS1_PIN | \
 PC12_OUTPUT_PIN | \
 PC13_OUTPUT_PIN | \
 PC14_DREQ1_PIN | \
 PC15_RTS1_PIN)

#define PORTC_SPECIAL_OPTION (PC14_DREQ1_PIN | \
 PC14_DREQ1_PIN | \
 PC10_CD1_PIN)

Quicc->PortC.Pdir = (U16)((PORTC_PINS >> 16) & HALF_WORD_MASK);
Quicc->PortC.Ppar = (U16)(PORTC_PINS & HALF_WORD_MASK);
Quicc->PortC.Pso = PORTC_SPECIAL_OPTION;
Quicc->PortC.Pint = 0;

DriveWay correctly defines PORTC_PINS at least judged from the description of pin names.
However, their bit settings are INCORRECT. The new values are:

Quicc->PortC.Pdir = (U16) 0x010C; (0000 0001 0000 1100)
Quicc->PortC.Ppar = (U16) 0x0133; (0000 0001 0011 0011)
Quicc->PortC.Pso = (U16) 0x0022; (0000 0000 0010 0010)
Quicc->PortC.Pint = 0;

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 C-5

If you consult the MPC860 manual page 16-465, you will notice that:

PC15 = RTS1
PC14 = RTS2 /* no matter what Pso is */
PC11 = - /* unknown */
PC10 = TGATE1
PC7 = SDACK2

Modified Port C pin setup

The PCSO register is changed to 0x0 so that PC10 and PC11 act as general-purpose interrupt I/O
pins and are not connected to the corresponding SCC signal input pins (see MPC860 manual page
16-149). The following code segment describes the modified configuration for the Port C pin
setup.

PortC.Pdir = 0x010C, (0000 0001 0000 1100)
PortC.Ppar = 0x0121, (0000 0001 0010 0001)
PortC.Pso = 0x0000; (0000 0000 0000 0000)

PC15 = RTS1
PC14 = DREQ1 /* when PCSO = 1 */
PC13 = Output Pin
PC12 = Output Pin
PC11 = Output Pin
PC10 = Output Pin
PC7 = SDACK2

The following code segment was added within the DWS_USER_CODE tags.

Quicc->PortC.Pdir = (U16) 0x010C;
Quicc->PortC.Ppar = (U16) 0x0121;
Quicc->PortC.Pso = (U16) 0x00;
Quicc->PortC.Pint = 0;

Note: Although the modifications to the Port C pin setup is contained within the
DWS_USER_CODE tags, the original pin setup is not. It is recommended that after each
regeneration of the Portc.c file, the section of code where the Port C pins are setup (the section
generated by DriveWay and not within the DWS_USER_CODE tags) be compiled out.

C.2.3 File: Boot.as
This assembly file contains the basic configuration setup for the MPC860 chip such values for the
Machine State Register (MSR), the Internal Memory Mapped Register (IMMR), the System
Protection Control Register (SYPCR), the memory controllers and others. Once the MPC860 has
been configured with the basic values the initialization continues by calling init_main() function
which setups the heap and stack for the application and finally calls the application’s main()
function.

Note: Some of the modifications made to this file were not always within the DWS_USER_CODE
tags, therefore the modifications must be reinserted every time the files are generated by the
DriveWay application.

System Protection Control Register (SYPCR)

Originally, the assembly reads as follows:

C-6  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

; Set up SYPCR register
lis r4,0xffff
ori r4,r4,0xff88
stw r4,SYPCR(r3)

The lines above were modified accordingly:

; Set up SYPCR register
lis r4,0xffff
ori r4,r4,0xff00
stw r4,SYPCR(r3)

The modifications made are as follows: No Bus Monitor and No Software Watchdog Freeze. No
Bus Monitor was chosen because Direct Master to PCI access could take a long time for the TA
(Transfer Acknowledge) to be generated by PCI IC. Since there is no Software Watchdog enabled
the Software Watchdog Freeze is not enabled.

For more detailed information, please consult MPC860 User’s Manual p. 12-20.

Synchronous External Master Enable in SIUMCR

The following lines were inserted within the DW_USER_CODE tags and will be re-entered
automatically when the files are regenerated using the DriveWay application.

Change to SIUMCR register, which is the first register on the MPC860 Internal Memory Map. R3
is holding IMMR address. (Read MPC860 Manual pg. 12-15 to 12-18 for more information.)

; -------------- Enable External Master Access and RETRY pin
 xor r16, r16, r16
 lwz r16, 0(r3)
 andi. r16, r16, 0xF3FF ;mask out
 ori r16, r16, 0x0900 ;10, KR/Retry pin, enable external

master access
 stw r16, 0(r3)

Relocate FLASH Code Segments

Zero out SRAM from 0x0 to 0x40000 and copy FLASH (0xFFF03000 to 0xFFF40000) to
SRAM (0x03000 to 0x40000). The code can run either in FLASH memory or in SRAM. By
moving the code to SRAM, the processing speed of the code is improved.

; -------------- Relocate codes and data from FLASH to SRAM -------
; All the codes and data will be put at 0x3000 (SRAM)
 xor r16, r16, r16
 xor r15, r15, r15 ;starting 0
 xor r14, r14, r14
 lis r14, 0x0004 ;end 0x40000
ZERO_LOOP:
 stw r16,0(r15)
 addi r15,r15,4
 cmp r15,r14 ;finished yet ?
 blt ZERO_LOOP

 ; copy FLASH to SRAM
 lis r16, 0xFFF0 ;0xFFF03000
 ori r16, r16, 0x3000
 lis r15, 0
 ori r15, r15, 0x3000

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 C-7

 xor r14, r14, r14
 lis r14, 0x0004 ;end 0x40000
COPY_LOOP:
 lwz r12,0(r16)
 stw r12,0(r15)
 addi r16,r16,4
 addi r15,r15,4
 cmp r15,r14 ;finished yet ?
 blt COPY_LOOP

Dynamically Modify DRAM Size

The following lines try to dynamically change the DRAM size from 0x10000000 (256 MB) to a
smaller size such as 16 MB or 4 MB depending on the memory chip size currently in use. This
function requires that the DRAM ICs be functional and present on the board. The system hangs if
there is no DRAM present. An example of what this function does is provided in ‘C’ code
follows:

r30 = 0;
r31 = 0x10000000; /* DRAM starting address */
r6 = * (IMMR + OR1); /* read MPC860 manual 15-72 */
while (r30 < 0x10000000) /* 256 MB MAX */
{
 * (unsigned long *) r31 = 0; /* zero out */
 r30 += 0x100000; /* 1 MB */
 * (unsigned long *) (r31+r30) = 0x50486130;
 r9 = * (unsigned long *) r31;
 * (unsigned long *) (r31+r30) = 0x0; /* zero out */
 if (r9 = 0x50486130) /* memory wrap-around */
 break;
}
r30 = ~(r30 – 1); /* size to range */
r30 &= 0xFFFF8000; /* 0-16 bits (Motorola) are Address Mask */
r6 |= r30; /* it only becomes smaller or remains the same */
* (unsigned long *) (IMMR + OR1) = r6; /* read MPC860 manual 15-72 */

The assembly code translation for the ‘C’ code segment above:

; ------------ Dynamically change DRAM size setup -------------
 xor r0, r0, r0 ;zero out
 addi r30,r0,0 ;r30 = 0;
 addis r31,r0,0x1000 ;r31 = 0x10000000
 lwz r6, OR1(r3) ;DRAM Option Register
BOOT_L3:
 addis r8, r0, 0x1000 ;r8 = 0x10000000
 cmpl 0,0,r30,r8 ;is r30 >= 0x10000000
 bc 4, 0, BOOT_L2 ;ge
 addi r8,r0,0 ;r8 = 0
 stw r8,0(r31) ;* (r31) = 0, zero out
 addis r30,r30,0x10 ;r30 += 0x100000
 addis r10,r0, 0x5048 ;PH r10 = 0x50486130
 ori r10,r10,0x6130 ;randomly-selected
 stwx r10,r31,r30 ; * (r31 + r30) = r10
 lwz r9, 0(r31) ;r9 = * (r31)
 stwx r0, r31, r30 ;zero out again
 addis r8,r0,0x5048 ;r8 = 0x50486130
 ori r8,r8,0x6130

C-8  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

 cmpl 0,0,r9,r8
 bc 4,2,BOOT_L3 ; not the same
BOOT_L2:
 addi r8,r30,-1 ;r8 = r30 - 1;
 nor r30,r8,r8 ;r8 = ~r8
 rlwinm r30,r30,0,0,16 ;r8 &= 0xFFFF8000

 or r6, r6, r30 ; new OR1, only become smaller
 stw r6, OR1(r3) ; change it
 stw r0, 0(r31) ; zero out

The System Reset Handling Routine In SRAM

The following puts a System Reset handling routine at location 0x100 in SRAM. The routine,
which is 16 bytes long, branches to location 0xFFF00100, which is the hardware reset entry point.

; ------- Insert a system reset exception handler at SRAM 0x100
; ------- What it does is just to branch to 0xFFF00100
 lis r16, BootSystemReset@h
 ori r16, r16, BootSystemReset@l
 lis r15,0x0000 # load dest address
 ori r15,r15,0x0100
 lwz r14, 0(r16)
 stw r14, 0(r15)
 lwz r14, 4(r16)
 stw r14, 4(r15)
 lwz r14, 8(r16)
 stw r14, 8(r15)
 lwz r14, 12(r16)
 stw r14, 12(r15)

UPMA RAM Words for DRAM And The S_BOOT Section

Although DriveWay does generate many sections in this file, it places the UPMA RAM array
data and other memory bank controller data in the .eini section. If the S_BOOT section alone is
moved to a new memory location the file generated by DriveWay will not work properly. To
overcome this, the UPMA RAM array data and other memory bank controller data have to be in
the same S_BOOT section. The following lines are inserted just before
Bank_Initialize_Values tag:

;--
; Comments : The following values have to stay in S_BOOT to make
; everything work. pH, 4/2/98 12:11PM
;--
 .section S_BOOT,2,C

System Reset Data

The following data was inserted within the DWS_USER_CODE tags.

BootSystemReset:
 .long 0x3C60FFF0, 0x38630100, 0x7C6803A6, 0x4E800020

The above four 32-bit data is the same as the following four assembly lines:

lis r3, 0xFFF0
addi r3, r3, 0x0100 ;r3 = 0xFFF00100

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 C-9

mtlr r3 ;move r3 to Linker Register (LR)
blr ;return to address pointed by LR

C.2.4 File: Pq_hand.c
This file contains some ISRs for handling interrupts generated by external sources or by
Communication Process Modules.

Note: All the additions described within this section were inserted within the DWS_USER_CODE
tags and therefore do not need to be re-entered when the files are regenerated.

Handling interrupts from PCI9080.

PCI IC uses two MPC860 interrupt lines, IRQ1 and IRQ7. IRQ1 is linked to MPC9080 LINTo#
line while IRQ7 receives input from LSERR# line. Both lines are connected as an External
Interrupt or as an Exception. The External Interrupt Handler at offset location 0x0500 is called
once there is any external exception, determines which IRQ line is active and calls the
corresponding ISR.

When IRQ1 is the source of interruption, the External Interrupt Handler calls Irq1Handler()
which calls the Pci9080LintPointer() function pointer, if the function pointer is not NULL. When
IRQ7 is active, Irq7Handler() is called and it subsequently calls Pci9080LserrPointer() function
pointer, if the function pointer is not NULL.

The Pci9080LintPointer() and Pci9080LserrPointer() function pointers are global to the file.
Each one takes no parameters and returns nothing. They are declared as follows:

/* for LINTo# */
void (* Pci9080LintPointer)(void) = (void (*) (void)) NULL;
/* for LSERR# */
void (* Pci9080LserrPointer) (void) = (void (*) (void)) NULL;

C.2.5 File: Link.cmd
This file is the linker directives file which tells the DIAB linker how to link all the sections
together. Part of the original linker directive file reads as follows:

/* Group sections in this memory region */
GROUP :
{
 S_BOOT (TEXT) : {}

 /* Group all code from all objects and libraries */
 .text (TEXT):
 {
 *(.text) *(.rodata) *(.rdata) *(.init) *(.fini) *(.eini)
 . = (.+15) & ~15;
 }
} > FLASH

/* Group all small CONST data */
GROUP :
{
 .sdata2 (TEXT) : {}
} > FLASH

C-10  PLX Technology, Inc., 1998 PCI SDK Programmer’s Reference Manual

This section of code tells the linker where to place all the sections into the FLASH region. The
file has been modified so that only the S_BOOT section stays in FLASH. The S_BOOT section
contains the code that will relocate the other sections to SRAM (copy from FLASH to SRAM).
The rest of the application will run normally with the exception that it is now running in SRAM.
The modifications are as follows:

S_BOOT:
{
 *(S_BOOT)
} > FLASH

/* Group sections in this memory region */
GROUP :
{
 /* Group all code from all objects and libraries */
 .text (TEXT):
 {
 *(.text) *(.rodata) *(.rdata) *(.init) *(.fini) *(.eini)
 . = (.+15) & ~15;
 }
} > SRAM

/* Group all small CONST data */
GROUP :
{
 .sdata2 (TEXT) : {}
} > SRAM

Note: When DriveWay regenerates the MPC860 library files the modifications described above
will be replaced with the original code. This does not affect the compilation or linking of the
application binary file. These modifications are used to improve the performance of any ROM
type application running out of the FLASH.

C.2.6 File: Makefile
This make file is used to build a COFF file called project.out using Microsoft nmake utility’s
rules.

To create a ROM image (binary) file, the make file compiles and links the application source
code files into one COFF file, called project.out. The project.out file is converted into a Motorola
S-Record file, rom860.001, by the ddump.exe program (from Diab Data, Inc.). The rom860.001
file is converted into another Motorola S-Record file, rom860.002, which is an absolute romable
image file (a HEX image file that uses absolute addressing), using the mkimage.exe program
(from Integrated Systems, Inc.). Finally, the rom860.002 HEX image file is converted into a
binary file, rom860.bin, with hex2bin.exe program (from TechTools). The hex2bin.exe programs
converts Intel, Motorola and Tektronix’s HEX files to binary files.

The following lines were added to create the binary image file.

The following constants are used by mkimage program
DTARGET=PPC860
DFP=S
ROM_START = 0xFFF00000
ROM_END = 0xFFF1FFFF
ROM = ddump.exe

PCI SDK Programmer’s Reference Manual  PLX Technology, Inc., 1998 C-11

MKROM: project.out
 @$(ROM) -Rv -o rom860.001 project.out
 @mkimage -r ROM_START ROM_END 0 make file rom860.001 rom860.002
 @hex2bin rom860.002 rom860.bin /A:0 /S:128
@erase *.00?
Note: All the additions described within this section were inserted within the DWS_USER_CODE
tags and therefore do not need to be re-entered when the files are regenerated.

C.2.7 File: Bsp.c
This file contains the main() function (the main ‘C’ application function). The main() function
calls the MPC860Init() function to initialize the MPC860 IC peripherals, calls PpcEnableInts() to
enable the PowerPC Core Interrupts and then loops forever.

Note: This file is replaced with the PCI SDK MainRom.c file.

C.3 Notes On The MPC860 Library Files Used With The PCI
SDK
This section contains some explanations on how the MPC860 library files were generated for the
PCI SDK.

Interrupts:

For some unknown reason, choosing to make an interrupt RECOVERABLE (from DriveWay’s
System Configuration Setup’s Interrupts property page) the generated code for handling the
interrupt actually make the interrupt UNRECOVERABLE. For this reason the “Recoverable
ESR” or “Recover” check boxes on the Interrupts property page is left empty.

Configuring The Memory Banks:

Memory Bank 1 was implemented as User-Programmable Machine A and represents the PLX
PCI RDK-860’s DRAM memory. The DRAM pattern used is contained in DriveWay’s
installation directory and is not supplied with the MPC860 library files. To get the DRAM
patterns copy the ump.txt file provided by the PCI SDK into the DriveWay directory.

Copy: <PCI SDK Install Path>\Iop\Bsp\860\DriveWay\ump.txt

To: <DriveWay Install Path>\kb\860\

Note: Ensure to save a copy of the ump.txt file in the DriveWay directory before copying the PCI
SDK ump.txt file to this directory.

This software design kit has been developed and tested by Vitana Corporation.
For more information regarding SDK and RDK designs, please contact:

Vitana Corporation
Tel: 613-749-4445
Email: rdk@vitana.com
Web: www.vitana.com

For technical support questions, please contact PLX Customer Support.

