
PCI SDK User’s Manual
Release 2.1, initial publishing November 23, 1998.

Copyright © 1998, PLX Technology, Inc.. All rights reserved.

This document contains proprietary and confidential information of PLX Technology Inc. (PLX).
The contents of this document may not be copied nor duplicated in any form, in whole or in part,
without prior written consent from PLX.

PLX provides the information and data included in this document for your benefit, but it is not
possible for us to entirely verify and test all of this information in all circumstances, particularly
information relating to non-PLX manufactured products. PLX makes no warranties or
representations relating to the quality, content or adequacy of this information. Every effort has
been made to ensure the accuracy of this manual, however, PLX assumes no responsibility for
any errors or omissions in this document. PLX shall not be liable for any errors or for incidental
or consequential damages in connection with the furnishing, performance, or use of this manual
or the examples herein. PLX assumes no responsibility for any damage or loss resulting from the
use of this manual; for any loss or claims by third parties which may arise through the use of this
SDK; for any loss or claims by third parties which may arise through the use of this SDK; and for
any damage or loss caused by deletion of data as a result of malfunction or repair. The
information in this document is subject to change without notice.

Product and Company names are trademarks or registered trademarks of their respective owners.

Document number: PCISDK-MAN-210.doc

i

Table of Contents

1. INTRODUCTION 1-1
1.1 About This Manual .. 1-1

1.2 PCI SDK Features.. 1-1

1.3 Where To Go From Here... 1-1

1.4 Other PCI SDK Manuals ... 1-1

1.5 Conventions ... 1-2

1.5.1 Windows Programming Conventions ... 1-2

1.6 Terminology .. 1-2

1.7 Development Tools Needed .. 1-2

1.8 Customer Support .. 1-3

2. GETTING STARTED 2-1
2.1 PCI SDK Installation ... 2-1

2.1.1 Unpacking ... 2-1

2.1.2 Minimum System Requirements... 2-1

2.1.3 Development Requirements.. 2-1

2.1.4 Software Installation ... 2-1

2.1.4.1 Windows NT Installation Procedures ... 2-1

2.1.4.1.1 Windows NT Device Driver installation ... 2-2

2.1.4.2 Windows98 Installation Procedures ... 2-2

2.1.4.2.1 Windows98 Software Installation.. 2-2

2.1.4.2.2 Windows98 Device Driver installation.. 2-3

2.1.4.3 Removing All Software .. 2-4

2.1.4.4 PCI SDK v2.1 Compatibility.. 2-4

2.1.4.5 Troubleshooting.. 2-4

2.1.4.5.1 Increasing Available System Pages In WinNT.. 2-4

2.1.4.5.2 Driver Interrupt Sharing... 2-5

2.2 Understanding The PCI SDK .. 2-5

2.2.1 IOP Software... 2-5

2.2.1.1 Introduction .. 2-5

2.2.1.2 IOP Applications .. 2-5

2.2.1.2.1 MiniRom Application .. 2-6

2.2.2 Windows Based Software ... 2-6

2.2.3 Introduction... 2-6

2.2.3.1 Windows NT Device Drivers ... 2-7

2.2.3.1.1 Starting And Stopping.. 2-7

2.2.3.1.2 Event Logging.. 2-8

LL

2.2.3.1.3 Registry Configuration... 2-9

2.2.3.1.4 Driver Configuration.. 2-10

2.2.3.2 Windows98 Device Drivers.. 2-11

2.2.3.2.1 Starting And Stopping.. 2-11

2.2.3.2.2 Event Logging.. 2-11

2.2.3.2.3 Registry Configuration... 2-11

2.2.3.2.4 Known problems with the Windows98 device drivers. 2-11

2.3 Using The PCI SDK With A New Board .. 2-12

2.4 Using PCI SDK API Libraries With Other Operating Systems And Compilers 2-12

2.5 RTOS Support ... 2-13

2.6 Source Code Availability... 2-13

3. PCI SDK SOFTWARE ARCHITECTURE OVERVIEW 3-1
3.1 Assumptions .. 3-1

3.1.1 PCI SDK Assumptions ... 3-1

3.1.2 IOP API And IOP Software Assumptions .. 3-1

3.1.3 PCI API and Win32 Software Assumptions ... 3-1

3.2 Overview.. 3-2

3.3 Software Architecture.. 3-3

3.4 IOP Software Architecture .. 3-3

3.4.1 Board Support Package (BSP) Library ... 3-4

3.4.1.1 Microprocessor Initialization Module .. 3-5

3.4.1.1.1 Microprocessor Boot Code .. 3-5

3.4.1.1.2 Interrupt Service Routine... 3-5

3.4.1.2 Board Initialization Module.. 3-5

3.4.1.2.1 Board Initialization Routine... 3-6

3.4.1.3 The Main() And AppMain() Functions .. 3-6

3.4.2 IOP API Library.. 3-8

3.4.2.1 DMA Resource Manager.. 3-8

3.4.3 Back-End Monitor .. 3-12

3.4.3.1 Back-End Monitor Serial Protocol ... 3-12

3.4.3.1.1 Reset IOP Microprocessor Command.. 3-13

3.4.3.1.2 IOP Memory Read Command.. 3-13

3.4.3.1.3 IOP Memory Write Command... 3-13

3.4.4 Methods For Debugging IOP Applications... 3-14

3.4.4.1 Operation Of The Back-End Monitor In A System.. 3-14

3.4.5 IOP Applications... 3-14

3.4.5.1 IOP Memory And IOP Applications .. 3-15

3.4.5.2 MiniRom Application... 3-16

iii

3.4.6 Porting The PCI SDK To New Platforms ... 3-16

3.4.7 Support For Multiple PCI ICs On One Board... 3-17

3.5 Host Win32 Software Architecture.. 3-17

3.5.1 PLXMon98 ... 3-17

3.5.1.1 Serial Communication .. 3-18

3.5.1.2 PCI API/Device Driver Communication .. 3-18

3.5.1.2.1 PCI API Library... 3-18

3.5.1.2.2 Win32 Device Driver ... 3-18

3.5.2 Win32 Applications And The PCI SDK ... 3-19

3.5.3 Win32 Device Driver Overview ... 3-19

3.5.3.1 PCI IC Device Driver Module.. 3-19

3.5.3.2 PCI IC Services Module ... 3-20

3.5.4 Creating A New Driver ... 3-20

3.5.5 Device Driver Features ... 3-20

APPENDIX A. SERIAL EEPROM SETTINGS A-1

LY

List of Figures
Figure 2-1 Components of the PCI SDK .. 2-1

Figure 2-2 Windows Host software Layout for PCI SDK v2.1 .. 2-6

Figure 2-3 The Devices Utility Window. ... 2-7

Figure 2-4 The Event Viewer Window... 2-8

Figure 2-5 The Event Detail Window... 2-8

Figure 2-8 The PCI SDK Device Driver Wizard.. 2-10

Figure 3-1 The PCI SDK Software Architecture.. 3-2

Figure 3-2 The IOP Software Architecture... 3-4

Figure 3-3 The Data Stream Flow Diagram. .. 3-7

Figure 3-4 Scatter-Gather DMA Flow Diagram... 3-9

Figure 3-5 Block DMA Transfer Flow Diagram .. 3-10

Figure 3-6 The Shuttle DMA Flow Diagram.. 3-11

Figure 3-7 IOP Memory Diagram... 3-15

Figure 3-8 The Host Software Architecture.. 3-17

Figure 3-9 The PLX Device Driver Layout.. 3-19

v

PLX SOFTWARE LICENSE AGREEMENT

THIS SOFTWARE DESIGN KIT INCLUDES PLX SOFTWARE THAT IS LICENSED TO YOU UNDER SPECIFIC TERMS
AND CONDITIONS. CAREFULLY READ THE TERMS AND CONDITIONS PRIOR TO USING THIS DESIGN KIT. BY
OPENING THIS PACKAGE OR INITIAL USE OF THIS SOFTWARE DESIGN KIT INDICATES YOUR ACCEPTANCE OF
THE TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU SHOULD RETURN THE ENTIRE
SOFTWARE DESIGN KIT TO PLX.

LICENSE Copyright (c) 1998 PLX Technology, Inc.

GENERAL

If you do not agree to the terms and conditions of this PLX Software License Agreement, do not install or use the Software Design Kit
and promptly return the entire unused SOFTWARE PRODUCT to PLX Technology, Inc. You may terminate your license at any time.
PLX Technology may terminate your license if you fail to comply with the terms and conditions of this License Agreement. In either
event, you must destroy all your copies of this SOFTWARE PRODUCT. Any attempt to sub-license, rent, lease, assign or to transfer
the Software Design Kit except as expressly provided by this license, is hereby rendered null and void.

WARRANTY

PLX Technology, Inc. provides this SOFTWARE PRODUCT AS IS, WITHOUT ANY WARRANTY, EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTIBILITY OR FITNESS FOR A PARTICULAR
PURPOSE. PLX makes no guarantee or representations regarding the use of, or the results based on the use of the software and
documentation in terms of correctness, or otherwise; and that you rely on the software, documentation, and results solely at your own
risk. In no event shall PLX be liable for any loss of use, loss of business, loss of profits, incidental, special or, consequential damages
of any kind. In no event shall PLX’s total liability exceed the sum paid to PLX for the product licensed hereunder.

YL

PLX Copyright Message Guidelines

The following copyright message must appear in all software products generated
and distributed by PLX customers:

“Copyright (c) 1998 PLX Technology, Inc.”

Requirements:

• Arial font,

• Font size 12

• Bold type

• Must appear as shown above in the first section or the so called “Introduction
Section” of all manuals

Must also appear as shown above in the beginning of source code as a comment

PCI SDK User’s Manual  PLX Technology, Inc., 1998 1-1

1. Introduction

1.1 About This Manual
The PLX family of embedded bridge ICs bridge the PCI bus to Intel, Power PC processors and
other processors. They provide full I2O compatibility. The PCI SDK provides a powerful IOP
API, and Windows software that are used to control PLX devices. We are confident that through
the use of the PCI SDK, your PLX designs will be brought to market faster and more efficiently.

This manual provides information about the functionality of the PCI SDK. Customers have the
choice of using the PCI SDK with any PLX Reference Design Kit (RDK), or a generic device that
uses a PLX IC. Users should consult this manual when installing the PCI SDK and for general
information.

1.2 PCI SDK Features
The PCI SDK includes the following features:

• A feature based IOP API, with support for a variety of PLX PCI ICs;

• Board Support Package (BSP) that allows customization of the PCI SDK;

• A Back-End Monitor application used for debugging;

• IOP DMA Resource Manager that supports three modes of operation;

• A PCI API and device drivers compatible with Windows NT/98; and,

• PLXMon98, A Windows GUI application used to configure and modify PLX PCI devices.

1.3 Where To Go From Here
The following is a brief summary of the chapters to help guide your reading of this manual:

Chapter 2, Getting Started, discusses how to start using the PCI SDK and some of the
applications provided.

Chapter 3, PCI SDK Software Architecture Overview, describes the layout of the PCI SDK
software.

Chapter 3, section 3.4, IOP Software Architecture, provides a brief explanation of the IOP
software, specifically the Board Support Package (BSP), the IOP API, and the Back-End
Monitors (BEM).

Chapter 3, section 3.5, Host Win32 Software Architecture, provides a brief explanation of the
Win32 software, specifically the PCI API and the device driver.

1.4 Other PCI SDK Manuals
The PCI SDK includes the following manuals which users should consult for design details:

Programmer’s Reference Manual: This manual covers all software design issues regarding the
device drivers, Application Programmer’s Interface (API) and user applications.

1-2  PLX Technology, Inc., 1998 PCI SDK User’s Manual

PLXMon 98 User’s Manual: This manual describes the usage of the PLXMon98 application.

PCI IC Data Sheets & Application Notes (CD-ROM): This CD covers all the functionality of the
PCI IC.

1.5 Conventions
Please note:

• italics are used to represent variables, function names, and program names;

• courier is used to represent source code given as examples.

1.5.1 Windows Programming Conventions
Some designers may not be familiar with Windows programming conventions. Therefore, a few
conventions have been noted below:

• PU32 data is analogous to U32 *data or unsigned long *data; and

• IN and OUT are used to distinguish between parameters that are being passed into API
functions and parameters that are being returned by API functions.

1.6 Terminology
All references to Windows NT assume Windows NT 4.0 or higher and may be denoted as
WinNT.

All references to Windows98 may be denoted as Win98.

All references to Windows95 may be denoted as Win95.

Win32 references are used throughout this manual to mean any application that is compatible
with the Windows 32-bit environment.

All references to IOP (I/O Platform) throughout this manual denote the embedded hardware and
all references to IOP software denote the embedded software.

1.7 Development Tools Needed
Development tools needed for the PCI SDK that are not supplied include:

• Microsoft Visual C++ 5.0, with Microsoft Developer Studio;

• Microsoft Platform Software Development Kit (SDK);

• Microsoft Windows NT Device Driver Kit (DDK), version 4.0;

• Microsoft Windows98 Device Driver Kit (DDK);

• Diab Data, Inc. Compiler and Linker for the MPC860, version 4.0b;

• IBM High C/C++ PowerPC Cross-Compiler, version 1.0 (7/31/96); and,

• 401 EVB Software Support Package, version 1.6.4 (4/1/97).

PCI SDK User’s Manual  PLX Technology, Inc., 1998 1-3

1.8 Customer Support
Prior to contacting customer support, please ensure you have the following information:

1. You are situated close to the computer that has the PCI SDK installed;

2. Serial Numbers of the PLX PCI RDKs (if there is any in use with the PCI SDK);

3. Type of processor on the PLX PCI RDK;

4. Operating System version and type; and

5. Description of problem.

You may contact PLX customer support at:

Address: PLX Technology, Inc.
390 Potrero Avenue
Sunnyvale, CA 94086

Phone: 408-774-9060
Fax: 408-774-2169
Web: http://www.plxtech.com

You may send email to one of the following addresses:

west-apps@plxtech.com
mid-apps@plxtech.com
east-apps@plxtech.com
euro-apps@plxtech.com
asia-apps@plxtech.com

PCI SDK User’s Manual  PLX Technology, Inc., 1998 2-1

2. Getting Started

2.1 PCI SDK Installation

2.1.1 Unpacking
The PCI SDK comes complete with the following
items (see Figure 2-1):

• User’s Manual (this document);

• Programmer’s Reference Manual;

• PLXMon98 User's Manual; and

• 1 CD-ROM.

Please take the time now to verify your PCI SDK
is complete. If not, please contact Customer
Support.

2.1.2 Minimum System
Requirements
Minimum host system requirements for the PCI SDK are as follows:

• Windows NT 4.0 with Service Pack 3, or Windows98;

• 32MB RAM (when used with only one PLX PCI RDK. Additional memory may be required
if more than one PLX PCI RDK are in the system);

• 20MB hard drive space; and,

• 1 RS 232 port.

2.1.3 Development Requirements
The PCI SDK was developed using Window NT 4.0 and Windows98 operating systems.

The PCI API was developed using Microsoft Developer Studio, supplied with Microsoft Visual
C++ 5.0 and the Microsoft Platform Software Development Kit.

The WinNT device drivers were developed using the Microsoft Windows NT DDK, version 4.0
and Microsoft Visual C++ 5.0.

The WDM Win98 device drivers were developed using the Microsoft Windows98 DDK and
Microsoft Visual C++ 5.0.

2.1.4 Software Installation

2.1.4.1 Windows NT Installation Procedures

To install the PCI SDK Support Software, complete the following:

PCI SDK

Programmer’s

Reference

Manual

PLXMon98

User’s
Manual

PCI SDK

Installation
CD-ROM

PCI SDK

User’s
Manual

Figure 2-1 Components of the PCI SDK

2-2  PLX Technology, Inc., 1998 PCI SDK User’s Manual

Note: All previous PCI SDK versions located on the computer must be removed before installing
a PCI SDK update. Refer to section 2.1.4.3 for more details.

1. Insert the CD-ROM into the appropriate CD-ROM drive.

2. Run “D:\Install.exe” either by typing it at a command prompt or by choosing the Run option
of the Start Menu (where “D:” is the drive letter for the CD-ROM Drive).

3. This will launch the Install Wizard application that will ask you to select the PLX RDK that
you are using. The appropriate PCI SDK version will then be installed.

4. Reboot the computer.

Note: For proper WinNT installation, the PCI SDK should be installed by a user with
“administrator” user rights.

The default installation directory may be changed from default path (C:\Plx\PciSdk) to any drive
and path that is desired. This document uses “<INSTALLPATH>” to denote the installation
directory.

This completes the PCI SDK software installation.

2.1.4.1.1 Windows NT Device Driver installation

Unlike the Win98 installation wizard the Windows NT installation wizard takes care of the device
driver installation.

2.1.4.2 Windows98 Installation Procedures

The installation of the PCI SDK Support Software onto a Win98 system requires two steps:
Install the PCI SDK files, and, then install the Win98 device drivers. The following two sections
describe how to completely install the PCI SDK Support Software for Win98.

2.1.4.2.1 Windows98 Software Installation

To install the PCI SDK Support Software, complete the following:

Note: All previous PCI SDK versions located on the computer must be removed before installing
a PCI SDK update. Refer to section 2.1.4.3 for more details.

1. Ensure no PLX engineering boards are installed in your computer.

2. Insert the CD-ROM into the appropriate CD-ROM drive.

2. Run “D:\Install.exe” either by typing it at a command prompt or by choosing the Run option
of the Start Menu (where “D:” is the drive letter for the CD-ROM Drive). The interactive
installation program will install all files.

3. This will launch the Install Wizard application that will ask you to select the PLX RDK that
you are using. The appropriate PCI SDK version will then be installed.

The default installation directory may be changed from default path (C:\Plx\PciSdk) to any drive
and path that is desired. This document uses “<INSTALLPATH>” to denote the installation
directory.

This completes the PCI SDK software installation. Proceed to the next section to install the
Win98 device driver.

PCI SDK User’s Manual  PLX Technology, Inc., 1998 2-3

2.1.4.2.2 Windows98 Device Driver installation

A device driver is necessary for the PCI SDK software to communicate to the PLX engineering
board. PCI SDK applications cannot communicate with any engineering board through the PCI
interface without a PCI SDK device driver installed. The installation script used to install the PCI
SDK can not entirely install the PCI SDK. To install the device driver in Win98, complete the
following:

1. After installing the PCI SDK successfully (see the previous section), shutdown the computer.

2. Insert a PLX engineering board into a free PCI slot.

3. Reboot the computer. Windows98 should first detect the new hardware device with a “New
Hardware Found” message box. Acknowledge this message box.

4. Windows98 displays the “Add New Hardware” Wizard. Windows98 displays the following
message: “This wizard searches for new drivers for:” with the corresponding board name
following it. If you are using a PLX engineering board proceed to step 5. If you are using a
custom engineering board with a PLX device then proceed to step 10.

Driver Installation for PLX Engineering Boards:

5. Click on the “Next” button. Once Windows98 has completed its search the following prompt
is displayed: “What do you want Windows to do?” At the prompt select “Search for the best
driver for your device”. This is the default option. Click on “Next” to continue.

6. The installation wizard asks “Windows will search […] in any of the following selected
locations.” Check none of the items in the list and click on “Next” to continue.

7. The device driver is ready to be installed when the installation wizard displays the following
message: “Windows is now ready to install the best driver for this device.” Click on “Next”
to continue.

8. The device driver installation is complete when Windows98 displays the following message:
“Windows has finished installing the software that your new hardware device requires”.

9. Click on “Finish” to complete the Win 98 device driver installation.

Driver Installation for Custom Engineering Boards with PLX devices:

10. The installation wizard will detect your custom device as a “PCI Bridge”. Click on the
“Next” button and then choose the option “Display a list of all the drivers in a specific
location.” Click “Next”.

11. Select “Other Devices”. Click “Next”.

12. Now select the column that says “PLX Technology, Inc.” and choose “Unknown PCI 9054
board” if using a PCI 9054 device. Otherwise choose “Unknown PCI 9080 board” if using a
PCI 9080 device. The install wizard will warn you that this device driver is not specific for
your device. Ignore this warning by choosing “Yes”. Click “Next”.

13. Click “Finish” to complete the Win 98 device driver installation.

Note: If you change the device from one slot to another, Windows98 will treat it as a “New
Hardware” and will display the same dialog.

Once the Win98 device driver installation is complete it is ready to run without having to reboot
the system.

2-4  PLX Technology, Inc., 1998 PCI SDK User’s Manual

2.1.4.3 Removing All Software

To remove all PCI SDK Software, including device drivers, complete the following:

1. Stop all PLX applications;

2. Open the Windows Control Panel;

3. Double click on the Add/Remove Programs icon in the Control Panel window;

4. Choose the PCI SDK package from the item list; and

5. Click the Add/Remove... button.

Note: This only removes the files that were originally installed by the PCI SDK installation
program. For proper removal in WinNT, the PCI SDK should be removed by a user with
“administrator” user rights.

This completes the PCI SDK software removal.

2.1.4.4 PCI SDK v2.1 Compatibility

The PCI SDK v2.1 host code is NOT compatible with previous PCI SDK IOP code. Therefore,
before using any PCI SDK software, you must upgrade the FLASH and configuration EEPROM
images on your PLX engineering board. If this step is not done, the PCI SDK will operate
unpredictably.

To upgrade your FLASH image follow the steps below:
• User’s of the PCI9054RDK-860 may use PLXMon98, as described in the PLXMon98 User

Manual, to download the “helloworld” sample to the PCI 9054RDK-860. The image should
be programmed at FLASH offset 0x00000.

• User’s of the PCI 9080RDK-401B may use PLXMon98, as described in the PLXMon98 User
Manual, to download the “helloworld” sample to the PCI 9080RDK-401B. The image should
be programmed at FLASH offset 0x60000.

To upgrade your serial EEPROM, please refer to Appendix A for more details.

2.1.4.5 Troubleshooting

If you experience difficulty during the installation of the PCI SDK software please:

• Verify that there is enough hard drive space for all software; and

• Verify that WinNT or Win98 operated properly before the PCI SDK installation.

Warning: User may experience difficulties when using the PCI SDK with Windows NT with low
memory and multiple PLX engineering boards. It is recommended that users increase the amount
of available system pages in their System Registry. For more information, refer to section
2.1.4.5.1.

2.1.4.5.1 Increasing Available System Pages In WinNT

To change number of system pages in the System Registry:

1. From a command prompt type: regedt32. This will bring up the Registry Editor window.
(This editor looks similar to the Windows Explorer application.)

PCI SDK User’s Manual  PLX Technology, Inc., 1998 2-5

2. Select the HKEY_LOCAL_MACHINE on Local Machine window from within the Registry
Editor.

3. Open the SYSTEM folder.

4. From the SYSTEM folder, open the CurrentControlSet folder.

5. From the CurrentControlSet folder, open the Control folder.

6. From the Control folder, open the Session Manager folder.

7. From the Session Manager folder, open the Memory Management folder.

8. From the Memory Management folder, change the value of the SystemPages key from
0x0 to 0x13880.

If problems persist, please contact Customer Support.

2.1.4.5.2 Driver Interrupt Sharing

The PCI SDK device drivers have interrupt sharing enabled. This allows PLX devices to share
the same interrupt line as other devices. However, in order to share interrupts with non-PLX
devices the device driver for the non-PLX device must also support sharing. Because many
device drivers do not support interrupt sharing the PCI SDK can only be guaranteed to function
properly with other PLX devices.

If a PCI SDK device driver will not start, a possible cause is the computer’s BIOS is assigning an
interrupt to the PLX device that is already being used by a device that doesn’t support interrupt
sharing. A possible work around for this condition is to manually configure the BIOS to assign a
free interrupt to the PLX device.

2.2 Understanding The PCI SDK

2.2.1 IOP Software

2.2.1.1 Introduction

The PCI SDK includes several samples of IOP applications. Their purpose is to demonstrate how
designers can interact with the PCI IC from IOP software. The IOP applications are user-
interactive and require PLXMon98 with a serial cable link.

The IOP applications are designed specifically to run on a PLX engineering board. However, the
IOP applications can be used as a good starting point for designers using their own hardware
device.

2.2.1.2 IOP Applications

The PCI SDK contains several sample applications. By default all PLX engineering boards
contain the “helloworld” application preprogrammed in FLASH memory. This application blinks
an LED and prints “Hello World” from the serial port. Complete source code for this application
is provided in the PCI SDK. Please refer to the PLXMon98 User’s Manual for more information
on how to communicate to the PLX engineering boards IOP applications.

2-6  PLX Technology, Inc., 1998 PCI SDK User’s Manual

2.2.1.2.1 MiniRom Application

MiniRom is included in the PCI SDK to provide a good starting point for users who have an
untested hardware device and for this reason, it is limited in features and functionality. It provides
bare minimum boot up code for most boards. This application configures the microprocessor, the
PCI IC, and proceeds to blink the LED that is connected to one of the PCI IC’s USER pins. To
use the MiniRom application, you should program the binary image into the FLASH using a
FLASH chip programmer. Once the FLASH is programmed, reboot the board and if the LED
blinks then the MiniRom application configured the board properly. If this test is successful, the
FLASH can be reprogrammed with the PCI SDK PLXRom image (supplied with the PCI SDK).

Note: This ROM application is provided as a bare bones ROM application useful for confirming
the functionality of new boards. It does not contain any PCI SDK features that are described in
any PCI SDK manual.

2.2.2 Windows Based Software

2.2.3 Introduction

PLXMon98

PLX PCI API

Custom Application

Custom Application

Custom Application

Sample Application
Sample Application

Sample Application

User Space

Kernel Space

Launched From PLXMon98

Lauched From PLXMon98

PCI 9080
WDM
Device
Driver

PCI 9054
WinNT
Device
Driver

PCI 9080
WinNT
Device
Driver

PCI 9054
WDM
Device
Driver

PCI 9080RDK-401B PCI 9054RDK-860 PCI 9080RDK-401B PCI 9054RDK-860

Win98 WinNT

Figure 2-2 Windows Host software Layout for PCI SDK v2.1

PCI SDK User’s Manual  PLX Technology, Inc., 1998 2-7

The PCI SDK contains four distinct device drivers, an API, and a Windows monitor application
(see Figure 2-2). They are as follows:

• Two PLX WinNT Device Drivers supporting the PCI 9080 and the PCI 9054;

• Two PLX WDM Win98 Device Drivers supporting the PCI 9080 and the PCI 9054 ;

• PCI API, a powerful API compatible with all PLX devices and PLX device drivers; and

• PLXMon98, a Graphical User Interface (GUI) application that can be used to monitor and
modify PCI IC registers. It can also download software to a PLX engineering board, and
communicate to the software running on the engineering board.

All Win32 executables included in the PCI SDK are located in the “<INSTALLPATH>\bin”
directory. Furthermore, this path is added to the environment variables when the PCI SDK is
installed.

For more information on PLXMon98, please refer to the PLXMon98 User's Manual.

2.2.3.1 Windows NT Device Drivers

The PCI SDK includes Windows NT device drivers for each PLX device. All device drivers are
located in the <WINDOWS SYSTEM DIR>\system32\drivers directory. The naming
convention used for the device drivers is: Pci<DeviceType>.sys. For example, the device
driver for the PCI 9080 device is named Pci9080.sys.

2.2.3.1.1 Starting And Stopping

There may be times when you will need to restart the Windows NT device driver. For instance,
you must restart the device driver after changing the supported device list.

To restart the Windows NT device driver you should use the Windows NT Control Panel. The
Control Panel contains a utility called ‘Devices’ that allows you to start and stop the device driver
(see Figure 2-3).

Note: Before stopping the device driver, all PCI SDK applications should be closed.

Figure 2-3 The Devices Utility Window.

2-8  PLX Technology, Inc., 1998 PCI SDK User’s Manual

By default, the device driver is configured to startup automatically at Windows NT boot time.
You may configure the device driver to start manually by selecting the ‘Startup…’ button.
However, no PCI SDK applications will function without the device driver being started.

You may also use the PCI SDK applet DriverWizard to restart the device drivers. Consult Section
2.2.3.1.4 for more details.

2.2.3.1.2 Event Logging

The Windows NT Device Driver has the capability to record errors into the Windows NT Event
Viewer. When trouble shooting problems with the device driver it is recommended that the event
viewer be used.

Events can be viewed by selecting an event item. Figure 2-4 shows an example of the event
viewer and Figure 2-5 shows details of an event.

Figure 2-4 The Event Viewer Window.

Figure 2-5 The Event Detail Window

PCI SDK User’s Manual  PLX Technology, Inc., 1998 2-9

2.2.3.1.3 Registry Configuration

Every Windows NT device driver requires an entry in the registry editor. The registry editor
contains information required by the operating system as well as information required by the
device driver. The name in the registry will be the same as the driver name. For instance, the
pci9080.sys device driver has a pci9080 registry item as shown in Figure 2.6. All device
drivers are located under the LocalMachine\System\CurrentControlSet\Services
tree.

The figures below show the required registry settings for the PCI SDK device drivers.

Note: The registry editor should only be modified by advanced users with administrative rights.
Therefore, it is recommended that you do not change any values contained in the registry.

The registry values for the device driver are:

• CommonBufferSize: This value sets the size of the user buffer (PlxMon98 hbuf). By default
it is set to 64KB. Warning: The device driver will try to allocate the size requested but if it
can not due to a lack of system resources, it will decrement the size until it can allocate a
buffer. You should use the PlxPciCommonBufferGet() API function to determine the actual
buffer size.

Figure 2-6 Registry Information for PCI 9080 Driver

Figure 2-7 Registry Information for PCI 9054 Driver

2-10  PLX Technology, Inc., 1998 PCI SDK User’s Manual

• ErrorControl: This value is required by the operating system and should not be modified.

• EventLogLevel: This value sets the event logging mode in the device drivers. If this value is 0
then events will not be logged. If this value is 1 then high severity events will be logged. If
this value is 2 then all events will be logged.

• MaxPciBus: This value sets the highest PCI bus that the device driver will scan for PLX
devices. By default it is set to 0x3.

• MaxSglTransferSize: This value sets the size of an internal buffer that is required for SGL and
Shuttle DMA transfers. It should not be modified.

• Start: This value is required by the operating system and should not be modified.

• SupportedIDs: This value contains the Vendor Ids and Device Ids for the PLX devices that
the driver supports. Users should use the PCI SDK applet DriverWizard to indirectly modify
this field.

• Type: This value is required by the operating system and should not be modified.

2.2.3.1.4 Driver Configuration

Before using the device driver with a custom engineering board, the driver must first be
configured with the appropriate Vendor ID and Device ID. PLXMon98 has a hot-link to a PCI
SDK utility called the Device Driver Wizard. This utility should be used to add or remove
engineering board IDs to the appropriate device driver. It also lets you enable or disable the
desired PLX device driver.

Note: If you are not using the PCI 9054 or PCI 9080 device driver you should disable it using
this utility. Before the settings take effect you must either restart your computer or restart the
device driver.

Figure 2-8 The PCI SDK Device Driver Wizard

PCI SDK User’s Manual  PLX Technology, Inc., 1998 2-11

2.2.3.2 Windows98 Device Drivers

The PCI SDK includes Windows98 device drivers for each PLX device. All device drivers are
located in the <WINDOWS SYSTEM DIR>\system directory. The naming convention used for
the device drivers is: Pci<DeviceType>.sys. For example, the device driver for the PCI
9080 device is named Pci9080.sys.

2.2.3.2.1 Starting And Stopping

Unlike Windows NT drivers, Windows98 device drivers are started and stopped as needed by the
operating system. The PLX device drivers are started when Windows98 detects a device that
needs it. If, at a later time, the device is removed (by hitting the “Remove” button for a device
from the Device Manager window), the device driver will be stopped unless there was another
device that needs it.

There is no applet that controls the starting or stopping of a device driver.

2.2.3.2.2 Event Logging

Event logging is not accessible on Windows98.

2.2.3.2.3 Registry Configuration

Every Windows98 device driver requires an entry into the registry. The registry contains
information required by the operating system as well as information required by the device driver.
All device drivers are located using the registry editor under the:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Class\Unknown\000X

tree, where 000X is the driver number within the “Unknown” class of drivers. The PLX device
driver can be found within the Unknown class by looking at the NTMPDriver value of each key,
which should describe the driver name (pci9080.sys or pci9054.sys, depending on the
PCI IC in use).

Note: The registry editor should only be modified by advanced users. Therefore, it is
recommended that you do not change any values contained in the registry.

2.2.3.2.4 Known problems with the Windows98 device drivers.

Windows98 is not a mature operating system like Windows NT and it contains a few features that
do not perform as expected. The following list contains some known features that affect the
operation of the PCI SDK.

Scatter-Gather And Shuttle DMA

The Win98 device driver can periodically fail to transfer huge Scatter-Gather and Shuttle DMA
data buffers. This affects the following PCI API functions: PlxDmaSglTransfer() and
PlxDmaShuttleTransfer(). It is recommended that all data buffers used in the DMA transfers do
not exceed 1 MB in size.

Changing Device Slot Numbers

If the engineering board is removed and placed into another PCI slot, Windows98 will consider
the board as a “New Hardware device” and will show the “Add New Hardware Wizard”. You

2-12  PLX Technology, Inc., 1998 PCI SDK User’s Manual

must then repeat the Win98 device driver installation procedure (see section 2.1.4.2.2 for
information on installing Win98 device drivers).

Using Power Management Features Of The PCI 9054

Windows98 Power Management support was not complete when the PCI SDK was released.
Therefore, the method recommended by Microsoft to change the power level of a device does not
work as described in the Microsoft documentation. To overcome this problem two possible
methods can be used:

1. Change the PCI 9054 power level using a different method than the one recommended by
Microsoft. The intended behavior is obtained however this could cause problems in future
releases of Windows98.

2. Leave the device driver sections as is, in hopes that Microsoft will correct the problem in
future releases of Windows98.

The PCI SDK uses the first option in order to maintain Power Management capabilities.

2.3 Using The PCI SDK With A New Board
The following steps can be used as a guide on how to use the PCI SDK with a new board.

1. Program the desired Vendor and Device IDs into the configuration EEPROM.

2. If using Windows NT, you will need to the new Vendor and Device IDs to the Supported
Device List. To add support for new IDs, use the Device Driver Wizard utility (see section
2.2.3.1.4).

3. If using Windows98, you will need to consult section 2.1.4.2.2 to register the new device
with the Windows98 device drivers.

4. Edit the MiniRom application as necessary to support the new engineering board.

5. Program the board’s FLASH with the modified MiniRom application binary image file.

6. PLXMon98 can now access the engineering board’s configuration EEPROM. Using
PLXMon98’s EERPROM Configuration window, customize the EEPROM settings for the
new engineering board and reboot the system for the changes to take effect.

7. Try accessing IOP memory by using the Direct Slave memory accesses to the engineering
board.

When the following steps have been performed and are working properly, modify the IOP Board
Support Package (BSP) module to begin porting the PCI SDK to the new engineering board.
Consult the PCI SDK Programmer’s Manual for more information on porting the PCI SDK to
new engineering boards.

2.4 Using PCI SDK API Libraries With Other Operating
Systems And Compilers
This version of the PCI SDK contains IOP API and PCI API libraries which are compiled to work
with Windows operating systems (Windows NT and Windows 98) and with IBM PPC401GF and
Motorola MPC860 embedded microprocessors. You can create new libraries to work with other
operating systems and other compilers not supported by this SDK. Most libraries should be

PCI SDK User’s Manual  PLX Technology, Inc., 1998 2-13

recompilable without any errors. However with some compilers, compiler warnings or errors may
arise. The following list can be used to determine some causes of warning or errors:

• Ensure that the IOP base data types for S8, U8, S16… are typecasted to the appropriate data
types for the compiler used;

• If the embedded operating system/compiler supports 64 bit code ensure that the appropriate
64 bit data type is used for S64 and U64 data types; and,

• Some embedded operating systems/compilers may not provide functions that are needed by
the PCI SDK. It may be necessary to recreate the operation of these functions or redirect
these functions to similar functions provided by the operating system/compiler.

2.5 RTOS Support
If you are interested in developing a driver for a RTOS (Real Time Operating System), then you
can use almost all of the “C” functions from this version of the PCI SDK. The IOP API library
supplies a library of functions that can be called from within a RTOS. The RTOS code needs to
call the PlxInitApi() function to initialize the PLX API. Next, you can proceed to complete your
RTOS driver.

2.6 Source Code Availability
PLX provides the source code for the PCI API and IOP API under a separate software license
agreement. Please contact PLX Technical support or send an email to software@plxtech.com.

PCI SDK User’s Manual  PLX Technology, Inc., 1998 3-1

3. PCI SDK Software Architecture Overview

3.1 Assumptions
This section discusses some assumptions made in the design of the PCI SDK.

3.1.1 PCI SDK Assumptions
The assumptions for the PCI SDK are as follows:

• Mailbox register 0, 1, 6 and 7 are reserved for communication between PLXMon98 and the
IOP software when downloading applications.

• After starting the host device drivers, mailbox register 0 will contain the address of the PCI
common buffer, and mailbox register 4 will contain the size of the buffer.

3.1.2 IOP API And IOP Software Assumptions
The assumptions for the IOP API and the IOP software are as follows:

• For the Back-End Monitor to function properly the IOP board must have one available serial
port, configurable by the Board Support Package software;

• The data received by the serial port must be retrieved in a timely manner in order to eliminate
any lost data;

• The initialization of the PCI IC is done by the IOP software only;

• The data expected by the application will not contain any data that could be interpreted by the
Back-End Monitor as a command if they are linked in with the application;

• All IOP applications must be reentrant, cyclic and relinquish the processor periodically to
avoid starvation of the Back-End Monitor (cooperative or non-preemptive multitasking);

• When an application is downloaded to the IOP RAM memory the IOP BSP must execute the
CheckPciDownloadToRam() and the CheckSerialDownloadToRam() functions at
microprocessor reset;

• The BlinkLed() function assumes that the LED is connected to the PCI IC’s USERo pin; and,

• Supplied IOP Libraries are compiled for Big Endian processors only and contain no support
for 64 bit processors or compilers. However, the source code does support Little Endian
processors but it must be recompiled for that purpose.

3.1.3 PCI API and Win32 Software Assumptions
The assumptions for the PCI API and the Win32 software are as follows:

• All Win32 applications supplied with the PCI SDK will provide full functionality to all PLX
registered devices; and,

• The doorbell interrupts, QUERY_EEPROM_TYPE, DOORRBELL_KERNEL_RESET,
FLASH_READ, and FLASH_WRITE are reserved for PCI SDK purposes.

3-2  PLX Technology, Inc., 1998 PCI SDK User’s Manual

3.2 Overview
The PCI SDK is separated into two distinct sets of software, the IOP software that runs on the
engineering board and the PCI software that runs on the Windows host system (as shown in
Figure 3-1). Each API contains distinct function calls that emphasize the features of the PCI IC.
Some function calls look and react similarly in both API’s but may have different parameter lists.

The IOP software contains three modules (excluding the IOP application), the IOP API library,
the Board Support Package (BSP) and the Back-End Monitor. The IOP API is designed
specifically for each PCI IC or for a combination of PCI ICs on one engineering board. The IOP
API can be customized to run on any engineering board by modifying the Board Support
Package. IOP debugging can be performed by PLXMon98 by including the Back-End Monitor
into the IOP application.

The PCI software can be separated into two different packages, the Serial Communication
package and the PCI Bus Communication package (see Chapter 3.5). The Serial Communication
package accesses the information from the board using messages sent through the serial port of

PLXMon98
(With Host OS Software)

IOP Applications

Serial Port and PCI Bus

IOP API

(Specific for each
solution)

Back-End MonitorBSP Library

HOST

IOP

IOP Image File (PLXRom.bin or App.bin)

Figure 3-1 The PCI SDK Software Architecture

PCI SDK User’s Manual  PLX Technology, Inc., 1998 3-3

the board. This communication method requires having the Back-End Monitor included into the
IOP application running on the desired engineering board.

The PCI Communication package consists of two modules, being the PCI API Dynamic Link
Library (DLL) and the Windows Device Driver. PCI applications make calls to the PCI API DLL
where they are translated into the appropriate device driver calls. The device driver performs the
requested action and provides a response, where appropriate, to the PCI API DLL. The status of
the API call is passed back to the calling application.

3.3 Software Architecture
The PCI SDK software architecture is shown in Figure 3-1. The SDK software is divided into
five major components:

• PLXMon98: this module includes the Host PCI API and device driver for PCI Bus
communications, and the PLXMon98 Communications module for serial communications to
the Back-End Monitor;

• IOP API Library: this library contains the code that performs the API functions and accesses
the PCI IC;

• BSP Library: this library contains all board specific code, including the IOP bus memory
map, the board and microprocessor initialization routines and the interrupt service routine for
the PCI IC;

• Back-End Monitor: this module provides a monitor for debugging IOP applications which
supports PLXMon98 through the serial port; and,

• IOP Applications: this module contains the main application for the engineering board and
the IOP.

3.4 IOP Software Architecture
The IOP software architecture is separated into four modules, being:

• The IOP API library;

• The Board Support Package (BSP) library;

• The Back-End Monitor; and,

• The IOP application software.

The PCI SDK software architecture is shown in Figure 3-2.

3-4  PLX Technology, Inc., 1998 PCI SDK User’s Manual

PCI
IC

µP

IOP Image File (PLXRom.bin or App.bin)

User Applications

µP
Initialization

Module

Board
Initialization

Module

BSP Library

Back-End Monitor

DMA Resource
Manager

IOP API

PLXMon98

3.4.1 Board Support Package (BSP) Library
The Board Support Package library contains all the information needed by the IOP API that is
specific to the board. This library provides the necessary entry points needed to port the PCI SDK
to new platforms. The BSP is composed of two main modules, being:

• The Microprocessor Initialization module; and,

• The Board Initialization module.

Note: Prior to porting the PCI SDK to new boards an understanding of the BSP and its
functionality should be acquired.

Figure 3-2 The IOP Software Architecture

PCI SDK User’s Manual  PLX Technology, Inc., 1998 3-5

3.4.1.1 Microprocessor Initialization Module

The microprocessor initialization module contains all the necessary information about the
microprocessor required by the IOP API. Some of the information contained within this module
are the microprocessor boot code, the main default interrupt service routine (ISR) for the PCI
SDK and the default PCI IC interrupt trigger support functions.

3.4.1.1.1 Microprocessor Boot Code

When the board is powered up, the microprocessor starts executing the boot code. This code
initializes the microprocessor, configures the memory controller, copies data and code (if
necessary for performance reasons) from the boot FLASH to RAM memory and brings the
microprocessor to a ready state. The sequence of events is as follows:

1. The board is powered on.

2. The microprocessor begins at the reset address where it immediately jumps to the boot code.

3. The boot code configures the memory controller.

4. The data section and the code section (if necessary) of the boot application is copied to RAM
memory.

5. The exception vector table is initialized.

6. Any other microprocessor specific initialization is done, such as configuring the endian
registers, configuring the clock (if internal clocks are available), setting up any peripheral
units internal to the microprocessor.

7. Once the microprocessor is initialized and is ready to run, the boot code jumps to the board
initialization routine (see section 3.4.1.2).

Note: The MiniRom application included in the PCI SDK provides a good starting point for users
who have untested engineering boards. The application is limited in features and functionality
and should be the basis for porting the PCI SDK to new engineering boards (see section 3.4.5.2
for more information).

3.4.1.1.2 Interrupt Service Routine

The interrupt service routine (ISR) provided in the BSP controls all interrupts generated by any
PCI IC. The ISR is divided into one main routine with one function to service each interrupt
trigger on the IC. When an interrupt is generated, the main ISR determines the interrupt trigger
and calls the appropriate interrupt trigger service routine to service the interrupt.

This method allows modification of individual interrupt trigger service routines or modification
of the main interrupt service routine to customize the handling of interrupts for each application.

3.4.1.2 Board Initialization Module

The Board Initialization module contains information on the features of the board and the board
initialization routine. Some of the information it provides include the memory map of the IOP
bus, specifically where the following devices are located in memory:

• SRAM address and range;

• DRAM address and range;

3-6  PLX Technology, Inc., 1998 PCI SDK User’s Manual

• SDRAM address and range;

• PCI IC Register Base address;

• UART ports (Control/Status, Data);

• Flash Memory address and range;

• Direct Master Memory Remap address and range;

• Direct Master I/O Remap address and range; and,

• Boot address.

The PCI SDK needs to know the endianness for each memory region. If the IOP bus is less than
32 bits wide, the PCI SDK needs to know how the IOP bus is connected to the PCI IC
(specifically which bytes and byte lanes are used by the IOP bus).

The Back-End Monitor needs to know about the UART. The necessary UART ISRs and serial
communication functions are included in this module.

3.4.1.2.1 Board Initialization Routine

The board initialization routine contains the necessary API functions to configure and initialize
the PCI IC, the IOP API library, the Back-End Monitor and any other device on the engineering
board. This function is called from the microprocessor initialization routine (the microprocessor
boot code, see section 3.4.1.1.1) at start up. The board initialization sequence is as follows:

1. Initialize the PCI IC. A list of IOP API initialization functions is provided with each of its
parameters set to the PCI IC’s default values (set by calling the PlxInitApi() function).

2. Change the default values for the parameters as necessary before calling the respective IOP
API initialization function.

3. Set the Local Init Status bit when the PCI IC is initialized (this asserts the NB# pin low). This
bit allows the PCI BIOS to access the PCI IC. Once the PCI BIOS has assigned the
appropriate values to the PCI IC’s configuration registers, the PCI IC is completely initialized
and is ready to run.

4. Initialize the different debugging levels of the Back-End Monitor with the necessary board
specific information.

5. Initialize any other peripheral on the board.

6. Connect the ISRs to the appropriate interrupt lines of the microprocessor.

7. Initialize the application, if necessary, once all devices on the engineering board have been
initialized and are operational.

8. Jump to the main application routine.

3.4.1.3 The Main() And AppMain() Functions

The BSP Library contains the main() function for any application using the PCI SDK. This
function controls the operation of the IOP API. The function starts by initializing the
microprocessor and its peripherals, the PCI IC (when there is no EEPROM connected to it), the
UART IC, and the Back-End Monitor (when in use). The function proceeds to test the available
memory on board and begins the main application section.

PCI SDK User’s Manual  PLX Technology, Inc., 1998 3-7

The main application section consists of a loop that allows execution of several tasks on a round-
robin priority scheme. Each task is allowed as much time as it needs to run (non-preemptive and
no priority levels). This loop runs without interruption in a cyclic fashion and therefore all the
tasks must eventually return (tasks must be reentrant).

The Back-End Monitor can be used to filter the stream of data, supplied by the UART Services
functions, to help in debugging new applications. The UART Services functions receive a stream
of data from the RS-232 port on the engineering board and buffer it. This stream can be received
by any task requiring data from the serial port.

The Back-End Monitor, BemL1(), does simple debugging. This monitor task is used with
PLXMon98’s serial debugger support turned on. The BemL1() monitor task only accepts three
commands, read and write to an IOP memory location, and a board reset command.

With the stream of data received from the serial port (see Figure 3-3), the BemL1() task receives
and parses through it, searching for commands. When BemL1() finds a command that it
recognizes, the monitor removes the command from the stream, reacts accordingly to the
command and returns a response when appropriate. Once the stream of data has been completely
parsed and all BemL1() commands have been removed from it the filtered stream is made
available to the next task wishing data from the serial port. The filtered data stream is received by
the application, AppMain().

The filtering of the data stream can be bypassed by a task at any point in time by calling the
UART Services functions. An example of this feature is when a task starts an application
download to memory. The application binary file being downloaded may contain data that looks
similar to a command for the Bem1() task. If the Bem1() task is retrieving the data from the
UART Services functions then some information about the application will be lost. Therefore,
while the task downloads an application, it calls directly PlxGetChars() to retrieve the unfiltered
data from the UART IC until the application is completely downloaded. Once the download is
complete, the task returns control to the BSP Module’s main loop to allow other tasks to run.

This feature should be used with caution however because it directly affects the operation of the
other tasks dependant on the data stream coming from the serial port. When an application
requests unfiltered data the task calls PlxGetChars() function and this function returns an
unfiltered data stream. This task should not return to the main loop (within the BSP Module) to
continue processing of debug commands until all the necessary unfiltered data has been received
by the application. By doing this the Back-End Monitor task will not scan through the data and
remove command data from the stream that was not intended to be a command for the debug
monitors.

BemL1() AppMain()

U
A

R
T

 S
er

vi
ce

s

Figure 3-3 The Data Stream Flow Diagram.

3-8  PLX Technology, Inc., 1998 PCI SDK User’s Manual

3.4.2 IOP API Library
The IOP API library contains the code for all the documented API functions. This code is
standard for all IOP applications and is independent of the board configuration. The code directly
calls the PCI IC (no intermediary functions).

Note: Each PCI IC has its own IOP API library specifically designed to complement its features.
To implement more than one PCI IC on one board, a new library must be created. This library
would combine the features of each IC and have new functions to accent the features achieved by
grouping the PCI ICs.

3.4.2.1 DMA Resource Manager

The IOP API supports three different DMA transfer types and manages the DMA resources. The
supported DMA transfer types are:

• Scatter-Gather DMA: Transfers data using Scatter-Gather Lists and can transfer several
blocks of data at a time (formally called chaining DMA);

• Block DMA: Transfers data one block at a time; and,

• Shuttle DMA: a circular Scatter-Gather DMA transfer.

The Scatter-Gather DMA transfer is most commonly used of all DMA transfers. This method
supports DMA transfers where either the source or destination memory locations are not
contiguous (this is common with most operating system memory allocation) the best. By
grouping multiple DMA transfer requests, the IOP application is interrupted less often providing
improved performance.

The Block DMA transfer is used primarily for single DMA transfers and where the number of
transfer requests is small.

The Shuttle DMA Transfer is best used when the data transfers are repetitive (where the source
and destination locations remain relatively constant but the transfer direction may switch or the
transfer size is different).

PCI SDK User’s Manual  PLX Technology, Inc., 1998 3-9

Scatter-Gather DMA Transfers

In Scatter-Gather DMA transfers (see Figure 3-4), a SGL DMA channel is opened (steps 1-2).
With a successful return (step 3), a Scatter-Gather List (SGL) is acquired from the DMA resource
manager (steps 4-6) by calling PlxDmaSglBuild() and a handle to a list of DMA transfer element
addresses is returned (step 7). The DMA transfer elements are programmed with the appropriate
source and destination data addresses, the transfer size and the DMA transfer descriptors by
calling PlxDmaSglFill() (step 8). The SGL is passed to the PlxDmaSglTransfer() function (step
9). If there is not a SGL currently executing on the DMA channel, this function programs the list
address into the DMA descriptor register for the opened DMA channel and also into the Current
SGL Address buffer (one buffer for each DMA channel), and the DMA transfer is started (step
10). If there is a SGL executing then this function places the SGL address into the SGL Waiting
Queue (one queue for each DMA channel) (step 11). When the SGL currently executing is
completed the ISR reads the Current SGL Address buffer (step 12) and frees the DMA transfer
elements for this SGL to the DMA Transfer Element Free Queue (one queue for each DMA
channel) (step 13). The ISR then removes all the current SGL entries in the SGL Waiting Queue
and joins them together (step 14). The new SGL address is placed into the Current SGL Address
buffer and it is placed and started on the DMA Channel (step 15).

SGL
Waiting
Queue

Current SGL
Address

APP

P
lxD

m
aS

glT
ransfer()

PlxDmaSglBuild()

DMA
Channel 0

DMA
Channel 1

1.

2. 2.

3. 4.

5.

7.

11.

DMA
ISR

SGL
Waiting
Queue

15.

14.

Current SGL
Address

10.

13.

12.

Scatter-Gather List

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

Free
Queue

DMA
Transfer
Element

Free
Queue

6.

PlxDmaSglFill()

8.

8.

9.

PlxDmaSglChannelOpen()

Figure 3-4 Scatter-Gather DMA Flow Diagram

3-10  PLX Technology, Inc., 1998 PCI SDK User’s Manual

Block DMA Transfers

In Block DMA transfers (see Figure 3-5), a Block DMA channel is opened (steps 1-2). With a
successful return (step 3), the PlxDmaBlockTransfer() function is called with the appropriate
source and destination data addresses, the transfer size and the DMA transfer descriptor (step 4).
This function checks the status of the DMA channel to determine if there is a transfer in progress
by checking the DMA Done flag. If there is a transfer in progress then the function returns the “In
Progress” error code. Otherwise the DMA data is programmed into the DMA registers for the
DMA channel and the transfer is started. When the transfer is completed, the ISR will set the
DMA Done flag (step 5). If the PlxDmaBlockTransfer() function is set to not return immediately
then this function polls the DMA Done flag (step 6) and when the flag is set the function will
return. The PlxDmaBlockTransferRestart() function is used to quickly restart a Block DMA
transfer that was pre-programmed with the PlxDmaBlockTransfer() function (step 7). The only
parameter needed is the transfer size. All other DMA information is reused from the previous
transfer. This function also supplies an immediate return feature where, when the parameter is set
to FALSE, the function polls the DMA Done flag (step 8) until it is set then returns.

DMA Done

APP

PlxDmaBlockChannelOpen() PlxDmaBlockTransfer() PlxDmaBlockFastTransfer()

DMA
Channel 0

DMA
Channel 1

1.

2.

2.

3.

4.

DMA
ISR

5.

DMA Done

6.

7.

8.

Figure 3-5 Block DMA Transfer Flow Diagram

PCI SDK User’s Manual  PLX Technology, Inc., 1998 3-11

Shuttle DMA Transfers

In Shuttle DMA transfers (see Figure 3-6), a Shuttle DMA Engine is started by opening a Shuttle
DMA channel (steps 1-2). A number of DMA transfer elements are acquired from the DMA
resource manager (step 3). The DMA transfer elements are linked to create a Shuttle List (step 4).
This Shuttle List is placed on the opened DMA channel and is started thereby starting the Shuttle
DMA Engine. A list of the DMA transfer element addresses is returned to the application (step 5).
From this point, each DMA transfer element of the Shuttle List can be treated as a unique DMA
channel. To start a transfer, the PlxDmaShuttleTransfer() function is called with the appropriate
source and destination data addresses, the transfer size and the DMA transfer descriptors (step 6).
This function checks the status of the Shuttle DMA channel to determine if there is a transfer in
progress by checking the transfer size for the given DMA transfer element. If there is a transfer in
progress then the function returns the “In Progress” error code. Otherwise the DMA data is
programmed into the DMA transfer element provided by the application and the transfer is
started. When the transfer is completed the PCI IC (through the PLX DMA Descriptor Write
Back Feature) sets the transfer size for the completed DMA transfer element to zero. If the

DMA
Transfer
Element

Free
Queue

APP

PlxDmaShuttleChannelOpen() PlxDmaShuttleFastTransfer()PlxDmaShuttleTransfer()

DMA
Channel 0

DMA
Channel 1

1.

2.2.

5.

7.

DMA
Transfer
Element

Free
Queue

Shuttle List

3.

4. 6.

6.

7.

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

Figure 3-6 The Shuttle DMA Flow Diagram

3-12  PLX Technology, Inc., 1998 PCI SDK User’s Manual

PlxDmaShuttleTransfer() function is set for blocking then this function will poll the DMA
transfer element’s transfer size and when the size is set to zero the function will return. The
PlxDmaShuttleTransferRestart() function is used to quickly restart a Block DMA transfer that
was pre-programmed with the PlxDmaShuttleTransfer() function (step 7). The only parameter
needed is the transfer size. All other DMA information is reused from the previous transfer. This
function also supplies a blocking feature where it polls the DMA transfer element’s transfer size
until it is set to zero.

3.4.3 Back-End Monitor
The Back-End Monitor (BEM) provides features that help in the debugging of IOP applications.
The monitor supports PLXMon98 serial command passing to the IOP application from the serial
port of the engineering board. This monitor only supports three commands, reading and writing to
IOP memory locations (these commands support different data sizes) and reset the IOP software.
These commands provide a generic interface for any application. PLXMon98 uses this monitor to
retrieve data from the IOP. In normal operation, this monitor accesses the UART Services
functions to get a stream of data that has been received by the UART IC. The monitor extracts
commands (that the monitor recognizes) from the data stream, performs the necessary action and
provides a response when appropriate. This monitor provides the filtered data stream to the next
task requiring serial data in the daisy chain.

There are times when a task may not want other tasks to extract data (or commands) from the data
stream. This can be done by accessing the UART Support functions directly. A task wishing to
receive raw data, bypasses the previous task in the daisy chain and calls PlxGetChars() to retrieve
an unfiltered data stream. If a task chooses to access the unfiltered data stream it should take all
the data necessary to perform the action and, only once the action is complete, return control back
to the main routine (contained within the BSP).

The next application in the daisy chain, if required, retrieves the filtered data stream from the
BEM monitor. The application can do whatever it needs to do with the data. The application can
choose to provide a filtered stream of data from what is left over from its parsing of the data
stream so that the data stream can be passed down to the next task in the chain.

3.4.3.1 Back-End Monitor Serial Protocol

The Back-End Monitor (BEM) can recognize three different commands coming from PlxMon98:
reset the IOP microprocessor, read a memory location and write to a memory location. They all
use a serial protocol that is discussed in the following sections.

Some commands use parameters. Parameters listed are normally necessary for the command
except when a parameter is within square braces (‘[‘ and ‘]’). These parameters are optional to the
command.

Parameters listed with the vertical bar (‘|’) indicate that “one or the other” parameter must be
provided, but not both.

Carriage returns are noted as <ENTER>.

Note that all commands should be lowercase. The Back-End Monitor does not recognize
uppercase commands except in hexadecimal value parameters.

PCI SDK User’s Manual  PLX Technology, Inc., 1998 3-13

3.4.3.1.1 Reset IOP Microprocessor Command

Syntax:

~plx!

Response from the BEM:

No response

3.4.3.1.2 IOP Memory Read Command

Syntax:

~plxr[b|w|l|d] address<ENTER>

Parameter Description
address Address of the memory location to read. The address must be a hexadecimal number

such as f0000.

Response from the BEM:

~plxd value<ENTER>

Parameter Description
value Value read at the selected memory location. The format is a hexadecimal number

preceded by “0x”, such as “0x7fff”.

Description:

This command reads an 8 bit byte (b), a 16 bit word (w), a 32 bit double word (d) or a 64 bits
long double word (l) at the specified address and returns the value read.

3.4.3.1.3 IOP Memory Write Command

Syntax:

~plxw[b|w|d|l] address value<ENTER>

Parameter Description
address Address of the memory location to write to. The format must be a hexadecimal number

such as “f0000”.
value Value to write at the memory location. The format of the value must be a hexadecimal

number such as “905410b5”.

Response from the BEM:

No response

Description:

This command writes an 8 bit byte (b), a 16 bit word (w), a 32 bit double word (d) or a 64 bit
long double word (l) at the specified address.

3-14  PLX Technology, Inc., 1998 PCI SDK User’s Manual

3.4.4 Methods For Debugging IOP Applications
The PCI SDK supports two methods for debugging IOP applications, being:

• Win32 Debugging: Using PLXMon98. This method assumes that there is no IOP application
running on the engineering board. With newer engineering boards, this method provides the
preliminary debugging and validation of new engineering boards.

• PLXMon98 with the BEM: With the BEM linked into the IOP application, PLXMon98 can
communicate to the engineering board through the PC’s COM port to the serial port on the
engineering board. PLXMon98 can be setup to communicate to the engineering board or IOP
application using either the serial port or the PCI bus.

3.4.4.1 Operation Of The Back-End Monitor In A System

This section describes how the BEM can be used on an engineering board and how it affects
system performance.

The Back-End Monitor combinations are as follows:

1. AppMain() only: the IOP application is running without any BEM tasks; and,

2. BemL1() and AppMain(): the IOP application is running with BEM debugger.

Method 1: This method is used once the application has been fully tested and is working
properly. There is no monitor tasks running so this method provides the best performance for the
application. PLXMon98 can be used to debug the application if the engineering board is inserted
into a free slot in the host system's PCI Bus and PLXMon98's PCI Communication is turned on.

Method 2: PLXMon98 is used to debug the application through the serial port. IOP application
performance will be affected using this method because the BEM monitor is processing
commands and copy data to and from different memory buffers. There is a possibility of lost data
destined for the IOP application. If IOP application data matches BEM commands, the monitor
will remove them from the serial data stream. When the IOP application requires data that could
be captured by the monitor, the IOP application should access the UART Services module
directly, bypassing the monitor (done by calling PlxGetChars()).

3.4.5 IOP Applications
All IOP applications are connected to the IOP API, the BSP and the Back-End Monitor to create
the binary image. This image is then programmed into FLASH memory, or downloaded to RAM
memory and executed.

All IOP applications have an AppMain() function which is the main application function. The
main() function is kept within the BSP module. This limitation is imposed on all applications
because of how the Back-End Monitor (BEM) is implemented. The BEM needs to run
periodically to operate properly. Since there can only be one execution thread running at one
time, a cyclic thread is created using the main() function. This thread loops forever calling the
BEM and then the main application function sequentially (cooperative multitasking or non-
preemptive multitasking). The AppMain() function should be cyclic in nature and should return
control periodically back to the main() function.

PCI SDK User’s Manual  PLX Technology, Inc., 1998 3-15

3.4.5.1 IOP Memory And IOP Applications

IOP applications running in ROM or in RAM use memory in different ways. When an IOP
application is running in ROM the application contains all the modules it needs, such as the Back-
End Monitor. A ROM application contains:

• The main IOP application module;

• The IOP API;

• The BSP module; and,

• The Back-End Monitor (debug version of ROM application).

Figure 3-7 shows how the ROM application uses memory.

IOP RAM applications are built differently from IOP ROM applications. The IOP RAM
applications look very similar to IOP ROM applications from a source code point of view but
they differ when the IOP RAM application is linked to the libraries. IOP RAM type applications
borrow the Back-End Monitor from the resident IOP ROM application. The size of IOP RAM
applications are normally smaller because a lot of the code used by the IOP RAM application
resides in the IOP ROM application. Therefore the IOP ROM application on the engineering
board must have the modules needed for the IOP RAM application and the IOP ROM application
must provide the links to those modules. The BSP provided with the PCI SDK contains the links
for IOP RAM based applications.

All Available
Memory

(FLASH, SRAM,
DRAM, ...)

RAM BSP

IOP API

RAM Application

RAM Application Data Segment
(Stack, Heap, BSS)

RAM Application

ROM BSP

IOP API

Back-End Monitor Level 1

ROM Application

ROM Application Data Segment
(Stack, Heap, BSS)

ROM Application

Figure 3-7 IOP Memory Diagram

3-16  PLX Technology, Inc., 1998 PCI SDK User’s Manual

3.4.5.2 MiniRom Application

MiniRom is included in the PCI SDK to provide a good starting point for users who have an
untested engineering board and for this reason, it is limited in features and functionality. It
provides bare minimum boot up code for most engineering boards. This application configures
the microprocessor, the PCI IC, and proceeds to blink the LED that is connected to one of the PCI
IC’s USER pins. To use the MiniRom application, program the binary image into the FLASH
using a FLASH chip programmer. Once the FLASH is programmed reboot the engineering board,
and if the LED blinks then the MiniRom application configured the engineering board properly.
If this test is successful, the FLASH can be reprogrammed with the PCI SDK PLXRom image
(supplied with the PCI SDK).

Note: This IOP ROM application is provided as a bare bones IOP ROM application useful for
confirming the functionality of new engineering boards. It does not contain any PCI SDK features
that are described in any PCI SDK manual.

3.4.6 Porting The PCI SDK To New Platforms
All information needed to port the PCI SDK to new platforms is contained within the BSP
module. Some of the information contained within the BSP include:

• The memory map of the IOP bus;

• The microprocessor boot code;

• The PCI IC interrupt service routine;

• The UART interrupt service routine;

• The board initialization routine; and,

• The board and/or application specific controls for the IOP API and the Back-End Monitor.

The IOP API and the Back-End Monitor need to know where certain devices are located on the
IOP bus, such as the PCI IC, DRAM, SRAM and the UART. These values need to be updated
when creating an application for new boards.

When the microprocessor is changed on a board, the microprocessor boot code must be modified
to support the new microprocessor. This boot code is provided within the BSP module.

Most interrupt service routines are customized to the application. To customize the PCI ISR for
an application, either modify the interrupt trigger service routines or modify the main ISR.

The Back-End Monitor relies on the UART ISR to send and receive data from the serial port.
Modify the UART ISR to support the UART on the board.

To initialize the PCI IC modify the parameters for the IOP API initialization functions contained
within the board initialization routine.

Within the BSP, there are some control parameters for the IOP API and the Back-End Monitor
that can be modified to improve performance of the PCI SDK. These parameters are platform and
application dependent and can affect the operation of the application differently on different
systems.

PCI SDK User’s Manual  PLX Technology, Inc., 1998 3-17

3.4.7 Support For Multiple PCI ICs On One Board
Each PCI IC has its own IOP API library. When two or more ICs are present on one engineering
board, a new IOP API library must be created. This library will contain the normal API functions
(defined in this document) and some new or modified functions that represent new features made
available by combining the features of the multiple ICs. Some multiple IC libraries will be
available (for the more popular implementations), however it will be up to the designer to create
his/her own library for multi-IC combinations not currently supported.

3.5 Host Win32 Software Architecture
This section describes the Win32 software provided in the PCI SDK.

3.5.1 PLXMon98
PLXMon98 can communicate with PCI devices via two different paths (see Figure 3-8):

• Direct Serial Communications;

• Host API/Device Driver Interface.

Serial
Communication

PCI Bus
Communication

PLX Services Module

Win32 Driver Module

WDM (Win32 Driver)

PCI API

PCI
IC

µP

PLXMon98

Figure 3-8 The Host Software Architecture

3-18  PLX Technology, Inc., 1998 PCI SDK User’s Manual

3.5.1.1 Serial Communication

This method of communicating with a PLX engineering board is mainly used for debugging
purposes. While a custom host Win32 device driver is being created, it is helpful to be able to
read and write values directly to and from the engineering board.

If PLXMon98 is set to serial mode, it calls functions that reside in the PLXMon98
Communications Module. It is the responsibility of the PLXMon98 Communications Module
code to convert the valid PLXMon98 commands into a serial data stream. The protocol used in
passing the data is based on an ASCII translation scheme (for more information on the serial
protocol, see section 3.4.3.1). This stream of data is sent to the IOP application. The Win32
operating system provides a device driver to control the serial port. The Win32 SDK provides
services to access this device driver.

When the data arrives, the engineering board’s microprocessor must have a means of handling the
incoming data. The Back-End Monitor contains functions that are hooked via an interrupt, so
when data does arrive, they are called (when the UART generates an interrupt) to retrieve the data
from the UART. The Back-End Monitor decodes the command and data, and acts on the
command and returns a reply. If the data received by the Back-End Monitor is not a command the
data is queued for the IOP application.

3.5.1.2 PCI API/Device Driver Communication

PCI Bus Communication is performed using the PCI API DLL and the Win32 device driver
supplied with the PCI SDK.

3.5.1.2.1 PCI API Library

The PCI API consists of a library of functions, from which multiple PCI engineering boards can
be accessed and used. The PCI API provides API function groups, which manage the features of
each PCI IC. Groups such as DMA access, direct data transfers, and interrupt handling contain
functions that can be universal to any PCI engineering board.

The PLXMon98 application makes extensive use of the PCI API functions. For the most part, the
PCI API’s purpose is to translate application functions calls and send them to the appropriate
device driver. The only functionality present in the PCI API is to manage the various device
drivers. This includes opening, closing and searching for devices that are present on the PCI bus.

3.5.1.2.2 Win32 Device Driver

The device driver’s role in the system is to store device data within the kernel and to execute the
commands given to it from the PCI API. The device driver can be used as a framework to create
custom software for managing PCI devices as well.

The Win32 Driver Model (WDM) is a new platform for developing device drivers on the
Windows 98/NT 5.0 operating systems. It is very similar in device driver architecture to that of
Windows NT 4.0 and allows the creation of one device driver that can be used for both operating
systems without any porting or modifications.

The architecture of the device driver is designed to reduce the time needed to create a new device
driver for customer boards that contain a PLX device. By modifying the source code provided for
the device driver, a new custom device driver can be created in minimal time.

PCI SDK User’s Manual  PLX Technology, Inc., 1998 3-19

3.5.2 Win32 Applications And The PCI SDK
All Win32 applications connect to and use the PCI API DLL. The Win32 application can
communicate to any PCI device with a PLX IC by using the PCI API DLL. Each Win32
application can be created like any other Windows application. For more information on creating
a Win32 application using the PCI API DLL, see the PCI SDK Programmer’s Manual.

3.5.3 Win32 Device Driver Overview
This section describes the overall layout and concept of a PLX device driver. To accommodate
the need for one common PCI API as well as to reduce development time for device driver design
for new engineering boards, the following device driver model was created.

One device driver handles each type of PLX IC, as seen in Figure 3-9. Each device driver
communicates with the PCI API on a one-to-one basis; there is no device driver inter-
communication. If a new device driver is developed and added to the system, it can be integrated
simply by installing it into the Win32 operating system. If more than one PLX IC is present on an
engineering board, the device driver can only see the one that is directly connected to the primary
PCI bus. All PCI API functions will access this PLX IC only.

3.5.3.1 PCI IC Device Driver Module

This module provides the management of the PCI engineering boards in Windows NT/98/95.
This management includes storing device specific information, processing PCI API and system
messages, handling interrupts, and allocating resources for each engineering board. Some non-
PLX specific functionality is handled in this module, such as reading from and writing to PCI
configuration registers.

PCI API

9080 Services
Module

9080 Driver Module

PCI 9080 Driver

9054 Services
Module

9054 Driver Module

PCI 9054 Driver

Services Module

 Driver Module

Future PLX Driver

PCI
9080

PCI
ICµP

PCI
9054

Figure 3-9 The PLX Device Driver Layout

3-20  PLX Technology, Inc., 1998 PCI SDK User’s Manual

3.5.3.2 PCI IC Services Module

This module has access to the entire register set of the PCI IC, and thus is in charge of providing
the functionality for the device driver.

3.5.4 Creating A New Driver
This section briefly covers how a new device driver can be created using the existing device
driver as a template. When a new PCI IC Services Module, which provides the real functionality
for the device driver, is updated to support a new PCI IC, the old PCI IC Services Module is
replaced. The new PCI IC Services Module would reflect the new register set of the PCI IC and
would support the existing PCI API by accessing the appropriate registers on the new PCI IC
based on the PCI API function requested.

The PCI IC Device Driver Module would need little modification to create a new PCI device
driver. If new API functions are created, the handling of those functions would force the
modification this module to support the new functions.

3.5.5 Device Driver Features
The Win32 device driver supports the sharing of interrupts between many PLX engineering
boards. The device driver uses one interrupt line on the PCI bus that all PLX engineering boards
share to interrupt the host PC. The interrupt service routine determines which board caused the
interrupt and services that board’s interrupt.

The device driver supports event logging into the system log file. When the device driver
determines an error in operation, it updates the system event log file with the appropriate
information concerning the cause of the error. This log file can be used to debug the device driver
when the device driver is started at boot time. This file contains the reasons why the device driver
was not loaded and started.

PCI SDK User’s Manual  PLX Technology, Inc., 1998 A-1

Appendix A. Serial EEPROM Settings
Before using the PCI SDK software, the configuration EEPROM connected to the PLX IC must
be programmed on the PLX engineering board with specific values. Skipping this step can cause
unpredictable behavior of the PCI SDK.

To upgrade the configuration EEPROM on a PLX engineering board follow the steps below:

• User’s of the PCI 9054RDK-860 need to reprogram the configuration EEPROM with the
settings shown in Figure A-1.

Figure A-1 Configuration EEPROM Settings for the PCI 9054RDK-860

A-2  PLX Technology, Inc., 1998 PCI SDK User’s Manual

• User’s of the PCI 9080RDK-401B need to reprogram the configuration EEPROM with the
settings shown in Figure A-2.

Figure A-2 Configuration EEPROM Settings for the PCI 9080RDK-401B

	Introduction
	About This Manual
	PCI SDK Features
	Where To Go From Here
	Other PCI SDK Manuals
	Conventions
	Windows Programming Conventions

	Terminology
	Development Tools Needed
	Customer Support

	Getting Started
	PCI SDK Installation
	Unpacking
	Minimum System Requirements
	Development Requirements
	Software Installation
	Windows NT Installation Procedures
	Windows NT Device Driver installation

	Windows98 Installation Procedures
	Windows98 Software Installation
	Windows98 Device Driver installation

	Removing All Software
	PCI SDK v2.1 Compatibility
	Troubleshooting
	Increasing Available System Pages In WinNT
	Driver Interrupt Sharing

	Understanding The PCI SDK
	IOP Software
	Introduction
	MiniRom Application

	Windows Based Software
	Introduction
	
	Starting And Stopping
	Event Logging
	Registry Configuration
	Driver Configuration
	Starting And Stopping
	Event Logging
	Registry Configuration
	Known problems with the Windows98 device drivers.

	Using The PCI SDK With A New Board
	Using PCI SDK API Libraries With Other Operating Systems And Compilers
	RTOS Support
	Source Code Availability

	PCI SDK Software Architecture Overview
	Assumptions
	PCI SDK Assumptions
	IOP API And IOP Software Assumptions
	PCI API and Win32 Software Assumptions

	Overview
	Software Architecture
	IOP Software Architecture
	Board Support Package (BSP) Library
	
	Microprocessor Boot Code
	Interrupt Service Routine
	Board Initialization Routine

	IOP API Library
	Back-End Monitor
	
	Reset IOP Microprocessor Command
	IOP Memory Read Command
	IOP Memory Write Command

	Methods For Debugging IOP Applications
	IOP Applications
	Porting The PCI SDK To New Platforms
	Support For Multiple PCI ICs On One Board

	Host Win32 Software Architecture
	PLXMon98
	
	PCI API Library
	Win32 Device Driver

	Win32 Applications And The PCI SDK

	Win32 Device Driver Overview
	Creating A New Driver
	Device Driver Features
	
	
	
	Serial EEPROM Settings

