PLX PCl SDK

Software Development Kit

Version 2.1

Revision 1

User’'s Manual

Copyright © 1998, PLX Technology, Inc.. All rights reserved.

This document contains proprietary and confidential information of PLX Technology Inc. (PLX). The contents of this document may
not be copied nor duplicated in any form, in whole or in part, without prior written consent from PLX.

PLX provides the information and data included in this document for your benefit, but it is not possible for us to erityrelgoser

test all of this information in all circumstances, particularly information relating to non-PLX manufactured products. P& Xanake
warranties or representations relating to the quality, content or adequacy of this information. Every effort has beemsnael¢hte e
accuracy of this manual, however, PLX assumes no responsibility for any errors or omissions in this document. PLX shall not be
liable for any errors or for incidental or consequential damages in connection with the furnishing, performance, or usanofathis

or the examples herein. PLX assumes no responsibility for any damage or loss resulting from the use of this manuals far any los
claims by third parties which may arise through the use of this SDK; for any loss or claims by third parties which maguatise th
the use of this SDK; and for any damage or loss caused by deletion of data as a result of malfunction or repair. Tha infthimatio
document is subject to change without notice.

Product and Company names are trademarks or registered trademarks of their respective owners.

Document number; PCISDK-MAN-211

Table of Contents

1. INTRODUCTION 1-1
1.1 ADOUL TRIS MANUAcoieiieiiiiiriesieeie ettt 1-1
1.2 PCl SDK FEAIUIES.......eoiiiteiieie ettt ettt st sttt bttt s b et sbesreeseesne e e seas 1-1
1.3 Where TO GO FrOM HEN.......ciieeiee ettt e nees 1-1
1.4 Other PCl SDK MaNUAIS.......ccceieieiriiriesiesiesieeeeeeee e se st saesaesaesessessessessessessessesessessenns 1-2
ST 0 01V 01T] 01U 1-2

151 Windows Programming CONVENLIONS.........ccccvvueevieniiieirecieeee e sie e see e sre e 1-2
OGN 1= 201] oo VTR 1-2
1.7 Development TOOISNEEUEDccueiriiiiriiieieieeeee s 1-2
1.8 CUSLOMES SUPPOITeitieieeieeiteeie ittt e e r e e e n e snesseesresneenesreennennenreas 1-3

2. GETTING STARTED 2-1

2.1 PCl SDK INStAIBHONccueiiiieieicieieieeese et sesresaeseeneeneens 2-1
2200 St R U T = o (o R 2-1
2.1.2 Minimum System REQUITEMENES.........ccoiiiiieieiieie ettt nre s 2-1
2.1.3 Development REQUITEIMENTS.cciiririerreieieeeiesie et 2-1
214 SOftWare INStAll@liONccueeeeeieeeeee e 2-2

2.1.4.1 Windows NT Installation ProCeAUIES...........ccccevireeieseeiese e 2-2
2.1.4.1.1 Windows NT Device Driver Installationccccevveeveneneneneieenenenens 2-2
2.1.4.2 Windows98 Installation ProCEAUIEScccveeerieeeseeie st ce e 2-2
2.1.4.2.1 Windows98 Software INStallation............ccoceverireneneieesesese s 2-2
2.1.4.2.2 Windows98 Device Driver Installation............cccoovveeerenceeceneseeneseeeeee 2-3
2.1.4.3 Uningtalling All Previous Versions Of The PCI SDK Software..........ccccecv.e.. 2-4
2.1.4.4 PCIl SDK v2.1 Compatibilitycccceviviririiieieieeeee e 2-4
2.1.4.5 TrOUDIESNOOUNG.ceeueeuerierieete ettt st 2-5
2.1.4.5.1 Driver Interrupt Sharing.......cccceeveeereiieie et 2-5

2.2 Understanding The PCl SDK ..o 2-6

221 1OP SOMftWAIE.....ecueieeieeeieieeee ettt seesesresse s besee e e e eneeseeneees 2-6
P22 5 A 1 [F o1 o o ISP 2-6
2.2.1.2 1OP APPIICAIONScveceieitecteecie ettt te sttt re e aesreeneenbenre s 2-6
2.2.1.2.1 MIiniROM APPIICALION ..ot 2-6
2.2.2 Windows Based HOSt SOftWEIE.........cccuvererieieinenesese e 2-7
Y2222 T 911 0o ot o) o 1SR 2-7
2.2.3.1 WIindoWS NT DeViCe DIVEIS.....cccciiiereseee sttt eas 2-8
2.2.3.1.1 Starting ANd SLOPPING.ceuerrerrerrereeeeeeesesiesresresre s ee e sseseenes 2-8
2.2.3.1.2 EVENT LOQUING. .. cteeeuirieriiniesiestesseseeeeesie e sse s sse s s e ssessessesnessessensensenesnes 2-8
2.2.3.1.3 Registry Configuration...........cccceeeeieiieeneseeie e see e seere s e sse s ene e 2-10

2.2.3.1.4 Driver Configuration........ccccceieeeesieseeitese et ese e 2-11

2.2.3.2 WIindowS98 DEVICE DIIVENS........ccccoiririiriinieieeieesesie e neens 2-12
2.2.3.2.1 Starting And SLOPPING......ccceiieiieeiiieeitise e re e 2-12
2.2.3.2.2 EVENL LOGUING.....eiieitieuieitesieeeisteeeeste st esee e saeesbesreessesseseessesreesesreesnensens 2-12
2.2.3.2.3 Registry CONfiQUIAioN........ccuerveieereriesiiriesiesreseee e 2-12
2.2.3.2.4 Known Problems With The Windows98 Device Drivers.c.ccceeenene 2-12

2.3 Using The PCI SDK With A NeW BOard.........cccoceirerininenenieeeeeesesesie s 2-13
2.4 Using PCI SDK API Libraries With Other Operating Systems And Compilers........... 2-13
2.5 RTOS SUPPOIT ...t siesteesie sttt re s sse e nesae e e resaeesnesneenesresneennenreas 2-14
PCI SDK SOFTWARE ARCHITECTURE OVERVIEW 3-1
3.1 ASSUMPLIONS ...tttk b bbbt b e b e b e b e s e s e e enenneenennea 31
311 PCl SDK ASSUMPLIONSouiitiiiiirienieteiee ettt sne s s e s 31
3.1.2 10OPAPI And IOP Software ASSUMPLIONScccoeivieieerieiieie e 31
3.1.3 PCl APl And Win32 Software ASSUMPLIONS.........ccoeieevevieeiese et eee e 31
A O Y= V1 Y RSP 32
3.3 SOftWAIrE ATCHITECTUNE.......cee ettt seeens 33
3.4 1OP SOftWare ArChItECIUIEcceiuirieiiirie ettt st nneas 3-3
3.4.1 Board Support Package (BSP)ccvceeieiiceece ettt 34

3.4.1.1 Microprocessor Initialization MOAUIE............ccceeviieeiicie e 35
34111 Microprocessor BOOt COUE.........ccoerierieireeiniisiesie et 35
34.1.1.2 Interrupt SErVICE ROULINE........ccoicii ettt 35

3.4.1.2 Board Initiaization MOUUIE...........ccceiririieriseriee e 35
3.4.1.2.1 Board Initiglization ROULINE.cccooeiiririinirierieieesese e 3-6

3.4.1.3 TheMain() And AppMain() FUNCLIONScooeiieieeerinenesese e 3-6

4.2 TOP AP LIBIary .ottt st nne s 3-8

3.4.2.1 DMA RESOUICE IMANAGETcccveeiteeiteesieesieeeeesteesteesaeesseeseeste e seesseesseesneesnseenseens 3-8

G0 G T = 7ot 1 =l oo 1Y/ o 1 o SRR 312

3.4.3.1 Back-End Monitor Serial ProtoColcccceoeeriiieieneiern e 3-12
34311 Reset IOP Microprocessor Command...........coeverereereeieeenesesrensesseneeens 3-13
3.4.3.1.2 10P Memory Read COMMAENG.........ccurerirmirienieieisieesie e 3-13
3.4.3.1.3 10OP Memory Write COMMand............cccecereeieseeieeriseesee s e sreseene e 3-13

3.4.4 Methods For Debugging [OP Applications.........cccceeceevieieeceseceese e e 314
3.4.4.1 Operation Of The Back-End Monitor In A System.........ccccceeeeveveceeceseeneenn, 314
345 TOP APPICAIONS.......cceeciiiteeieciesteeie ettt s be e e b e re e tesresaeenbesreeneesreens 314
3.4.5.1 IOP Memory And IOP APPlICAIONSccccuriririiriesiesieiee e 3-15
3.4.5.2 MIiNIROM APPIICELION.cuiieeeeeeieieriesee et 3-16
3.4.6 Porting The PCl SDK To New Platforms.........cccceveeeveieciese e e seene e 3-16
3.4.7 Support For Multiple PLX chipsOn One Boardcccccevvveeceveccecne e, 3-17

3.5 HOSt WIN32 SOftWare ATCIITECIUIE.ceeeieeeeee et et eee e e eeee e e e e e e e eeae e e s eeeeeeeaanees 3-17

351 PLXMON OB ...ttt ettt ettt st s be et et e be e aesbeenne it 317
3.5.1.1 Serial COMMUNICALIONccieeiieeieeieeceeseesee sttt reesreesreesareereereenreens 3-18
3.5.1.2 PCI API/Device Driver COmmUNICatioNccceveieeieseeeese e eee e seesseeneans 3-18

I N A = O I = I I o= YRR 3-18
3.5.1.2.2 WIN32 DEVICE DIIVEN ..ottt ettt reas 3-18

352 Win32 Applications And The PCl SDKccooiiiiiininceeeeeeeeseseee e 3-19

3.5.3 WinN32 DeViCe Driver OVEIVIEWcccccocueiieecieeiieesieeseeseesseeeneesteestessaeesassaneenees 3-19
3.5.3.1 PLX Chip Device Driver MOUUIE..........cccceieeieeiie ettt 3-19
3.5.3.2 PLX Chip ServiceS MOUUIE.c.cceeeeciececeeste ettt 3-20

354 Creating A NEW DIIVEN ..ottt st nne 3-20

355 DeViCEDINVE FEAUIEScoccie ettt sttt et e s aee e 3-20

APPENDIX A. RDK SOFTWARE QUICK REFERENCE A-1

List of Figures

Figure 2-1 Components Of the PCI SDK ..o 2-1
Figure 2-2 Windows Host software Layout for PClI SDK V2.1.........cccooiiveeiiiece e 2-7
Figure 2-3 The Devices Utility WINAOW.cccoiuieiiieeeece ettt s 2-8
Figure 2-4 The EVent VIewer WINAOW. ..ot 29
Figure 2-5 The Event Detail WINAOW..........cccuoiiiiiierieieeeeeest e 2-9
Figure 2-8 The PCl SDK Device Driver WIzard..........ccccovvieeieiiceese e 2-11
Figure 3-1 The PCl SDK Software ArChiteCIUNe...........cceierieieeerierise e 3-2
Figure 3-2 The IOP Software ArChiteCtUre...........c.ooiieieiriseereeee e 34
Figure 3-3 The Data Stream FIOW DIiagram.cccceeiiiieiiiecie et sreenesne s 37
Figure 3-4 Scatter-Gather DMA FIOW Diagram........ccccoveieieiieie et sane e 39
Figure 3-5 Block DMA Transfer FIOW Diagramccccceeiiineneneieseeeeseseseses e 3-10
Figure 3-6 The Shuttle DMA FIOW Diagram.........ccccociiieiiieciesie et 311
Figure 3-7 IOP MemOry DIiagram..........cccciieeiiiieieeie e sie e eeestesreessesreseestessaessesreensessesnnessenns 3-15
Figure 3-8 The HOst Software ArChItECIUNE...........ooviiiieieieeeee e 3-17
Figure 3-9 The PLX DeViCe DIIVEr LAYOUL.........ccoemeieieiiriesiesie et 3-19

A

-
TECHNOLOEY 7

PLX SOFTWARE LICENSE AGREEMENT
THIS PLX SOFTWARE DEVELOPMENT
KIT INCLUDES PLX SOFTWARE THAT IS
LICENSED TO YOU UNDER SPECIFIC
TERMS AND CONDITIONS. CAREFULLY
READ THE TERMS AND CONDITIONS
PRIOR TO USING THIS SOFTWARE
DEVELOPMENT KIT. OPENING THIS
PACKAGE OR INITIAL USE OF THIS
SOFTWARE DEVELOPMENT KIT
INDICATES YOUR ACCEPTANCE OF THE
TERMS AND CONDITIONS. IF YOU DO
NOT AGREE WITH THEM, YOU SHOULD
RETURN THE ENTIRE SOFTWARE
DEVELOPMENT KIT TO PLX.

LICENSE Copyright (c) 1998 PLX
Technology, Inc.

This PLX Software License agreement isalegal
agreement between you and PLX Technology,

Inc. for the PLX Software Development Kit

(SDK), also referred to as “PLX SDK” which is
provided on the enclosed PLX CD-ROM, or may
be recorded on other media included in this PLX
SDK. PLX Technology owns this PLX SDK.

The PLX SDK is protected by copyright laws
and international copyright treaties, as well as
other intellectual property laws and treaties, and
is licensed, not sold. If you are a rightful
possessor of the PLX SDK, PLX grants you a
license to use the PLX SDK as part of or in
conjunction with a PLX chip on per project

basis. PLX grants this permission provided that
the above copyright notice appears in all copies
and derivatives of the PLX SDK. Use of any
supplied runtime object modules or derivatives
from the included source code in any product
without a PLX Technology, Inc. chip is strictly
prohibited. You obtain no rights other than those
granted to you under this license. You may copy

License Agreement

the PLX SDK for backup or archival purposes.
You are not authorized to use, merge, copy,
display, adapt, modify, execute, distribute or
transfer, reverse assemble, reverse compile,
decode, or translate the PLX SDK except to the
extent permitted by law.

GENERAL

If you do not agree to the terms and conditions of
this PLX Software License Agreement, do not
install or use the PLX SDK and promptly return
the entire unused PLX SDK to PLX Technology,
Inc. You may terminate your license at any time.
PLX Technology may terminate your license if
you fail to comply with the terms and conditions
of this License Agreement. In either event, you
must destroy all your copies of this PLX SDK.
Any attempt to sub-license, rent, lease, assign or
to transfer the PLX SDK except as expressly
provided by this license, is hereby rendered null
and void.

WARRANTY

PLX Technology, Inc. provides this PLX SDK
AS IS, WITHOUT ANY WARRANTY,

EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION, ANY WARRANTY

OF MERCHANTIBILITY OR FITNESS FOR A
PARTICULAR PURPOSE. PLX makes no
guarantee or representations regarding the use of,
or the results based on the use of the software
and documentation in terms of correctness, or
otherwise; and that you rely on the software,
documentation, and results solely at your own
risk. In no event shall PLX be liable for any loss
of use, loss of business, loss of profits,
incidental, special or, consequential damages of
any kind. In no event shall PLX’s total liability
exceed the sum paid to PLX for the product
licensed hereunder.

AX_

—
y 4 —
TECHNOLOGY

PL X Copyright M essage Guidelines

The following copyright message must appear in all software products generated
and distributed by PLX customers:

“Copyright (c) 1998 PLX Technology, Inc.”
Requirements:
» Aria font,
* Font size 12 (minimum)
* Boldtype

* Must appear as shown above in the first section or the so called “Introduction
Section” of all manuals

Must also appear as shown above in the beginning of source code as a comment

1. Introduction

1.1 About This Manual

The PLX family of 32hit I/O accelerator chips connect the PCI busto Intel, Power PC processors

and other processors. They provide full Intelligent 1/0O (1,0) compatibility. The PCI Software
Development Kit (PCI SDK) provides a powerful /0O Platform Application Programmer’s
Interface (IOP API), and Windows software that are used to control PLX devices. We are
confident that through the use of the PCI SDK, your PLX designs will be brought to market faster
and more efficiently.

This manual provides information about the functionality of the PCI SDK. Customers have the
choice of using the PCI SDK with any PLX Reference Design Kit (RDK), or a generic device that
uses a PLX chip. Users should consult this manual when installing the PCI SDK and for general
information.

1.2 PCI SDK Features

The PCI SDK includes the following features:

« A feature based IOP API, with support for a variety of PLX PCI chips;

« Board Support Package (BSP) that allows customization of the PCI SDK;
e A Back-End Monitor application used for debugging;

« |OP DMA Resource Manager that supports three modes of operation;

« A PCI API and device drivers compatible with Windows NT/98; and,

 PLXMon 98, a Windows Graphical User Interface (GUI) application used to configure and
modify PLX PCI devices.

1.3 Where To Go From Here

The following is a brief summary of the chapters to help guide your reading of this manual:

Chapter 2, Getting Started, discusses how to start using the PCI SDK and some of the
applications provided.

Chapter 3, PCI SDK Software Architecture Overview, describes the layout of the PCI SDK
software.

Chapter 3, section 3.4, IOP Software Architecture, provides a brief explanation of the IOP
software, specifically the Board Support Package (BSP), the IOP API, and the Back-End
Monitors (BEM).

Chapter 3, section 3.5, Host Win32 Software Architecture, provides a brief explanation of the
Win32 software, specifically the PCI APl and the device driver.

PCI SDK User's Manual 0 PLX Technology, Inc., 1998 1-1

TTTTTTTTTT

1.4 Other PCI SDK Manuals

The PCI SDK includes the following manuals which users should consult for design details:

» PCI SDK Programmer’s Reference Manual: This manual covers all software design issues
regarding the device drivers, APl and user applications.

« PLXMon 98 User's Manual: This manual describes the usage of the PLXMon 98 application.

1.5 Conventions
Please note that when software samples are provided the following notations are used:
e italics are used to represent variables, function names, and program names;

e couri er is used to represent source code given as examples.

1.5.1 Windows Programming Conventions

Some designers may not be familiar with Windows programming conventions. Therefore, a few
conventions have been noted below:

e PU32datais analogous ttJ32 *data or unsigned long *data; and

* INandOUT are used to distinguish between parameters that are being passed into API
functions and parameters that are being returned by API functions.

1.6 Terminology

All references to Windows NT assume Windows NT 4.0 or higher and may be denoted as
WInNT.

All references to Windows98 may be denoted as Win98.

Win32 references are used throughout this manual to mean any application that is compatible
with the Windows 32-bit environment.

All references to IOP (I/O Platform) throughout this manual denote the RDK board and all
references to IOP software denote the software running on the RDK board.

All references to FLASH should be replaced with EPROM for users of the PCl 9080RDK-SH3
and PCl 9080RDK-RC32364 Reference Design Kits.

1.7 Development Tools Needed

Development tools needed for the PCI SDK that are not supplied include:

* Win32 Applications: Microsoft Visual C++ 5.0, with Microsoft Developer Studio;
* Win32 Applications: Microsoft Platform Software Development Kit (SDK);

e Windows NT 4.0 Drivers: Microsoft Windows NT 4.0 Device Driver Kit (DDK);

* Windows98 Drivers: Microsoft Windows98 Device Driver Kit (DDK);

e PCI 9080RDK-860, CompactPCl and PCI 9054RDK-860 IOP Software: Diab Data, Inc.
Compiler and Linker for the MPC860, version 4.0b;

1-2 0 PLX Technology, Inc., 1998 PCI SDK User's Manual

* PCI 9080RDK-401B IOP Software: IBM High C/C++ PowerPC Cross-Compiler, version
1.0 (7/31/96); and IBM 401 EVB Software Support Package, version 1.6.4 (4/1/97).

* PCI 9080RDK-RC32364 IOP Software: IDT/c Cross Compiler System Version 5.5/7.0 GNU
Developer's Kit.

e PCl 9080RDK-SH3 IOP Software: Cygnus GNU compiler: gcc version 2.7-96¢g3a

Note: The versions above indicate the versions that were used during development of the PCI
SDK software.

1.8 Customer Support

Prior to contacting PLX customer support, please ensure that you are situated close to the
computer that has the PCI SDK installed and have the following information:

1. Mode number of the PLX PCI RDK (if any);
2. PLX PCI SDK version (if any);

3. Host Operating System and version;

4. Description of your intended design:

. PLX chip used

. Microprocessor

. Local Operating System and version (if any)
. 1/0

5. Description of your problem; and
6. Stepsto recreate the problem.

Y ou may contact PLX customer support at:

Address: PLX Technology, Inc.
Attn. Technica Support
390 Potrero Avenue
Sunnyvale, CA 94086

Phone: 408-774-9060
Fax: 408-774-2169
Web: http://www.plxtech.com

Y ou may send email to one of the following addresses:

west - apps@! xt ech. com
m d- apps @I xt ech. com

east - apps@l! xt ech. com
eur o- apps @l xt ech. com
asi a- apps @l xt ech. com

PCI SDK User’'s Manual O PLX Technology, Inc., 1998 1-3

2. Getting Started

2.1 PCI SDK Installation

2.1.1 Unpacking

The PCI SDK comes complete with the following
items (see Figure 2-1): PLXMon 98
« PCI SDK User's Manual (this document); e || el
« PCI SDK Programmer’s Reference Manual;
« PLXMon 98 User's Manual; and

 PC| SDK CD-ROM.

PCI SDK

Please take the time now to verify that your PCI nstallaion

CD-ROM

SDK is complete. If not, please contact Customer
Support.

Figure 2-1 Components of the PCI SDK
2.1.2 Minimum System
Requirements
Minimum host system requirements for the PCI SDK are as follows:
« Windows NT 4.0 with Service Pack 3, or Windows98;

 32MB RAM (when used with only one PLX PCI RDK. Additional memory may be required
if more than one PLX PCI RDK are in the system);

e 20MB hard drive space; and,
« 1 RS 232 serial port.

2.1.3 Development Requirements

The PCI SDK development environment is either the Window NT 4.0 or Windows98 operating
systems.

The PCI API was developed using Microsoft Developer Studio, supplied with Microsoft Visual
C++ 5.0 and the Microsoft Platform Software Development Kit.

The WInNT device drivers were developed using the Microsoft Windows NT DDK, version 4.0
and Microsoft Visual C++ 5.0.

The Win32 Driver Model (WDM) device drivers were developed using the Microsoft
Windows98 DDK and Microsoft Visual C++ 5.0.

PCI SDK User's Manual 0 PLX Technology, Inc., 1998 2-1

2.1.4 Software Installation

2.1.41 Windows NT Installation Procedures
Toinstall the PCI SDK Support Software, complete the following:

Note: All previous PCl SDK versions located on the computer must be removed before ingtalling
a PCl SDK update. Refer to section 2.1.4.3 for more details.

1. Insert the CD-ROM into the appropriate CD-ROM drive.

2. Run “D:\Install.exe” either by typing it at a command prompt or by choosing the Run option
of the Start Menu (where “D:” is the drive letter for the CD-ROM Drive).

3. This will launch the Install Wizard application that will ask you to select the PLX RDK that
you are using. The appropriate PCI SDK version will then be installed.

4. Reboot the computer.

Note: For proper WINNT installation, the PCI SDK should be installed by a user with
“administrator” user rights.

The default installation directory may be changed from default path (C:\PIx\PciSdk211) to any
drive and path that is desired. This document uses “<INSTALLPATH>" to denote the installation
directory.

This completes the PCI SDK software installation.

2.1.4.1.1 Windows NT Device Driver Installation

Unlike the Win98 installation wizard the Windows NT installation wizard takes care of the device
driver installation.

2.1.4.2 Windows98 Installation Procedures

The installation of the PCI SDK software onto a Win98 system requires two steps: Install the PCI
SDK files, and, then install the Win98 device drivers. The following two sections describe how to
completely install the PCI SDK Support Software for Win98.

2.1.4.2.1 Windows98 Software Installation
To install the PCI SDK software, complete the following:

Note: All previous PCl SDK versions located on the computer must be removed before ingtalling
a PCl SDK update. Refer to section 2.1.4.3 for more details.

1. Ensure no PLX RDK boards are installed in your computer.
2. Insert the CD-ROM into the appropriate CD-ROM drive.

2. Run “D:\Install.exe” either by typing it at a command prompt or by choosing the Run option
of the Start Menu (where “D:” is the drive letter for the CD-ROM Drive). The interactive
installation program will install all files.

3. This will launch the Install Wizard application that will ask you to select the PLX RDK that
you are using. The appropriate PCI SDK version will then be installed.

2-2 0 PLX Technology, Inc., 1998 PCI SDK User's Manual

The default installation directory may be changed from default path (C:\PIx\PciSdk211) to any
drive and path that is desired. This document uses “<INSTALLPATH>" to denote the installation
directory.

This completes the PCI SDK software installation. Proceed to the next section to install the
Win98 device driver.

2.1.4.2.2 Windows98 Device Driver Installation

A device driver is necessary for the PCI SDK software to communicate to the PLX RDK board.
PCI SDK applications cannot communicate with any RDK board through the PCl interface
without a PCI SDK device driver installed. The installation script used to install the PCI SDK can
not entirely install the PCI SDK. To install the device driver in Win98, complete the following:

1. After installing the PCI SDK successfully (see the previous section), shutdown the computer.
2. Insert a PLX RDK board into a free PCI slot.

3. Reboot the computer. Windows98 should first detect the new hardware device with a “New
Hardware Found” message box. Acknowledge this message box.

4. Windows98 displays the “Add New Hardware” Wizard. Windows98 displays the following
message: “This wizard searches for new drivers for:” with the corresponding board name
following it. If you are using a PLX RDK board proceed to step 5. If you are using a custom
engineering board with a PLX device then proceed to step 10.

Driver Installation for PLX Engineering Boards:

5. Click on the “Next” button. Once Windows98 has completed its search the following prompt
is displayed: “What do you want Windows to do?” At the prompt select “Search for the best
driver for your device”. This is the default option. Click on “Next” to continue.

6. The installation wizard asks “Windows will search [...] in any of the following selected
locations.” Check none of the items in the list and click on “Next” to continue.

7. The device driver is ready to be installed when the installation wizard displays the following
message: “Windows is now ready to install the best driver for this device.” Click on “Next”
to continue.

8. The device driver installation is complete when Windows98 displays the following message:
“Windows has finished installing the software that your new hardware device requires”.

9. Click on “Finish” to complete the Win 98 device driver installation.

Driver Installation for Custom Engineering Boardswith PL X devices:

10. The installation wizard will detect your custom device as a “PCI Bridge”. Click on the
“Next” button and then choose the option “Display a list of all the drivers in a specific
location.” Click “Next”.

11. Select “Other Devices”. Click “Next”.

12. Now select the column that says “PLX Technology, Inc.” and choose “Unknown PCI 9054
board” if using a PCI 9054 device. Otherwise choose “Unknown PCI 9080 board” if using a
PCI 9080 device. The install wizard will warn you that this device driver is not specific for
your device. Ignore this warning by choosing “Yes”. Click “Next”.

PCI SDK User’'s Manual O PLX Technology, Inc., 1998 2-3

13. Click “Finish” to complete the Win 98 device driver installation.

Note: If you change the PLX RDK board from one dot to another, Windows98 will treat it asa
“New Hardware” and will display the same dialog.

Once the Win98 device driver installation is complete it is ready to run without having to reboot
the system.

2.1.4.3 Uninstalling All Previous Versions Of The PCI SDK Software

Prior to installing a new version of the PCI SDK, you should first uninstall all older versions.
Thereisinteraction between PCl and | OP software modules and it isimportant not to mix
releases. To remove al PClI SDK Software, including device drivers, complete the following:

Stop all PLX applications;

Open the Windows Control Pandl;

Double click on the Add/Remove Programsicon in the Control Panel window;
Choose the PCI SDK package from the item list; and

Click the Add/Remove... button.

o A~ w DN PR

Note: This only removes the files that were originally installed by the PCI SDK installation
program. For proper removal in WinNT, the PCI SDK should be removed by a user with
“administrator” user rights.

This completes the PCI SDK software removal.

2.1.4.4 PCI SDK v2.1 Compatibility

Due to interaction between host and 10P software components it is very important that PCl SDK
releases are the same on both sides (i.e. If the host software isfrom PCl SDK v2.1 then the IOP
software should also be from PCI SDK v2.1). If you have recently purchased a PLX RDK then it
will already contain the correct |OP software preprogrammed, so you need not concern yourself
with this section. However, if you have purchased the PCI SDK as an upgrade and intend to use

it with an earlier PLX RDK board you will need to upgrade the RDK board’s FLASH with a
current version. This is necessary to ensure that nothing unpredictable occurs due to
incompatibilities with modules.

Although it is important to have your host and IOP software from the same release, the IOP API
and PCI API are compatible with PCI SDK v2.0 and higher. PLX has developed an APl model
that is portable and will continue to support this model in future releases. The previous paragraph
is necessary because some PLXMon 98 features rely on a communication protocol with the IOP
BSP and the protocol has improved in each release. The IOP APl and PCI API are fully
compatible between releases.

User's who are upgrading their PCI SDK and intend to use it with an earlier PLX RDK board
should follow the steps below.
To upgrade your FLASH image follow the steps below:
e User's of the PCI 9054RDK-860 may use PLXMon 98, as described in the PLXMon 98 User
Manual, to download theh&lloworld” sample to the PCI 9054RDK-860. The image should
be programmed at FLASH offset 0x00000.

2-4 0 PLX Technology, Inc., 1998 PCI SDK User's Manual

e User's of the CompactPCIl 9054RDK-860 may use PLXMon 98, as described in the PLXMon
98 User Manual, to download thketloworld” sample to the CompactPCl 9054RDK-860.
The image should be programmed at FLASH offset 0x00000.

e User's of the PCI 9080RDK-401B may use PLXMon 98, as described in the PLXMon 98
User Manual, to download thédloworld” sample to the PClI 9080RDK-401B. The image
should be programmed at FLASH offset 0x60000.

« User's of the PCI 9080RDK-860 must use a device programmer to reprogram the FLASH
with the ‘helloworld” sample application. The image should be programmed at FLASH offset
0x00000.

e User's of the PCI 9080RDK-SH3 must use a device programmer to reprogram the EPROM
with the “helloworld” sample application. The image should be programmed at EPROM
offset 0x00000.

* User’s of the PCI 9080RDK-RC32364 must use a device programmer to reprogram the
EPROM with the helloworld” sample application. The image should be programmed at
EPROM offset 0x00000.

2.1.45 Troubleshooting

You may experience difficulties when using the PCI SDK with Windows NT with low memory
and multiple PLX RDK boards. If you notice that one of your RDK boards is not being assigned
the proper memory resources by the PCI BIOS (e.g. no address provided to the Local Space 0
address) it is most likely due to a common memory problem with WIinNT. It is recommended that
users increase the amount of available system pages in their System Registry by following the
steps below;

1. From a command prompt type: regedt32. This will bring up the Registry Editor window.
(This editor looks similar to the Windows Explorer application.)

2. Select thedKEY_LOCAL_MACHI NE on Local Machine window from within the Registry
Editor.

Open thesYSTEMfolder.

From theSYSTEMfolder, open th€ur r ent Cont r ol Set folder.
From theCur r ent Cont r ol Set folder, open th€ont r ol folder.
From theCont r ol folder, open th&essi on Manager folder.

From theSessi on Manager folder, open théenory Managenent folder.

© N o o b~ ow

From theMenory Managenent folder, change the value of tBgst enPages key from
0x0 to0x13880.

If problems persist, please contact Customer Support.

2.1.4.5.1 Driver Interrupt Sharing

The PCI SDK device drivers have interrupt sharing enabled. This allows PLX devices to share
the same interrupt line as other devices. However, in order to share interrupts with non-PLX
devices the device driver for the non-PLX device must also support sharing. Because many
device drivers do not support interrupt sharing the PCI SDK can only be guaranteed to function
properly with other PLX devices.

PCI SDK User's Manual 0 PLX Technology, Inc., 1998 2-5

If a PCI SDK device driver will not start, a possible cause is the computer’s BIOS is assigning an
interrupt to the PLX device that is already being used by a device that doesn’t support interrupt
sharing. A possible work around for this condition is to manually configure the BIOS to assign a
free interrupt to the PLX device.

2.2 Understanding The PCI SDK

2.2.1 I0OP Software

2211 Introduction

The PCI SDK includes several samples of IOP applications. Their purpose is to demonstrate how
designers can interact with the PLX chip from IOP software. The IOP applications are user-
interactive and require PLXMon 98 with a serial cable link.

The IOP applications are designed specifically to run on a PLX RDK board. However, the IOP
applications can be used as a good starting point for designers using their own hardware device.

2.2.1.2 IOP Applications

The PCI SDK contains several sample applications. By default all PLX RDK boards contain the
“helloworld” application preprogrammed in FLASH memory. This application blinks an LED
and prints “Hello World” from the serial port. Complete source code for this application is
provided in the PCI SDK. Please refer to the PLXMon 98 User’'s Manual for more information
on how to communicate to the PLX RDK boards IOP applications.

2.2.1.2.1 MiniRom Application

MiniRom is included in the PCI SDK to provide a good starting point for users who have an
untested hardware device and for this reason, it is limited in features and functionality. It provides
bare minimum boot up code for most boards. This application configures the microprocessor, the
PLX chip, and proceeds to blink the LED that is connected to one of the PLX chip’s USER pins.
To use the MiniRom application, you should program the binary image into the FLASH using a
FLASH chip programmer. Once the FLASH is programmed, reboot the board and if the LED
blinks then the MiniRom application configured the board properly. If this test is successful, the
FLASH can be reprogrammed with the PCI SDK PLXRom image (supplied with the PCI SDK).

Note: This ROM application is provided as a bare bones ROM application useful for confirming
the functionality of new boards. It does not contain any PCl SDK features that are described in
any PCl SDK manual.

2-6 0 PLX Technology, Inc., 1998 PCI SDK User's Manual

2.2.2 Windows Based Host Software

2.2.3 Introduction

— =

Launched From PLXMon98

Sample Application
pLdon € jj
Lauched From PLXMon98 § (
[l
L Custom Application
‘ PLX PCI API ‘
777 User Spac
! Kernel Spac
v v v v
PCI 9080 PCl 9054 : PCI 9080 PCl 9054
WDM WDM : WIinNT WIinNT
Device Device Device Device
Driver Driver : Driver Driver
PCI 9080RDK-401B % PCI 9054RDK-860 . PCI 9080RDK-401B % PCI 9054RDK-860
Win98 : WinNT

Figure 2-2 Windows Host software Layout for PCI SDK v2.1

The PCI SDK contains four distinct device drivers, an API, and a Windows monitor application
(see Figure 2-2). They are asfollows:

e Two PLX WInNT Device Drivers supporting the PCl 9080 and the PCI 9054;
e Two PLX WDM Win98 Device Drivers supporting the PCl 9080 and the PCI 9054 ;
e PCI API, apowerful APl compatible with al PLX devices and PLX device drivers; and

e PLXMon 98, aGraphical User Interface (GUI) application that can be used to monitor and
modify PLX chip registers. It can also download software to a PLX RDK board, and
communicate to the software running on the RDK board.

All Win32 executables included in the PCI SDK are located in the “<INSTALLPATH>\bin"

directory. Furthermore, this path is added to the environment variables when the PCI SDK is
installed.

For more information on PLXMon 98, please refer to the PLXMon 98 User's Manual.

PCI SDK User’'s Manual O PLX Technology, Inc., 1998 2-7

2.2.3.1 Windows NT Device Drivers

The PCI SDK includes Windows NT device driversfor each PLX device. All device drivers are
located in the <W NDOWS SYSTEM DI R>\ syst enB2\ dri ver s directory. The naming
convention used for the device driversis. Pci <DEVI CETYPE>. sys. For example, the device
driver for the PCI 9080 deviceis named Pci 9080. sys.

2.2.3.1.1 Starting And Stopping

There may be times when you will need to restart the Windows NT devicedriver. For instance,
you must restart the device driver after changing the supported devicelist.

To restart the Windows NT device driver you should use the Windows NT Control Pandl. The
Control Panel contains a utility calleDévices that allows you to start and stop the device driver
(see Figure 2-3).

Note: Before stopping the device driver, all PCl SDK applications should be closed.

Devices !
Device Statuz Startup
Oliscai Disabled &) Cloze I
Parallel Started Automatic

Parport Started Automatic Skart I
Pardm Started Automatic

Started Automatic Slop |
PCIDurmp System | [Frame -

PLIVIEW Marual L LT

Pomcia Dizabled Hw Prafiles... |
PrP 154 Enabler Driver System —
FFTF Filter Diiver Stated Automatic 7| Help |

Figure 2-3 The Devices Utility Window.

By default, the device driver is configured to startup automatically at Windows NT boot time.
You may configure the device driver to start manually by selectingtagup...’ button.
However, no PCI SDK applications will function without the device driver being started.

Y ou may also use the PCl SDK applet DriverWizard to restart the device drivers. Consult Section
2.2.3.1.4 for more details.

2.2.3.1.2 Event Logging

The Windows NT Device Driver has the capability to record errorsinto the Windows NT Event
Viewer. When trouble shooting problems with the device driver it is recommended that the event
viewer be used.

2-8 0 PLX Technology, Inc., 1998 PCI SDK User's Manual

-¢I|

Events can be viewed by selecting an event item. Figure 2-4 shows an example of the event

i Event Viewer - System Log on \\BUCKWHEAT =] 3
Log Wiew Options Help

111015 Ak pcid0go 25k M, BUCKWHEAT
111013 Ak pcid0s0 2hi MNfA BUICKMWWHEAT

Figure 2-4 The Event Viewer Window.

viewer and Figure 2-5 shows details of an event.

Event Detail ’
Date: B/2,/98 Event ID: 257
Timne: 1110718 Ak Source: po9080
User R Type: Errar
Computer: BUCKWHEAT Categony: Mone
Description:
The Pcidna0 Device Driver has been suceszsfully started. _;-:j

Data: * Butes ‘words

oooo: 00 00 0o 0O 01 00 58 0O -
ooos: 00 00 00 0O 01 01 07 o0
0olo: 00 00 0o 00 00 00 o0 oo
0oilg: 00 00 00 00 00 00 o0 oo —

0oz2o0: 00 OO0 OO0 0O 0O 00 o0 oo -
L] ¥
Cloze ; Previous Mext i Help i

Figure 2-5 The Event Detail Window

PCI SDK User's Manual 0 PLX Technology, Inc., 1998

AX_

M NoOLoOSY”

2-9

AX_

M NoOLoOEY”

-1I|

2.2.3.1.3 Registry Configuration

Every Windows NT device driver requires an entry in the registry editor. The registry editor
contains information required by the operating system as well as information required by the
device driver. The name in the registry will be the same as the driver name. For instance, the

pci 9080. sys devicedriver hasapci 9080 registry item as shown in Figure 2.6. All device
drivers are located under the Local Machi ne\ Syst em Curr ent Cont r ol Set \ Ser vi ces

tree.

The figures below show the required registry settings for the PCl SDK device drivers.

= Registry Editor - [HKEY_LOCAL_MACHINE on Local Machine]
ﬁ Hegistry Edit Tree Miew Securty Options Window Help

G2 Parallel

- G2 Parport

- G2 Parvdm

Pcig054
4050
PCIDump
G0 FCRIEW
80 Femcia
T3 FlugPlay
-3 prpisa
I 33 ProtectedStorage
G2 psidisp

[= E R Y

===
d CommaonBufferSize - REG_DWORD : 0x10000
ErrarContral : REG_DWORD : 0l
EventLoglevel: REG_DWORD : 0x2
MaxFciBus : REG_DWORD : 0x3
taxSglTransferSize : REG_DWORD : 0x100000
Start: REG_DWORD : 0x2
SupportedIDs - REG_SZ : 90801005 040110b5 77091065 0860105
L Type: REG_DWORD : x1

A

Figure 2-6 Registry Information for PCI 9080 Driver

= Registry Editor - [HEEY_LOCAL_MACHIME on Local Machine]
ﬁ Fegisty Edit Tree Wiew Secuwitp Optionz ‘window Help

-3 Parallel
30 Parport

19054
Fcig0a0
PCIDump
PCIVIEMY
Pemcia

03 PlugPlay

pnpisa
ProtectedStorage
G0 psidisp

R IR R

==
;I CommonBufferSize : REG_DWORD : 0x10000
ErrorControl : REG_CWORD : 0x1
EwentLoglewvel : REG_DWORD : Ox?
MaxPcoiBus : REG_DWWORD : 0x3
MaxSglTransferSize : REG_DWORD : 0x100000
Start: BEG_DWORD : 0w2
SupponediDs : REG_SZ : 905410k5 186010b5 cB6010k5
_ Type REG_DWORD : 0=

d |

Figure 2-7 Registry Information for PCI 9054 Driver

Note: Theregistry editor should only be modified by advanced users with administrative rights.
It is recommended that you do not change any values contained in the registry.

Theregistry values for the device driver are:

« CommonBufferSze: Thisvalue setsthe size of the user buffer (PIxMon98 hbuf). By default
itisset to 64KB. Warning: The device driver will try to allocate the size requested but if it
can not due to a lack of systemresources, it will decrement the size until it can allocate a
buffer. You should use the PIxPciCommonBufferGet() API function to determine the actual

buffer size.

e ErrorControl: Thisvalueisrequired by the operating system and should not be modified.

2-10 0 PLX Technology, Inc., 1998

PCI SDK User's Manual

» EventLogLevel: This value sets the event logging mode in the device drivers. If thisvalueis0
then events will not be logged. If thisvalueis 1 then high severity events will be logged. If
thisvalueis 2 then all events will be logged.

e MaxPciBus: Thisvalue sets the highest PCI bus that the device driver will scan for PLX
devices. By default it is set to 0x3.

 MaxSglTransferSze: Thisvalue setsthe size of an internal buffer that is required for SGL and
Shuttle DMA transfers. It should not be modified.

e Sart: Thisvalueisrequired by the operating system and should not be modified.

e SupportediDs. Thisvalue contains the Vendor Ids and Device Ids for the PLX devices that
the driver supports. Users should use the PCI SDK applet DriverWizard to indirectly modify
thisfield.

e Type: Thisvalueisrequired by the operating system and should not be modified.

2.2.3.1.4 Driver Configuration

Before using the device driver with a custom engineering board, the driver must first be
configured with the appropriate Vendor ID and Device ID. PLXMon 98 has a hot-link to a PCI
SDK utility called the Device Driver Wizard. This utility should be used to add or remove
engineering board IDs to the appropriate device driver. It also lets you enable or disable the
desired PLX device driver.

Note: If you are not using the PCI 9054 or PCI 9080 device driver you should disableit by using
this utility. You must either restart your computer or restart the device driver before the settings
take effect.

WinNT Device Driver Wizard
—PCl 9080 Supported ID:——————— ~ PCI 9054 Supported [Ds
Yendor (D | Device 1D | Yendor ID | Device 1D |
10b5 9080 10b5 9054
10b5 0401 10b5 1860
10b5 7709 10b5 =250
10b5 0g&0
¥ Enahle Device Driver At Startup [¥ Enable Device Driver At Startup
CHemove dd | Remove Agd |
Restafl LI 9080 Diver | estart PC1 3054 Driver |

LCloze |

Figure 2-8 The PCI SDK Device Driver Wizard

PCI SDK User’'s Manual O PLX Technology, Inc., 1998 2-11

2.2.3.2 Windows98 Device Drivers

The PCI SDK includes Windows98 device drivers for each PLX device. All device drivers are
located in the <W NDOWS SYSTEM DI R>\ syst emdirectory. The naming convention used for
the device driversis: Pci <DEVI CETYPE>. sys. For example, the device driver for the PCI
9080 deviceisnamed Pci 9080. sys.

2.2.3.2.1 Starting And Stopping

Unlike Windows NT drivers, Windows98 device drivers are started and stopped as needed by the
operating system. The PLX device drivers are started when Windows98 detects a device that

needs it. If, at a later time, the device is removed (by hitting the “Remove” button for a device
from the Device Manager window), the device driver will be stopped unless there was another
device that needs it.

There is no applet that controls the starting or stopping of a device driver.

2.2.3.2.2 Event Logging
Event logging is not accessible on Windows98.

2.2.3.2.3 Registry Configuration

Every Windows98 device driver requires an entry into the registry. The registry contains
information required by the operating system as well as information required by the device driver.

All device drivers are located using the registry editor under the:
HKEY_LOCAL_MACHI NE\ Syst eml Curr ent Cont r ol Set\ Ser vi ces\ C ass\ Unknown\ 000X

tree, wherdd00X is the driver number within the “Unknown” class of drivers. The PLX device
driver can be found within the Unknown class by looking alNfePDr i ver value of each key,
which should describe the driver narmpei(9080. sys orpci 9054. sys, depending on the
PLX chip in use).

Note: Theregistry editor should only be modified by advanced users. It is recommended that you
do not change any values contained in the registry.

2.2.3.2.4 Known Problems With The Windows98 Device Drivers.

Windows98 is not a mature operating system like Windows NT and it contains a few features that
do not yet perform as expected. The following list contains some known features that affect the
operation of the PCl SDK.

Scatter-Gather And Shuttle DM A

The Win98 device driver can periodically fail to transfer huge Scatter-Gather and Shuttle DMA
data buffers. This affects the following PCI API functioflxDmaSgl Transfer () and
PIxDmaShuttleTransfer (). It is recommended that all data buffers used in the DMA transfers do
not exceed 1 MB in size.

Changing Device Slot Numbers

If the RDK board is removed and placed into another PCI slot, Windows98 will consider the
board as a “New Hardware device” and will show the “Add New Hardware Wizard”. You must

2-12 0 PLX Technology, Inc., 1998 PCI SDK User's Manual

then repeat the Win98 device driver ingtallation procedure (see section 2.1.4.2.2 for information
on installing Win98 device drivers).

Using Power M anagement Features Of The PCI 9054

Windows98 Power Management support was not complete when the PCI SDK was released.
Therefore, the method recommended by Microsoft to change the power level of a device does not
work as described in the Microsoft documentation. To overcome this problem two possible
methods can be used:

1. Change the PCI 9054 power level using a different method than the one recommended by
Microsoft. The intended behavior can be obtained however this could cause problemsin
future releases of Windows98.

2. Leavethedevice driver sectionsasis, in hopes that Microsoft will correct the problemin
future releases of Windows98.

The PCI SDK uses the first option in order to maintain Power Management capabilities.

2.3 Using The PCI SDK With A New Board

The following steps can be used as a guide on how to use the PCI SDK with a new board.
1. Program the desired Vendor and Device IDsinto the configuration EEPROM.

2. If using Windows NT, you will need to the new Vendor and Device IDs to the Supported
Device List. To add support for new IDs, use the Device Driver Wizard utility (see section
2.2.3.1.4).

3. If using Windows98, you will need to consult section 2.1.4.2.2 to register the new device
with the Windows98 device drivers.

Edit the MiniRom application as necessary to support the new engineering board.
Program the board’s FLASH with the modified MiniRom application binary image file.

PLXMon 98 can now access the engineering board’s configuration EEPROM. Using
PLXMon 98's EEPROM Configuration window, customize the EEPROM settings for the
new engineering board and reboot the system for the changes to take effect.

7. Try accessing IOP memory by using the Direct Slave memory accesses to the engineering
board.

When the following steps have been performed and are working properly, modify the IOP Board
Support Package (BSP) module to begin porting the PCI SDK to the new engineering board.
Consult the PCI SDK Programmer’s Manual for more information on porting the PCI SDK to
new engineering boards.

2.4 Using PCI SDK API Libraries With Other Operating
Systems And Compilers

This version of the PCI SDK contains IOP APl and PCI API libraries which are compiled to work
with Windows operating systems (Windows NT and Windows98) and with the microprocessor of
your RDK. By contacting PLX Customer Support, you can create new libraries to work with

other operating systems and other compilers not supported by this SDK. Most libraries should be

PCI SDK User’'s Manual O PLX Technology, Inc., 1998 2-13

recompilable without any errors. However with some compilers, compiler warnings or errors may
arise. The following list can be used to determine some causes of warning or errors:

« Ensure that the IOP base data types for S8, U8, S16... are typecasted to the appropriate data
types for the compiler used,;

« If the embedded operating system/compiler supports 64 bit code ensure that the appropriate
64 bit data type is used for S64 and U64 data types; and,

« Some embedded operating systems/compilers may not provide functions that are needed by
the PCI SDK. It may be necessary to recreate the operation of these functions or redirect
these functions to similar functions provided by the operating system/compiler.

2.5 RTOS Support

If you are interested in developing a driver for a RTOS (Real Time Operating System), then you
can use almost all of the IOP API library functions from this version of the PCI SDK. The IOP
API library supplies a library of functions that can be called from within a RTOS. The RTOS
code needs to call the PIxInitApi() function to initialize the PLX API. This completes the
integration of the IOP API with your RTOS.

2-14 0 PLX Technology, Inc., 1998 PCI SDK User's Manual

TTTTTTTTTT

3. PCI SDK Software Architecture Overview

3.1 Assumptions

This section discusses some assumptions made in the design of the PCI SDK.

3.1.1 PCI SDK Assumptions
The assumptions for the PCl SDK are as follows:

» Mailbox register 0, 1, 6 and 7 are reserved for communication between PLXMon 98 and the
| OP software when downloading applications.

» After starting the host device drivers, mailbox register O will contain the address of the PCI
common buffer, and mailbox register 4 will contain the size of the buffer.

3.1.2 IOP API And IOP Software Assumptions
The assumptions for the IOP API and the |OP software are as follows:

» For the Back-End Monitor to function properly the IOP board must have one available serial
port, configurable by the Board Support Package software;

e Thedatareceived by the seria port must be retrieved in atimely manner in order to eliminate
any lost data;

e Theinitidization of the PLX chip is done by the IOP software only;

» The data expected by the application will not contain any datathat could be interpreted by the
Back-End Monitor as acommand if they are linked in with the application;

e All IOP applications must be reentrant, cyclic and relinguish the processor periodically to
avoid starvation of the Back-End Monitor (cooperative or non-preemptive multitasking);

* When an application is downloaded to the IOP RAM memory the IOP BSP must execute the
CheckPciDownloadToRam() and the CheckSerial DownloadToRam() functions at
Mi Croprocessor reset;

* TheBlinkLed() function assumes that the LED is connected to the PLX chip’s USERo pin;
and,

e Supplied IOP Libraries are compiled for Big Endian processors only and contain no support
for 64 bit processors or compilers. However, the source code does support Little Endian
processors but it must be recompiled for that purpose. Please send an email to
softwar e@plxtech.com if you require support for Little Endian processors.

3.1.3 PCI API And Win32 Software Assumptions
The assumptions for the PCI API and the Win32 software are as follows:

« All Win32 applications supplied with the PCI SDK will provide full functionality to all PLX
registered devices; and,

PCI SDK User's Manual 0 PLX Technology, Inc., 1998 3-1

mailto:software@plxtech.com

* Thedoorbdl interrupts, QUERY_EEPROM TYPE, DOORRBELL_KERNEL _RESET,
FLASH READ, and FLASH WRI TE arereserved for PCI SDK purposes.

3.2 Overview

The PCI SDK is separated into two distinct sets of software, the IOP software that runs on the
RDK board and the PCI software that runs on the Windows host system (as shown in Figure 3-1).
Each API contains distinct function calls that emphasize the features of the PLX chip. Some
function calls look and react similarly in both API's but may have different parameter lists.

PLXMon98
(With Host OS Software) €
Serial Communications
A
PCI Communications
v HOST :
PCI Bus RS-232
IOP :
IOP Image File (App.hin)
IOP API
Board Support Back-_End
(Specific for Package l\(/lé)lr;:\t/lo)r € e :
each solution) (BSP)

IOP Applications

Figure 3-1 The PCI SDK Software Architecture

The IOP software contains three modules (excluding the IOP application), the IOP API library,
the Board Support Package (BSP) and the Back-End Monitor (BEM). The IOP API is designed
specifically for each PLX chip or for a combination of PLX chips on one RDK board. The IOP
API can be customized to run on any RDK board by modifying the Board Support Package. IOP
debugging can be performed with PLXMon 98 by including the Back-End Monitor into the IOP
application.

3-2 O PLX Technology, Inc., 1998 PCI SDK User’'s Manual

The PCI software can be separated into two different packages, the Serial Communication
package and the PCI Bus Communication package (see Chapter 3.5). The Serial Communication
package accesses the information from the board using messages sent through the serial port of
the board. This communication method requires having the Back-End Monitor included into the
|OP application running on the desired RDK board.

The PCI Communication package consists of two modules, being the PCI API Dynamic Link
Library (DLL) and the Windows Device Driver. PCI applications make calls to the PCI APl DLL
where they are trandated into the appropriate device driver calls. The device driver performs the
requested action and provides a response, where appropriate, to the PCI API DLL. The status of
the API call is passed back to the calling application.

3.3 Software Architecture

The PClI SDK software architecture is shown in Figure 3-1. The SDK software is divided into
five major components:

*« PLXMon 98: this module includes the Host PCI API and device driver for PCI Bus
communications, and the PLXMon 98 Communications module for serial communications to
the Back-End Monitor;

* |OP API Library: thislibrary contains the code that performs the API functions and accesses
the PLX chip. There are two IOP APIsfor each PCI device: Release and Debug. Both
libraries are the same except the release version eliminates many of the parameter validation
steps that are performed in the debug version, and hence performance is increased when using
the release version of the API. All debug libraries contadi auffix in their name (E.G.
api860d.a). Release libraries do not contain dhsuffix in their name (E.G. api860.a).

« BSP Module: this module contains all board specific code, including the IOP bus memory
map, the board and microprocessor initialization routines and the interrupt service routine for
the PLX chip;

* Back-End Monitor: this module provides a monitor for debugging IOP applications which
supports PLXMon 98 through the serial port; and,

e IOP Applications: this module contains the main application for the RDK board and the 10P.

3.4 10P Software Architecture

The IOP software architecture is separated into four modules, being:
e The Board Support Package (BSP);

e The IOP API library;

e The Back-End Monitor (BEM); and,

e The IOP application software.

The PCI SDK software architecture is shown in Figure 3-2.

PCI SDK User's Manual 0 PLX Technology, Inc., 1998 3-3

IOP Image File (App.bin)

User Applications

BSP

IOP API Board
Initialization
Module Back-End Monitor
(BEM)
DMA Resource

Manager WP Initialization

Module

/

PLXMon 98

Figure 3-2 The IOP Software Architecture

3.4.1 Board Support Package (BSP)

The Board Support Package (BSP) contains all the information needed by the IOP API that is
specific to the board. This module provides the necessary entry points needed to port the PCI
SDK to new platforms. The BSP is composed of two main sub-modules, being:

e The Microprocessor Initialization module; and,
* TheBoard Initialization module.

Note: Prior to porting the PCl SDK to new boards an under standing of the BSP and its
functionality should be acquired.

3-4 0 PLX Technology, Inc., 1998 PCI SDK User's Manual

3.4.1.1 Microprocessor Initialization Module

The microprocessor initialization module contains al the necessary information about the
microprocessor required by the IOP API. Some of the information contained within this module
are the microprocessor boot code, the main default interrupt service routine (ISR) for the PCI
SDK and the default PLX chip interrupt trigger support functions.

3.4.1.1.1 Microprocessor Boot Code

When the board is powered up, the microprocessor starts executing the boot code. This code
initiali zes the microprocessor, configures the memory controller, copies data and code (if
necessary for performance reasons) from the boot FLASH to RAM memory and brings the
microprocessor to aready state. The sequence of eventsis as follows:

1. Theboard ispowered on.

2. The microprocessor begins at the reset address where it immediately jumps to the boot code.
3. Theboot code configures the memory controller.
4

The data section and the code section (if necessary) of the boot application is copied to RAM
memory.

The exception vector tableisinitialized.

Any other microprocessor specific initialization is done, such as configuring the endian
registers, configuring the clock (if internal clocks are available), setting up any peripheral
units internal to the microprocessor.

7. Once the microprocessor isinitialized and is ready to run, the boot code jumps to the board
initiali zation routine (see section 3.4.1.2).

Note: The MiniRom application included in the PCI SDK provides a good starting point for users
who have untested engineering boards. The application islimited in features and functionality
and should be the basis for porting the PCI SDK to new engineering boards (see section 3.4.5.2
for more information).

3.4.1.1.2 Interrupt Service Routine

The interrupt service routine (ISR) provided in the BSP controls all interrupts generated by any
PLX chip. The ISR isdivided into one main routine with one function to service each interrupt
trigger on the chip. When an interrupt is generated, the main ISR determines the interrupt trigger
and calls the appropriate interrupt trigger service routine to service the interrupt.

This method allows modification of individua interrupt trigger service routines or modification
of the main interrupt service routine to customize the handling of interrupts for each application.

3412 Board Initialization Module

The Board Initialization module contains information on the features of the board and the board
initiali zation routine. Some of the information it provides includes the memory map of the IOP
bus, specifically where the following devices are located in memory:

e SRAM address and range;
 DRAM address and range;

PCI SDK User’'s Manual O PLX Technology, Inc., 1998 3-5

« SDRAM address and range;

e PLX chip Register Base address;

« UART ports (Control/Status, Data);

e Fash Memory address and range;

e Direct Master Memory Remap address and range;
e Direct Master 1/0 Remap address and range; and,
» Boot address.

The PCI SDK needsto know the endianness for each memory region. If the IOP busisless than
32 bits wide, the PCI SDK needs to know how the IOP bus is connected to the PLX chip
(specifically which bytes and byte lanes are used by the IOP bus).

The Back-End Monitor needs to know about the UART. The necessary UART ISRs and seriad
communication functions are included in this module.

3.4.1.2.1 Board Initialization Routine

The board initialization routine contains the necessary API functions to configure and initialize
the PLX chip, the IOP API library, the Back-End Monitor and any other device on the RDK
board. This function is called from the microprocessor initialization routine (the microprocessor
boot code, see section 3.4.1.1.1) at start up. The board initialization sequence is as follows:

1. Initializethe PLX chip. A list of IOP API initialization functionsis provided with each of its
parameters set to the PLX chip’s default values (set by callinglxhatApi() function).

2. Change the default values for the parameters as necessary before calling the respective IOP
APl initialization function.

3. Set the Local Init Status bit when the PLX chip is initialized (this asserts the NB# pin low).
This bit allows the PCI BIOS to access the PLX chip. Once the PCI BIOS has assigned the
appropriate values to the PLX chip’s configuration registers, the PLX chip is completely
initialized and is ready to run.

4. Initialize the different debugging levels of the Back-End Monitor with the necessary board
specific information.

Initialize any other peripheral on the board.
Connect the ISRs to the appropriate interrupt lines of the microprocessor.

Initialize the application, if necessary, once all devices on the RDK board have been
initialized and are operational.

8. Jump to the main application routine.

3.4.1.3 The Main() And AppMain() Functions

The BSP Library contains thmain() function for any application using the PCI SDK. This

function controls the operation of the IOP API. The function starts by initializing the
microprocessor and its peripherals, the PLX chip (when there is no EEPROM connected to it), the
UART chip, and the Back-End Monitor (when in use). The function proceeds to test the available
memory on board and begins the main application section.

3-6 O PLX Technology, Inc., 1998 PCI SDK User’'s Manual

The main application section consists of aloop that alows execution of several tasks on around-
robin priority scheme. Each task is allowed as much time as it needs to run (non-preemptive and
no priority levels). Thisloop runs without interruption in a cyclic fashion and therefore al the
tasks must eventually return (tasks must be reentrant).

The Back-End Monitor can be used to filter the stream of data, supplied by the UART Services
functions, to help in debugging new applications. The UART Services functions receive a stream
of datafrom the RS-232 port on the RDK board and buffer it. This stream can be received by any
task requiring data from the serial port.

The Back-End Monitor, BemL1(), does simple debugging. This monitor task is used with
PLXMon 98’s serial debugger support turned on. BaaL1() monitor task only accepts three
commands, read and write to an IOP memory location, and a board reset command.

With the stream of data received from the serial port (see Figure 3-Bgrtthd() task receives

and parses through it, searching for commands. \Bbeh 1() finds a command that it

recognizes, the monitor removes the command from the stream, reacts accordingly to the
command and returns a response when appropriate. Once the stream of data has been completely
parsed and aBemL1() commands have been removed from it the filtered stream is made

available to the next task wishing data from the serial port. The filtered data stream is received by
the applicationAppMain().

AppMain()

< UART Services>

Figure 3-3 The Data Stream Flow Diagram.

The filtering of the data stream can be bypassed by a task at any point in time by calling the
UART Services functions. An example of this feature is when a task starts an application
download to memory. The application binary file being downloaded may contain data that looks
similar to a command for teemL1() task. If theBemL1() task is retrieving the data from the

UART Services functions then some information about the application will be lost. Therefore,
while the task downloads an application, it calls direletkGetChars() to retrieve the unfiltered

data from the UART chip until the application is completely downloaded. Once the download is
complete, the task returns control to the BSP Module’s main loop to allow other tasks to run.

This feature should be used with caution however because it directly affects the operation of the
other tasks dependant on the data stream coming from the serial port. When an application
requests unfiltered data the task cRIlgGetChars() function and this function returns an

unfiltered data stream. This task should not return to the main loop (within the BSP Module) to
continue processing of debug commands until all the necessary unfiltered data has been received
by the application. By doing this the Back-End Monitor task will not scan through the data and
remove command data from the stream that was not intended to be a command for the debug
monitors.

PCI SDK User's Manual 0 PLX Technology, Inc., 1998 3-7

TTTTTTTTTT

3.4.2 IOP API Library

The IOP API library contains the code for al the documented API functions. This codeis
standard for al 10P applications and is independent of the board configuration. The code directly
callsthe PLX chip (no intermediary functions).

There are two 10P APIsfor each PCI device: Release and Debug. Both libraries are the same
except the release version eliminates many of the parameter validation steps that are performed in
the debug version, and hence performance isincreased when using the release version of the API.
All debug libraries contain a’* suffix in their name (E.G. api860d.a). Release libraries do not
contain thed’ suffix in their name (E.G. api860.a).

Note: Each PLX chip hasits own |OP API library specifically designed to complement its
features. To implement more than one PLX chip on one board, a new library must be created.
Thislibrary would combine the features of each chip and have new functions to accent the
features achieved by grouping the PLX chips.

3421 DMA Resource Manager

The IOP API supports three different DMA (Direct Memory Access) transfer types and manages
the DMA resources. The supported DMA transfer types are:

» Scatter-Gather DMA: Transfers data using Scatter-Gather Lists (SGL) and can transfer
several blocks of data at a time (formally called chaining DMA);

+ Block DMA: Transfers data one block at a time; and,
+ Shuttle DMA: a circular Scatter-Gather DMA transfer.

The Scatter-Gather DMA transfer is most commonly used of all DMA transfers. This method
supports DMA transfers where either the source or destination memory locations are not
contiguous (this is common with most operating system memory allocation) the best. By
grouping multiple DMA transfer requests, the IOP application is interrupted less often providing
improved performance.

The Block DMA transfer is used primarily for single DMA transfers and where the number of
transfer requests is small.

The Shuttle DMA Transfer is best used when the data transfers are repetitive (where the source
and destination locations remain relatively constant but the transfer direction may switch or the
transfer size is different).

3-8 0 PLX Technology, Inc., 1998 PCI SDK User's Manual

ol R

PIxDmaSgIChannelOpen() PIxDmaSg|IBuild() PIxDmaSglFill()

/\ 6
5. \A
Scatter-Gather List
8.
DMA
Transfer
DMA Element
Transfer Current SGL
Element Address .)
Free
2 2

Queue
15. 45
14.7
13. !

DMA MA
Channel 0 Channel 1

Figure 3-4 Scatter-Gather DMA Flow Diagram

()1aysuel] bseWX|d

SGL
Waiting
Queue

Scatter-Gather DM A Transfers

In Scatter-Gather DMA transfers (see Figure 3-4), aSGL DMA channel is opened (steps 1-2).
With a successful return (step 3), a Scatter-Gather List (SGL) is acquired from the DMA resource
manager (steps 4-6) by calling PIxDmaSglBuild() and ahandle to alist of DMA transfer element
addressesis returned (step 7). The DMA transfer elements are programmed with the appropriate
source and destination data addresses, the transfer size and the DMA transfer descriptors by
calling PIxDmaSglFill() (step 8). The SGL is passed to the PIxDmaSgl Transfer () function (step
9). If thereis not a SGL currently executing on the DMA channel, this function programs the list
address into the DMA descriptor register for the opened DMA channel and a so into the Current
SGL Address buffer (one buffer for each DMA channel), and the DMA transfer is started (step
10). If thereis a SGL executing then this function places the SGL addressinto the SGL Waiting
Queue (one queue for each DMA channdl) (step 11). When the SGL currently executing is
completed the ISR reads the Current SGL Address buffer (step 12) and frees the DMA transfer
elements for this SGL to the DMA Transfer Element Free Queue (one queue for each DMA
channdl) (step 13). The ISR then removes all the current SGL entries in the SGL Waiting Queue
and joins them together (step 14). The new SGL addressis placed into the Current SGL Address
buffer and it is placed and started on the DMA Channel (step 15).

PCI SDK User’'s Manual O PLX Technology, Inc., 1998 3-9

A
7.
1 4.
3.
PIxDmaBlockChannelOpen() PIxDmaBlockTransfer() PIxDmaBlockFastTransfer()
6. 8./
o)
2.
DMA DMA

Channel 0 Channel 1

Figure 3-5 Block DMA Transfer Flow Diagram

Block DMA Transfers

In Block DMA transfers (see Figure 3-5), a Block DMA channel is opened (steps 1-2). With a

successful return (step 3), the PIxDmaBlockTransfer () function is called with the appropriate

source and destination data addresses, the transfer size and the DMA transfer descriptor (step 4).

This function checks the status of the DMA channd to determineif thereis atransfer in progress

by checking the DMA Done flag. If there is a transfer in progress then the function returns the “In
Progress” error code. Otherwise the DMA data is programmed into the DMA registers for the
DMA channel and the transfer is started. When the transfer is completed, the ISR will set the
DMA Done flag (step 5). If th@IxDmaBlockTransfer() function is set to not return immediately

then this function polls the DMA Done flag (step 6) and when the flag is set the function will
return. ThePIxDmaBlockTransfer Restart() function is used to quickly restart a Block DMA

transfer that was pre-programmed with BheDmaBlockTransfer () function (step 7). The only
parameter needed is the transfer size. All other DMA information is reused from the previous
transfer. This function also supplies an immediate return feature where, when the parameter is set
to FALSE, the function polls the DMA Done flag (step 8) until it is set then returns.

3-10 O PLX Technology, Inc., 1998 PCI SDK User’'s Manual

LA e LA
7.
1.
5.
6.
PIxDmaShuttleChannelOpen() PIxDmaShuttleTransfer() PIxDmaShuttleFastTransfer()
3.
\ 7.
4. 6.
DMA
Transfer
Element Shuttle List
Free
Queue
DMA
2.2 Transfer
Element
A DMA

Channel 0 Channel 1

Figure 3-6 The Shuttle DMA Flow Diagram

Shuttle DM A Transfers

In Shuttle DMA transfers (see Figure 3-6), a Shuttle DMA Engineis started by opening a Shuttle
DMA channel (steps 1-2). A number of DMA transfer el ements are acquired from the DMA
resource manager (step 3). The DMA transfer elements are linked to create a Shuttle List (step 4).
This Shuttle List is placed on the opened DMA channel and is started thereby starting the Shuttle
DMA Engine. A list of the DMA transfer element addressesis returned to the application (step 5).
From this point, each DMA transfer element of the Shuttle List can be treated as a unique DMA
channdl. To start atransfer, the PIxDmaShuttleTransfer () function is called with the appropriate
source and destination data addresses, the transfer size and the DMA transfer descriptors (step 6).
This function checks the status of the Shuttle DMA channel to determineif thereis atransfer in
progress by checking the transfer size for the given DMA transfer element. If thereisatransfer in
progress then the function returns the “In Progress” error code. Otherwise the DMA data is
programmed into the DMA transfer element provided by the application and the transfer is
started. When the transfer is completed the PLX chip (through the PLX DMA Descriptor Write
Back Feature) sets the transfer size for the completed DMA transfer element to zero. If the

PCI SDK User’'s Manual O PLX Technology, Inc., 1998 3-11

PIxDmashuttleTransfer() function is set for blocking then this function will poll the DMA

transfer element’s transfer size and when the size is set to zero the function will return. The
PIxDmaShuttleTransfer Restart() function is used to quickly restart a Block DMA transfer that

was pre-programmed with tixDmaShuttleTransfer () function (step 7). The only parameter
needed is the transfer size. All other DMA information is reused from the previous transfer. This
function also supplies a blocking feature where it polls the DMA transfer element’s transfer size
until it is set to zero.

3.4.3 Back-End Monitor

The Back-End Monitor (BEM) provides features that help in the debugging of IOP applications.
The monitor supports PLXMon 98 serial command passing to the IOP application from the serial
port of the RDK board. This monitor only supports three commands, reading and writing to IOP
memory locations (these commands support different data sizes) and reset the IOP software.
These commands provide a generic interface for any application. PLXMon 98 uses this monitor
to retrieve data from the IOP. In normal operation, this monitor accesses the UART Services
functions to get a stream of data that has been received by the UART chip. The monitor extracts
commands (that the monitor recognizes) from the data stream, performs the necessary action and
provides a response when appropriate. This monitor provides the filtered data stream to the next
task requiring serial data in the daisy chain.

There are times when a task may not want other tasks to extract data (or commands) from the data
stream. Accessing the UART support functions directly can do this. A task wishing to receive raw
data, bypasses the previous task in the daisy chain an®le@Chars() to retrieve an

unfiltered data stream. If a task chooses to access the unfiltered data stream it should take all the
data necessary to perform the action and, only once the action is complete, return control back to
the main routine (contained within the BSP).

The next application in the daisy chain, if required, retrieves the filtered data stream from the
BEM monitor. The application can do whatever it needs to do with the data. The application can
choose to provide a filtered stream of data from what is left over from its parsing of the data
stream so that the data stream can be passed down to the next task in the chain.

3431 Back-End Monitor Serial Protocol

The Back-End Monitor (BEM) can recognize three different commands coming from PIxXMon98:
reset the IOP microprocessor; read a memory location and write to a memory location. They all
use a serial protocol that is discussed in the following sections.

Some commands use parameters. Parameters listed are normally necessary for the command
except when a parameter is within square braces (‘[and ‘]'). These parameters are optional to the
command.

Parameters listed with the vertical bar (‘') indicate that “one or the other” parameter must be
provided, but not both.

Carriage returns are noted as <ENTER>.

Note that all commands should be lowercase. The Back-End Monitor does not recognize
uppercase commands except in hexadecimal value parameters.

3-12 0 PLX Technology, Inc., 1998 PCI SDK User's Manual

M NoLooY”

A
m

3.4.3.1.1 Reset IOP Microprocessor Command

Syntax:

~pl x!

Responsefrom the BEM:

No response

3.4.3.1.2 I0OP Memory Read Command

Syntax:
~pl xr[b|w || d] address<ENTER>

Parameter Description

addr ess Address of the memory location to read. The address must be a hexadecimal number
such as f 0000.

Responsefrom the BEM:
~pl xd val ue<ENTER>

Parameter Description

val ue Value read at the selected memory location. The format is a hexadecimal number
preceded by “Ox”, such as “Ox7f f f .

Description:
This command reads an 8 bit byte (b), a 16 bit word (w), a 32 bit double word (d) or a 64 bits

long double word (1) at the specified address and returns the value read.
3.4.3.1.3 IOP Memory Write Command

Syntax:
~pl xw b| W d|] address val ue<ENTER>

Parameter Description

addr ess Address of the memory location to write to. The format must be a hexadecimal number
such as “f 0000".

val ue Value to write at the memory location. The format of the value must be a hexadecimal
number such as “905410b5".

Responsefrom the BEM:
No response

Description:

This command writes an 8 bit byte (b), a 16 bit word (w), a 32 bit double word (d) or a 64 bit
long double word (1) at the specified address.

PCI SDK User’'s Manual O PLX Technology, Inc., 1998 3-13

TTTTTTTTTT

3.4.4 Methods For Debugging IOP Applications
The PCI SDK supports two methods for debugging |OP applications, being:

e Win32 Debugging: Using PLXMon 98. This method assumes that there is no IOP application
running on the RDK board. With newer RDK boards, this method provides the preliminary
debugging and validation of new RDK boards.

e PLXMon 98 with the BEM: With the BEM linked into the IOP application, PLXMon 98 can
communicate to the RDK board through the PC’'s COM port to the serial port on the RDK
board. PLXMon 98 can be setup to communicate to the RDK board or IOP application using
either the serial port or the PCI bus.

3.4.4.1 Operation Of The Back-End Monitor In A System

This section describes how the BEM can be used on an RDK board and how it affects system
performance.

The Back-End Monitor combinations are as follows:
1. AppMain() only: the IOP application is running without any BEM tasks; and,
2. BemL1() andAppMain(): the IOP application is running with BEM debugger.

Method 1: This method is used once the application has been fully tested and is working
properly. There is no monitor tasks running so this method provides the best performance for the
application. PLXMon 98 can be used to debug the application if the RDK board is inserted into a
free slot in the host system's PCI Bus and PLXMon 98's PClI Communication is turned on.

Method 2: PLXMon 98 is used to debug the application through the serial port. IOP application
performance will be affected using this method because the BEM monitor is processing
commands and copy data to and from different memory buffers. There is a possibility of lost data
destined for the IOP application. If IOP application data matches BEM commands, the monitor
will remove them from the serial data stream. When the I0OP application requires data that could
be captured by the monitor, the IOP application should access the UART Services module
directly, bypassing the monitor (done by callPigGetChars()).

3.4.5 IOP Applications

All IOP applications are connected to the IOP API, the BSP and the Back-End Monitor to create
the binary image. This image is then programmed into FLASH memory, or downloaded to RAM
memory and executed.

All IOP applications have afyppMain() function which is the main application function. The
main() function is kept within the BSP module. This limitation is imposed on all applications
because of how the Back-End Monitor (BEM) is implemented. The BEM needs to run
periodically to operate properly. Since there can only be one execution thread running at one
time, a cyclic thread is created using thegn() function. This thread loops forever calling the
BEM and then the main application function sequentially (cooperative multitasking or non-
preemptive multitasking). Th&ppMain() function should be cyclic in nature and should return
control periodically back to thaain() function.

3-14 0 PLX Technology, Inc., 1998 PCI SDK User's Manual

3.45.1 IOP Memory And IOP Applications

|OP applications running in ROM or in RAM use memory in different ways. When an |IOP
application isrunning in ROM the application contains all the modules it needs, such as the Back-
End Monitor. A ROM application contains:

* Themain IOP application module;

e ThelOPAPI;

* TheBSP module; and,

* The Back-End Monitor (debug version of ROM application).
Figure 3-7 shows how the ROM application uses memory.

IOP RAM applications are built differently from IOP ROM applications. The IOP RAM
applications look very similar to IOP ROM applications from a source code point of view but
they differ when the IOP RAM application is linked to the libraries. IOP RAM type applications
borrow the Back-End Monitor from the resident IOP ROM application. The size of IOP RAM
applications is normally smaller because alot of the code used by the IOP RAM application
residesin the IOP ROM application. Therefore the IOP ROM application on the RDK board must
have the modul es needed for the IOP RAM application and the |IOP ROM application must
provide the links to those modules. The BSP provided with the PCI SDK contains the links for
|OP RAM based applications.

RAM Application Data Segment
(Stack, Heap, BSS)

RAM Application RAM Application
I0OP API
RAM BSP

All Available
Memory
(FLASH, SRAM,
DRAM, ...)

Figure 3-7 IOP Memory Diagram

PCI SDK User's Manual 0 PLX Technology, Inc., 1998 3-15

3.4.5.2 MiniRom Application

MiniRom isincluded in the PCl SDK to provide a good starting point for users who have an

untested engineering board and for thisreason, it islimited in features and functionality. It

provides bare minimum boot up code for most engineering boards. This application configures

the microprocessor, the PLX chip, and proceeds to blink the LED that is connected to one of the

PLX chip’s USER pins. To use the MiniRom application, program the binary image into the
FLASH using a FLASH chip programmer. Once the FLASH is programmed reboot the
engineering board, and if the LED blinks then the MiniRom application configured the
engineering board properly. If this test is successful, the FLASH can be reprogrammed with the
PCI SDK HelloWorld image (supplied with the PCI SDK).

Note: ThisOP ROM application is provided as a bare bones |OP ROM application useful for
confirming the functionality of new engineering boards. It does not contain any PCl SDK features
that are described in any PClI SDK manual.

3.4.6 Porting The PCI SDK To New Platforms

All information needed to port the PCI SDK to new platforms is contained within the BSP
module. Some of the information contained within the BSP includes:

* The memory map of the IOP bus;

The microprocessor boot code;

* The PLX chip interrupt service routine;

e The UART interrupt service routine;

* The board initialization routine; and,

* The board and/or application specific controls for the IOP API and the Back-End Monitor.

The IOP API and the Back-End Monitor need to know where certain devices are located on the
IOP bus, such as the PLX chip, DRAM, SRAM and the UART. These values need to be updated
when creating an application for new boards.

When the microprocessor is changed on a board, the microprocessor boot code must be modified
to support the new microprocessor. This boot code is provided within the BSP module.

Most interrupt service routines are customized to the application. To customize the PCI ISR for
an application, either modify the interrupt trigger service routines or modify the main ISR.

The Back-End Monitor relies on the UART ISR to send and receive data from the serial port.
Modify the UART ISR to support the UART on the board.

To initialize the PLX chip modify the parameters for the IOP API initialization functions
contained within the board initialization routine.

Within the BSP, there is some control parameters for the IOP API and the Back-End Monitor that
can be modified to improve performance of the PCI SDK. These parameters are platform and
application dependent and can affect the operation of the application differently on different
systems.

3-16 0 PLX Technology, Inc., 1998 PCI SDK User's Manual

3.4.7 Support For Mul