
PLX PCI SDK
SOFTWARE DEVELOPMENT KIT

USER’S MANUAL

Version 3.0

Copyright 1999 PLX Technology, Inc. All rights reserved.

Notice
Copyright © 1999, PLX Technology, Inc.. All rights reserved.

This document contains proprietary and confidential information of PLX Technology Inc. (PLX). The
contents of this document may not be copied nor duplicated in any form, in whole or in part, without prior
written consent from PLX Technology, INC..

PLX provides the information and data included in this document for your benefit, but it is not possible for
us to entirely verify and test all of this information in all circumstances, particularly information relating to
non-PLX manufactured products. PLX makes no warranties or representations relating to the quality,
content or adequacy of this information. Every effort has been made to ensure the accuracy of this manual,
however, PLX assumes no responsibility for any errors or omissions in this document. PLX shall not be
liable for any errors or for incidental or consequential damages in connection with the furnishing,
performance, or use of this manual or the examples herein. PLX assumes no responsibility for any damage
or loss resulting from the use of this manual; for any loss or claims by third parties which may arise
through the use of this SDK; and for any damage or loss caused by deletion of data as a result of
malfunction or repair. The information in this document is subject to change without notice.

Product and Company names are trademarks or registered trademarks of their respective owners.

Document number: PCI-SDK-Man-PI-3.0

PLX SOFTWARE LICENSE AGREEMENT
THIS PLX SOFTWARE DEVELOPMENT
KIT INCLUDES PLX SOFTWARE THAT IS
LICENSED TO YOU UNDER SPECIFIC
TERMS AND CONDITIONS. CAREFULLY
READ THE TERMS AND CONDITIONS
PRIOR TO USING THIS SOFTWARE
DEVELOPMENT KIT. OPENING THIS
PACKAGE OR INITIAL USE OF THIS
SOFTWARE DEVELOPMENT KIT
INDICATES YOUR ACCEPTANCE OF THE
TERMS AND CONDITIONS. IF YOU DO
NOT AGREE WITH THEM, YOU SHOULD
RETURN THE ENTIRE SOFTWARE
DEVELOPMENT KIT TO PLX.

LICENSE Copyright (c) 1999 PLX
Technology, Inc.

This PLX Software License agreement is a legal
agreement between you and PLX Technology, Inc. for
the PLX Software Development Kit (SDK), also
referred to as “PLX SDK” which is provided on the
enclosed PLX CD-ROM, or may be recorded on other
media included in this PLX SDK. PLX Technology
owns this PLX SDK. The PLX SDK is protected by
copyright laws and international copyright treaties, as
well as other intellectual property laws and treaties,
and is licensed, not sold. If you are a rightful possessor
of the PLX SDK, PLX grants you a license to use the
PLX SDK as part of or in conjunction with a PLX
chip on a per project basis. PLX grants this
permission provided that the above copyright notice
appears in all copies and derivatives of the PLX SDK.
Use of any supplied runtime object modules or
derivatives from the included source code in any
product without a PLX Technology, Inc. chip is
strictly prohibited. You obtain no rights other than
those granted to you under this license. You may
copy the PLX SDK for backup or archival purposes.
You are not authorized to use, merge, copy, display,
adapt, modify, execute, distribute or transfer, reverse
assemble, reverse compile, decode, or translate the
PLX SDK except to the extent permitted by law.

GENERAL
If you do not agree to the terms and conditions of this
PLX Software License Agreement, do not install or

PLX SDK License Agreement

use the PLX SDK and promptly return the entire
unused PLX SDK to PLX Technology, Inc. You may
terminate your license at any time. PLX Technology
may terminate your license if you fail to comply with
the terms and conditions of this License Agreement. In
either event, you must destroy all your copies of this
PLX SDK. Any attempt to sub-license, rent, lease,
assign or to transfer the PLX SDK except as expressly
provided by this license, is hereby rendered null and
void.

WARRANTY
PLX Technology, Inc. provides this PLX SDK
AS IS, WITHOUT ANY WARRANTY,
EXPRESS OR IMPLIED, INCLUDING
WITHOUT LIMITATION, ANY WARRANTY
OF MERCHANTIBILITY OR FITNESS FOR A
PARTICULAR PURPOSE. PLX makes no
guarantee or representations regarding the use of, or
the results based on the use of the software and
documentation in terms of correctness, or otherwise;
and that you rely on the software, documentation, and
results solely at your own risk. In no event shall PLX
be liable for any loss of use, loss of business, loss of
profits, incidental, special or, consequential damages
of any kind. In no event shall PLX’s total liability
exceed the sum paid to PLX for the product licensed
here under.

PLX Copyright Message Guidelines

The following copyright message along with the
following text must appear in all software products
generated and distributed which use the PLX API
libraries:

“Copyright (c) 1999 PLX
Technology, Inc.”
Requirements:
• Arial font
• Font size 12 (minimum)
• Bold type
• Must appear as shown above in the first section

or the so called “Introduction Section” of all
manuals

• Must also appear as shown above in the
beginning of source code as a comment

This page is intentionally left blank.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 i

Table of Contents

1. INTRODUCTION...1-1

1.1 GENERAL INFORMATION .. 1-1
1.2 ABOUT THIS MANUAL .. 1-1
1.3 PCI SDK FEATURES... 1-1
1.4 WHERE TO GO FROM HERE... 1-1
1.5 OTHER PCI SDK MANUALS... 1-2
1.6 CONVENTIONS.. 1-2

1.6.1 Windows Programming Conventions ..1-2
1.7 TERMINOLOGY ... 1-2
1.8 DEVELOPMENT TOOLS... 1-3

1.8.1 IOP 480 Third Party Development Tools ..1-3
1.9 CUSTOMER SUPPORT.. 1-3

2. GETTING STARTED ..2-1

2.1 PCI SDK INSTALLATION .. 2-1
2.1.1 Unpacking..2-1
2.1.2 Minimum System Requirements..2-1
2.1.3 Development Requirements...2-1
2.1.4 Software Installation ..2-2

2.1.4.1 Windows NT Installation Procedures .. 2-2
2.1.4.2 Windows 98 Installation Procedures ... 2-2
2.1.4.3 Uninstalling All Previous Versions Of The PCI SDK Software.. 2-4
2.1.4.4 PCI SDK V3.0 Compatibility .. 2-4
2.1.4.5 Troubleshooting... 2-5

2.2 UNDERSTANDING THE PCI SDK.. 2-6
2.2.1 IOP Software..2-6

2.2.1.1 Introduction ... 2-6
2.2.1.2 IOP Applications ... 2-6
2.2.1.3 How to Compile the Samples .. 2-7

2.2.2 Windows Based Host Software..2-10
2.2.2.1 Introduction ... 2-10
2.2.2.2 Windows NT Device Drivers .. 2-11
2.2.2.3 Windows 98 Device Drivers.. 2-15

2.3 USING THE PCI SDK WITH A NEW BOARD .. 2-16
2.4 USING THE IOP API LIBRARIES WITH OTHER COMPILERS... 2-17

3. PCI SDK SOFTWARE ARCHITECTURE OVERVIEW...............................3-1

3.1 ASSUMPTIONS... 3-1
3.1.1 PCI SDK Assumptions ..3-1
3.1.2 IOP API And IOP Software Assumptions ...3-1
3.1.3 PCI API And Win32 Software Assumptions ...3-1

3.2 OVERVIEW.. 3-2
3.3 SOFTWARE ARCHITECTURE.. 3-3
3.4 IOP SOFTWARE ARCHITECTURE.. 3-3

3.4.1 Board Support Package (BSP) ... 3-4
3.4.1.1 Microprocessor Initialization Module.. 3-5
3.4.1.2 Board Initialization Module... 3-5
3.4.1.3 The Main() And AppMain() Functions.. 3-6

3.4.2 IOP API Library...3-8
3.4.2.1 DMA Resource Manager... 3-8

3.4.3 Back-End Monitor ...3-12
3.4.3.1 BEM Command Format and Commands... 3-13

ii ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

3.4.3.2 BEM Reply Format ..3-14
3.4.3.3 BEM Command Protocols..3-14

3.4.4 Methods For Debugging IOP Applications..3-20
3.4.4.1 Operation Of The Back-End Monitor In A System ..3-20

3.4.5 IOP Applications..3-21
3.4.5.1 IOP Memory And IOP Applications ..3-21
3.4.5.2 MiniBSP Application ...3-22

3.4.6 Porting The PCI SDK To New Platforms ..3-22
3.4.7 Support For Multiple PLX chips On One Board..3-23

3.5 HOST WIN32 SOFTWARE ARCHITECTURE.. 3-23
3.5.1 GUI Application PLXMon 99..3-24

3.5.1.1 Serial Communication..3-24
3.5.1.2 PCI API/Device Driver Communication ..3-25

3.5.2 Win32 Applications And The PCI SDK ..3-25
3.5.3 Win32 Device Driver Overview...3-25

3.5.3.1 PLX Chip Device Driver Module...3-26
3.5.3.2 PLX Chip Services Module..3-26

3.5.4 Creating A New Driver ..3-26
3.5.5 Device Driver Features...3-27
3.5.6 Distribution of PLX Device Drivers and PLXApi.Dll File ..3-27

3.5.6.1 Installation of PlxApi.dll File ...3-27
3.5.6.2 Installation of PLX Device Driver..3-27

4. REAL TIME OPERATING SYSTEM SUPPORT ..4-1

4.1 GENERAL INFORMATION .. 4-1
4.2 GETTING STARTED ... 4-1
4.3 MINIMUM REQUIREMENTS... 4-1
4.4 INSTALLATION .. 4-1
4.5 WHAT’S INCLUDED?... 4-2
4.6 WHICH VXWORKS ROM IMAGE SHOULD I USE?.. 4-3
4.7 PLX VXWORKS BSP/PLX API DEMONSTRATION ... 4-3

4.7.1 Updating the PCI 9054RDK-860 or CompactPCI 9054RDK-860 onboard FLASH4-3
4.7.2 PLX API functions Demonstration ..4-3

4.7.2.1 Stand alone VxWorks Target Shell Demo (No Tornado and no Target Server present)4-3
4.7.2.2 Tornado VxWorks Host Shell Demo..4-4

4.8 HOW TO REBUILD THE BSP AND APPLICATION IMAGES? .. 4-10
4.8.1 Setup the makefile to build PLX VxWorks Boot ROM...4-10
4.8.2 Setup the custom project to build PLX demo application ..4-10

4.9 TORNADO 1.0.1 AND TORNADO 2.0 COMPATIBILITY ... 4-11

5. RDK SOFTWARE QUICK REFERENCE ...5-1

5.1 IOP 480RDK.. 5-1
5.2 PCI 9054RDK-860... 5-2
5.3 COMPACTPCI 9054RDK-860... 5-3
5.4 PCI 9080RDK-401B .. 5-5
5.5 PCI 9080RDK-860... 5-6
5.6 PCI 9080RDK-SH3.. 5-8
5.7 PCI 9080RDK-RC32364.. 5-10

APPENDIX A. INDEX.. I

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 iii

List of Figures
FIGURE 2-1 COMPONENTS OF THE PCI SDK.. 2-1
FIGURE 2-2 WINDOWS HOST SOFTWARE LAYOUT FOR PCI SDK V3.0..................................... 2-10
FIGURE 2-3 THE DEVICES UTILITY WINDOW... 2-11
FIGURE 2-4 THE EVENT VIEW WINDOW. ... 2-12
FIGURE 2-5 THE DETAILED EVENT WINDOW... 2-12
FIGURE 2-6 REGISTRY INFORMATION FOR PCI 9080 DEVICE DRIVER ON WINDOWS NT 2-13
FIGURE 2-7 REGISTRY INFORMATION FOR PCI 9054 DEVICE DRIVER ON WINDOWS NT......... 2-13
FIGURE 2-8 REGISTRY INFORMATION FOR IOP 480 DEVICE DRIVER ON WINDOWS NT 2-13
FIGURE 2-9 THE PCI SDK DEVICE DRIVER WIZARD .. 2-15
FIGURE 3-1 THE PCI SDK SOFTWARE ARCHITECTURE... 3-2
FIGURE 3-2 THE IOP SOFTWARE ARCHITECTURE... 3-4
FIGURE 3-3 THE DATA STREAM FLOW DIAGRAM. .. 3-7
FIGURE 3-4 SCATTER-GATHER DMA FLOW DIAGRAM ... 3-9
FIGURE 3-5 BLOCK DMA TRANSFER FLOW DIAGRAM ... 3-10
FIGURE 3-6 THE SHUTTLE DMA FLOW DIAGRAM .. 3-11
FIGURE 3-7 DIAGRAM OF THE IOP MEMORY USAGE.. 3-22
FIGURE 3-8 THE HOST SOFTWARE ARCHITECTURE... 3-24
FIGURE 3-9 THE PLX DEVICE DRIVER LAYOUT.. 3-26
FIGURE 4-1 STAND ALONE VXWORKS TARGET SHELL DEMO SCREEN...................................... 4-4
FIGURE 4-2 REBOOT THE STAND ALONE VXWORKS TARGET SHELL DEMO 4-5
FIGURE 4-3 BACK END PROPERTY PAGE.. 4-6
FIGURE 4-4 CORE FILE AND SYMBOLS PROPERTY PAGE... 4-6
FIGURE 4-5 VIRTUAL CONSOLE PROPERTY PAGE.. 4-7
FIGURE 4-6 TGTSVR - CONSOLE... 4-7
FIGURE 4-7 TORNADO SHELL PROMPT.. 4-8
FIGURE 4-8 TGTSVR - CONSOLE NO. 1... 4-9
FIGURE 4-9 TGTSVR - CONSOLE NO. 2... 4-9
FIGURE 4-10 CUSTOMIZE BUILDS SCREEN NO. 1 .. 4-10
FIGURE 4-11 CUSTOMIZE BUILDS SCREEN NO. 2 .. 4-11
FIGURE 4-12 OPTIONS.. 4-11
FIGURE 4-13 BUILD VXWORKS.. 4-12
FIGURE 4-14 CONFIGURE TARGET SERVERS.. 4-13
FIGURE 5-1 CONFIGURATION EEPROM SETTINGS FOR THE IOP 480RDK 5-2
FIGURE 5-2. CONFIGURATION EEPROM SETTINGS FOR THE PCI 9054RDK-860 5-3
FIGURE 5-3. CONFIGURATION EEPROM SETTINGS FOR THE COMPATCTPCI 9054RDK-860 5-5
FIGURE 5-4. CONFIGURATION EEPROM SETTINGS FOR THE PCI 9080RDK-401B.................... 5-6
FIGURE 5-5. CONFIGURATION EEPROM SETTINGS FOR THE PCI 9080RDK-860 5-8
FIGURE 5-6. CONFIGURATION EEPROM SETTINGS FOR THE PCI 9080RDK-SH3 5-10

iv ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

List of Tables
TABLE 3-1. BEM COMMANDS ... 3-13
TABLE 5-1. BASIC INFORMATION ABOUT IOP 480RDK.. 5-1
TABLE 5-2. BASIC INFORMATION ABOUT PCI 9054RDK-860... 5-2
TABLE 5-3. BASIC INFORMATION ABOUT COMPACTPCI 9054RDK-860 5-4
TABLE 5-4. BASIC INFORMATION ABOUT PCI 9080RDK-401B.. 5-5
TABLE 5-5. BASIC INFORMATION ABOUT PCI 9080RDK-860... 5-7
TABLE 5-6. BASIC INFORMATION ABOUT PCI 9080RDK-SH3 ... 5-8
TABLE 5-7. BASIC INFORMATION ABOUT PCI 9080RDK-RC32364 ... 5-10

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 1-1

1. Introduction

1.1 General Information
PLX Technology offers PCI bus interface chips that address a range of adapter and embedded
system applications. Our PCI chips work well with a variety of CPUs and embedded controllers,
including the IBM PowerPC 40x family, Motorola MPC860/850 and 68360, as well as the
PowerPC 60x family, Analog Devices Sharc, various Texas Instruments DSPs, the Intel i960
family, Hitachi SuperH family, IDT MIPS, and others. If the design does not require a
microprocessor, our chips are easily configured to run without the aid of a CPU. PLX provides
Software Development Kits (SDK), Reference Design Kits (RDK) and Hardware Design Kits
(HDK) that facilitate your PCI design development.

1.2 About This Manual
The PLX family of 32-bit I/O processor and I/O accelerator chips connects the PCI bus to Intel,
Power PC and other processors. They provide full Intelligent I/O (I2O) compatibility. The PCI
Software Development Kit (PCI SDK) provides a powerful I/O Platform Application
Programming Interface (IOP API), and Windows software that are used to control PLX devices.
We are confident that through the use of the PCI SDK, your PLX designs will be brought to
market faster and more efficiently.

This manual provides information about the functionality of the PCI SDK. Customers have the
choice of using the PCI SDK with any PLX Reference Design Kit (RDK), or a generic device that
uses a PLX chip. Users should consult this manual when installing the PCI SDK and for general
information.

1.3 PCI SDK Features
The PCI SDK includes the following features:

• A feature based IOP API, with support for a variety of PLX PCI chips;

• Board Support Package (BSP) that allows customization of the PCI SDK;

• A Back-End Monitor application used for basic debugging;

• IOP DMA Resource Manager that supports three modes of operation;

• A PCI API and device drivers compatible with Windows NT/98; and,

• PLXMon 99, a Windows Graphical User Interface (GUI) application used to configure,
modify PLX PCI devices, and download IOP applications to the local RAM.

1.4 Where To Go From Here
The following is a brief summary of the chapters to help guide your reading of this manual:

Chapter 2, Getting Started, discusses how to start using the PCI SDK and some of the
applications provided.

1-2 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

Chapter 3, PCI SDK Software Architecture Overview, describes the layout of the PCI SDK
software.

1.5 Other PCI SDK Manuals
The PCI SDK includes the following manuals which users should consult for design details:

• PCI SDK Programmer’s Reference Manual: This manual covers all software design issues
regarding the device drivers, API and user applications.

• PLXMon 99 User’s Manual: This manual describes the usage of the PLXMon 99 application.

• IOP 480 CPU API Programmer’s Reference Manual: This manual covers the IOP 480 CPU
API and will be created only as a PDF file in Acrobat format during the PCI SDK
installation.

• PLX Device Driver Manual: This manual covers the PLX device drivers and service
modules, which are the core parts of the PLX device drivers. The manual will be created only
a PDF file in Acrobat format during the PCI SDK installation.

• PLX RDK Manufacturing Test Specification: This manual covers the basic information about
the PLX RDK Manufacturing Test program and will be created only as a PDF file in Acrobat
format during the PCI SDK installation.

1.6 Conventions
Please note that when software samples are provided the following notations are used:

• italics are used to represent variables, function names, and program names;

• courier is used to represent source code given as examples.

1.6.1 Windows Programming Conventions
Some designers may not be familiar with Windows programming conventions. Therefore, a few
conventions have been noted below, for example:

• PU32 data is analogous to U32 *data or unsigned long *data; and

• IN and OUT are used to distinguish between parameters that are being passed into API
functions and parameters that are being returned by API functions.

1.7 Terminology
All references to Windows NT assume Windows NT 4.0 or higher and may be denoted as
WinNT.

All references to Windows 98 may be denoted as Win98.

Win32 references are used throughout this manual to mean any application that is compatible
with the Windows 32-bit environment.

All references to IOP (I/O Platform) throughout this manual denote the RDK board and all
references to IOP software denote the software running on the RDK board.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 1-3

All references to FLASH should be replaced with EPROM for users of the PCI 9080RDK-SH3
and PCI 9080RDK-RC32364 Reference Design Kits.

1.8 Development Tools
Development tools used to develop the PCI SDK include:

• Win32 Applications: Microsoft Visual C++ 5.0, with Microsoft Developer Studio;

• Win32 Applications: Microsoft Platform Software Development Kit (SDK);

• Windows NT 4.0 Drivers: Microsoft Windows NT 4.0 Device Driver Kit (DDK);

• Windows 98 Drivers: Microsoft Windows 98 Device Driver Kit (DDK);

• IOP 480RDK IOP Software:

1. IBM High C/C++ PowerPC Cross-Compiler, version 1.0 (7/31/96); and IBM 401 EVB
Software Support Package, version 1.6.4 (4/1/97)

2. DIAB Data, Inc. Compiler and Linker for PowerPC, version 4.0b and version 4.3p6;

• PCI 9080RDK-860, CompactPCI and PCI 9054RDK-860 IOP Software: DIAB Data, Inc.
Compiler and Linker for the PowerPC, version 4.0b and version 4.3p6;

• PCI 9080RDK-401B Software:

1. IBM High C/C++ PowerPC Cross-Compiler, version 1.0 (7/31/96); and IBM 401 EVB
Software Support Package, version 1.6.4 (4/1/97)

2. DIAB Data, Inc. Compiler and Linker for PowerPC, version 4.0b and version 4.3p6;

• PCI 9080RDK-RC32364 IOP Software: IDT/c Cross Compiler System Version 5.5/7.0 GNU
Developer’s Kit.

• PCI 9080RDK-SH3 IOP Software: Cygnus GNU compiler: gcc version 2.7-96q3a

1.8.1 IOP 480 Third Party Development Tools
In addition to the IBM High C/C++ PowerPC Cross-Compiler and the Diab Data PowerPC
Compiler and Linker, other PowerPC compilers may be used to develop IOP 480 based
applications. The PLX PCI SDK version 3.0 complies to the ANSI C code standard. Minimal
changes to batch and make files may be required if using compilers other than the IBM and Diab
Data PowerPC compilers.

PLX Partners and recommended PowerPC compilers:

• MetaWare High C/C++ for PowerPC

• Green Hills Software PowerPC C/C++ Optimizing Compilers

• Mentor Graphics Microtec C & C++ Compilers for PowerPC

• Metrowerks CodeWarrior for PowerPC

1.9 Customer Support
Prior to contacting PLX customer support, please ensure that you are situated close to the
computer that has the PCI SDK installed and have the following information:

1-4 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

1. Model number of the PLX PCI RDK (if any);

2. PLX PCI SDK version (if any);

3. Host Operating System and version;

4. Description of your intended design:

• PLX chip used

• Microprocessor

• Local Operating System and version (if any)

• I/O

5. Description of your problem; and

6. Steps to recreate the problem.

You may contact PLX customer support at:

Address: PLX Technology, Inc.
 Attn. Technical Support

390 Potrero Avenue
Sunnyvale, CA 94086

Phone: 408-774-9060
Fax: 408-774-2169
Web: http://www.plxtech.com

You may send email to one of the following addresses:

west-apps@plxtech.com
mid-apps@plxtech.com
east-apps@plxtech.com
euro-apps@plxtech.com
asia-apps@plxtech.com

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 2-1

2. Getting Started

2.1 PCI SDK Installation

2.1.1 Unpacking
The PCI SDK comes complete with the
following items (see Figure 2-1)

• PCI SDK User’s Manual (this document);

• PCI SDK Programmer’s Reference
Manual;

• PLXMon 99 User's Manual; and

• PCI SDK CD-ROM.

Please take the time now to verify that your
PCI SDK is complete. If not, please contact
Customer Support.

2.1.2 Minimum System
Requirements
Minimum host system requirements for the PCI SDK are as follows:

• Windows NT 4.0 with Service Pack 3, or Windows 98;

• 32MB RAM (when used with only one PLX PCI RDK. Additional memory may be required
if more than one PLX PCI RDK are in the system);

• 80MB hard drive space; and,

• 1 RS 232 serial port.

2.1.3 Development Requirements
The PCI SDK development environment is either the Window NT 4.0 or Windows 98 operating
systems.

The PCI API was developed using Microsoft Developer Studio, supplied with Microsoft Visual
C++ 5.0 and the Microsoft Platform Software Development Kit.

The WinNT device drivers were developed using the Microsoft Windows NT DDK, version 4.0
and Microsoft Visual C++ 5.0.

The Win32 Driver Model (WDM) device drivers were developed using the Microsoft Windows
98 DDK and Microsoft Visual C++ 5.0.

PCI SDK

Programmer’s

Reference

Manual

PLXMon 99

User’s
Manual

PCI SDK

Installation
CD-ROM

PCI SDK

User’s
Manual

Figure 2-1 Components of the PCI SDK

2-2 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

2.1.4 Software Installation

2.1.4.1 Windows NT Installation Procedures

To install the PCI SDK Support Software, complete the following:

Note: All previous PCI SDK versions located on the computer must be removed before installing
a PCI SDK update. Refer to section 2.1.4.3 for more details.

1. Insert the CD-ROM into the appropriate CD-ROM drive.

2. Run “D:\Install.exe” either by typing it at a command prompt or by choosing the Run option
of the Start Menu (where “D:” is the drive letter for the CD-ROM Drive).

3. This will launch the Install Wizard application that will ask you to select the PLX RDK that
you are using. The appropriate PCI SDK version will then be installed.

4. Reboot the computer after the installation. This completes the PCI SDK software installation.

Note: For proper WinNT installation, the PCI SDK should be installed by a user with
“administrator” user rights.

The default installation directory may be changed from default path (C:\Plx\PciSdk300) to any
drive and path that is desired. This document uses “<INSTALLPATH>” to denote the installation
directory.

2.1.4.1.1 Windows NT Device Driver Installation

The Windows NT installation wizard takes care of the device driver installation.

2.1.4.2 Windows 98 Installation Procedures

The installation of the PCI SDK software onto a Win98 system requires two steps: Install the PCI
SDK files and start the Win98 device driver(s). The following two sections describe how to
completely install the PCI SDK Support Software for Win98.

2.1.4.2.1 Windows 98 Software Installation

To install the PCI SDK software, complete the following:

Note: All previous PCI SDK versions located on the computer must be removed before installing
a PCI SDK update. Refer to section 2.1.4.3 for more details.

1. Ensure no PLX RDK boards are installed in your computer.

2. Insert the CD-ROM into the appropriate CD-ROM drive.

3. Run “D:\Install.exe” either by typing it at a command prompt or by choosing the Run option
of the Start Menu (where “D:” is the drive letter for the CD-ROM Drive). The interactive
installation program will install all files.

4. This will launch the Install Wizard application that will ask you to select the PLX RDK that
you are using. The appropriate PCI SDK version will then be installed.

The default installation directory may be changed from default path (C:\Plx\PciSdk300) to
any drive and path that is desired. This document uses “<INSTALLPATH>” to denote the
installation directory.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 2-3

This completes the PCI SDK software installation. Proceed to the next section to install the
Win98 device driver.

2.1.4.2.2 Windows 98 Device Driver Installation

A device driver is necessary for the PCI SDK software to communicate to the PLX RDK board.
PCI SDK applications cannot communicate with any RDK board through the PCI interface
without a PCI SDK device driver installed. The installation software used to install the PCI SDK
can not automatically start the device drivers for PLX devices. To start the device driver in
Win98, complete the following:

1. After installing the PCI SDK successfully (see the previous section), shutdown the computer.

2. Insert a PLX RDK board into a free PCI slot.

3. Reboot the computer. Windows 98 should first detect the new hardware device with a “New
Hardware Found” message box. Acknowledge this message box.

4. Windows 98 displays the “Add New Hardware” Wizard. Windows 98 displays the following
message: “This wizard searches for new drivers for:” with the corresponding board name
following it. If you are using a PLX RDK board proceed to step 5. If you are using a custom
Reference Design Board with a PLX device then proceed to step 10.

Driver Installation for PLX Reference Design Boards:

5. Click on the “Next” button. Once Windows 98 has completed its search the following prompt
is displayed: “What do you want Windows to do?” At the prompt select “Search for the best
driver for your device”. This is the default option. Click on “Next” to continue.

6. The installation wizard asks: “Windows will search […] in any of the following selected
locations.” Check none of the items in the list and click on “Next” to continue.

7. The device driver is ready to be installed when the installation wizard displays the following
message: “Windows is now ready to install the best driver for this device.” Click on “Next”
to continue.

8. The device driver installation is complete when Windows 98 displays the following message:
“Windows has finished installing the software that your new hardware device requires”.

9. Click on “Finish” to complete the Win98 device driver installation.

Driver Installation for Custom Reference Design Boards with PLX devices:

In order for the custom reference design boards to be treated as one of “Custom (OEM)” boards
during the following steps, the device and vendor IDs must be:

• Vendor ID = 0x10B5, Device ID = 0x9080 for a PCI 9080 device;

• Vendor ID = 0x10B5, Device ID = 0x9054 for a PCI 9054 device; and

• Vendor ID = 0x10B5, Device ID = 0xF480 for an IOP 480 device.

10. The installation wizard will detect your custom device as a “PCI Bridge”. Click on the
“Next” button and then choose the option “Display a list of all the drivers in a specific
location.” Click “Next”.

11. Select “Other Devices”. Click “Next”.

2-4 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

12. Now select the column that says “PLX Technology, Inc.” and choose “Custom (OEM) PCI
9054 board” if using a PCI 9054 device. Otherwise choose “Custom (OEM) PCI 9080
board” if using a PCI 9080 device or "Custom (OEM) IOP 480 board" if using an IOP 480
device. The install wizard will warn you that this device driver is not specific for your device.
Ignore this warning by choosing “Yes”. Click “Next”.

13. Click “Finish” to complete the Win98 device driver installation.

Note: If you change the PLX RDK board from one slot to another, Windows 98 will treat it as a
“New Hardware” and will display the same dialog.

Once the Win98 device driver installation is complete it is ready to run without having to reboot
the system.

2.1.4.3 Uninstalling All Previous Versions Of The PCI SDK Software

Prior to installing a new version of the PCI SDK, you should first uninstall all older versions.
There is interaction between PCI and IOP software modules and it is important not to mix
releases. To remove all PCI SDK Software, including device drivers, complete the following:

1. Stop all PLX applications;

2. Open the Windows Control Panel;

3. Double click on the Add/Remove Programs icon in the Control Panel window;

4. Choose the PCI SDK package from the item list; and

5. Click the Add/Remove... button.

Note: This only removes the files that were originally installed by the PCI SDK installation
program. For proper removal in WinNT, the PCI SDK should be removed by a user with
“administrator” user rights.

This completes the PCI SDK software removal.

2.1.4.4 PCI SDK V3.0 Compatibility

Due to interaction between host and IOP software components it is very important that PCI SDK
releases are the same on both sides (i.e. if the host software is from PCI SDK V3.0, then the IOP
software should also be from PCI SDK V3.0 as well). If you have recently purchased a PLX
RDK then it will already contain the correct IOP software preprogrammed, so you need not
concern yourself with this section. However, if you have purchased the PCI SDK as an upgrade
and intend to use it with an earlier PLX RDK board you will need to upgrade the RDK board’s
FLASH with a current version. This is necessary to ensure that nothing unpredictable occurs due
to incompatibilities with modules.

Although it is important to have your host and IOP software from the same release, the IOP API
and PCI API are almost compatible with PCI SDK v2.0 and higher. PLX has developed an API
model that is portable and will continue to support this model in future releases. The previous
paragraph is necessary because some PLXMon 99 features rely on a communication protocol
with the IOP BSP and the protocol has improved in each release. The IOP API and PCI API are
fully compatible between releases.

Users who are upgrading their PCI SDK and intend to use it with an earlier PLX RDK board
should follow the steps below.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 2-5

To upgrade your FLASH image, follow the steps below:
• Users of the IOP480RDK may use PLXMon 99, as described in the PLXMon 99 User

Manual, to download the FLASH image file “<INSTALLPATH>\hw\Flash\Iop480rdk.bin” to
the IOP480RDK. The image should be usually programmed at FLASH offset 0x60000.

• Users of the PCI 9054RDK-860 may use PLXMon 99 to download the FLASH image
“<INSTALLPATH>\hw\Flash\9054RDK-860.bin” to the PCI 9054RDK-860. The image
should be programmed at FLASH offset 0x00000.

• Users of the CompactPCI 9054RDK-860 may use PLXMon 99 to download the FLASH
image “<INSTALLPATH>\hw\Flash\CPCI9054RDK-860.bin” to the CompactPCI 9054RDK-
860. The image should be programmed at FLASH offset 0x00000.

• Users of the PCI 9080RDK-401B may use PLXMon 99 to download the FLASH image
“<INSTALLPATH>\hw\Flash\9080RDK-401B.bin” to the PCI 9080RDK-401B. The image
should be usually programmed at FLASH offset 0x60000.

• Users of the PCI 9080RDK-860 must use a device programmer to reprogram the FLASH
with FLASH image “<INSTALLPATH>\hw\Flash\9080RDK-860.bin”. The image should be
programmed at FLASH offset 0x00000.

• Users of the PCI 9080RDK-SH3 must use a device programmer to reprogram the EPROM
with the FLASH image “<INSTALLPATH>\hw\Flash\9080RDK-Sh3.bin”. The image should
be programmed at EPROM offset 0x00000.

• Users of the PCI 9080RDK-RC32364 must use a device programmer to reprogram the
EPROM with the image file “<INSTALLPATH>\hw\Flash\9080RDK-RC32364.bin”. The
image should be programmed at EPROM offset 0x00000.

2.1.4.5 Troubleshooting

You may experience difficulties using the PCI SDK with Windows NT with low memory and
multiple PLX RDK boards. If you notice that one of your RDK boards is not being assigned the
proper memory resources by the PCI BIOS (e.g. no address provided to the Local Space 0
address) it is most likely due to a common memory problem with WinNT. It is recommended that
users increase the amount of available system pages in their System Registry by following the
steps below;

1. From a command prompt type: regedt32. This will bring up the Registry Editor window.
(This editor looks similar to the Windows Explorer application.)

2. Select the HKEY_LOCAL_MACHINE on Local Machine window from within the Registry
Editor.

3. Open the SYSTEM folder.

4. From the SYSTEM folder, open the CurrentControlSet folder.

5. From the CurrentControlSet folder, open the Control folder.

6. From the Control folder, open the Session Manager folder.

7. From the Session Manager folder, open the Memory Management folder.

8. From the Memory Management folder, change the value of the SystemPages key from
0x0 to 0x13880.

If problems persist, please contact Customer Support.

2-6 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

2.1.4.5.1 Driver Interrupt Sharing

The PCI SDK device drivers have interrupt sharing enabled. This allows PLX devices to share
the same interrupt line as other devices. However, in order to share interrupts with non-PLX
devices the device driver for the non-PLX device must also support sharing. Because many
device drivers do not support interrupt sharing, the PCI SDK can only be guaranteed to function
properly with other PLX devices.

In PCI systems, the BIOS often assigns the same interrupt to multiple devices; however, the
respective device drivers must support these "shared interrupts". A driver that does not support
this feature may prevent the PLX driver from functioning correctly. A possible workaround for
this condition is to manually configure the BIOS to assign a free interrupt to the PLX device.

2.2 Understanding The PCI SDK

2.2.1 IOP Software

2.2.1.1 Introduction

The PCI SDK includes several samples of IOP applications. Their purpose is to demonstrate how
designers can interact with the PLX chip from IOP software. The IOP applications are user-
interactive and require PLXMon 99 with a serial cable link.

The IOP applications are designed specifically to run on a PLX RDK board. However, the IOP
applications can be used as a good starting point when designing custom target platforms.

2.2.1.2 IOP Applications

The PCI SDK contains several sample applications. By default, all PLX RDK boards contain the
“monitor” application preprogrammed in FLASH memory. This application is a command line
interpreter, which accepts commands from the serial port and acts accordingly. The monitor
program enables you to read from or write to memory in 32-bit, 16-bit and 8-bit units. Complete
source code for this application is provided in the PCI SDK. Please refer to the PLXMon 99
User’s Manual for more information on how to communicate to the PLX RDK boards IOP
applications.

In the <INSTALLPATH>\hw\FLASH directory, there are default ROM images for all the RDKs
supported by the PCI SDK. Every RDK FLASH is programmed and shipped with a relevant
image from this directory. The user can choose to restore the FLASH to the default ROM image
using the corresponding FLASH image from this directory later if the FLASH image on the
user’s RDK board is corrupted for whatever reason.

2.2.1.2.1 MiniBSP Application

MiniBSP is included in the PCI SDK to provide a good starting point for users who have an
untested hardware device and for this reason, it is limited in features and functionality. It provides
bare minimum boot-up code for most boards. This application configures the microprocessor, the
PLX chip, and proceeds to blink the LED, if any, that is connected to one of the PLX chip’s
USER pins. To use the MiniBSP application, you should program the binary image into the
FLASH using a FLASH chip programmer. Once the FLASH is programmed, put the FLASH into
the board, and reboot the board. If the LED blinks, then the MiniBSP application configured the

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 2-7

board properly. Otherwise, you have to modify the MiniBSP source file for your hardware
configuration.

Note:

1. This ROM application is provided as a bare bones ROM application useful for confirming the
functionality of new boards. It does not contain any PCI SDK features that are described in
any PCI SDK manual.

2. "MiniBSP" and "MiniROM" refer to essentially the same application. (Users of previous
version of SDK may be familiar with the term "MiniROM").

2.2.1.3 How to Compile the Samples

There are four compiler packages used in the PCI SDK to compile code for all the seven RDKs
supported by the PCI SDK. The four compiler packages are as follows:

1. IBM High C/C++ PowerPC Cross-Compiler, version 1.0 (7/31/96); and IBM 401 EVB
Software Support Package, version 1.6.4 (4/1/97). This compiler set supports the following
two RDKs:

• PCI 9080RDK-401B; and

• IOP 480RDK.

2. DIAB Data, Inc. Compiler and Linker for the PowerPC, version 4.0b or version 4.3p6. This
compiler package supports the following five RDKs:

• PCI 9080RDK-860;

• PCI 9054RDK-860;

• CompactPCI 9054RDK-860;

• PCI 9080RDK-401B; and

• IOP 480RDK.

3. IDT/c Cross Compiler System Version 5.5/7.0 GNU Developer’s Kit. This compiler package
supports the PCI 9080RDK-RC32364 RDK.

4. Cygnus GNU compiler: gcc version 2.7-96q3a. This compiler Package supports the PCI
9080RDK-SH3 RDK.

2.2.1.3.1 Batch Files For Setting Up the Environment Variables

After the installation of the PCI SDK package, there are four batch files in the
<INSTALlPATH>\bin directory. These batch files set up the compiler environment variables for
one of the above-mentioned compilers and these batch files are:

1. SetIbm.bat file, which sets up compiler environment for IBM High C/C++ PowerPC
Cross-Compiler and IBM 401 EVB Software Support Package;

2. SetDiab.bat file, which sets up compiler environment for DIAB Data, Inc. Compiler and
Linker for the PowerPC;

3. SetIdt.bat file, which sets up compiler environment for IDT/c Cross Compiler System
Version 5.5/7.0 GNU Developer’s Kit;

4. SetSh3.bat file, which sets up compiler environment for Cygnus GNU compiler.

2-8 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

2.2.1.3.2 Batch Files Need Modification

The four batch files mentioned in the above section need modifying to reflect the directory
structure on the customer’s system. The batch files are well commented and should be easily
modified with a text editor.

• The directory path to the nmake.exe, a make utility program from Microsoft Developer
Studio and all the IOP make file are written in the nmake rules, must be included in the
PATH environment variable.

• The directory path to the doskey.com or doskey.exe program must exist in one of the
directories indicated by the PATH environment variable.

2.2.1.3.3 Set Up The Compiler Environment Variables

There are two ways to set up environment variables for the compiler the customer chooses. They
are:

• 1. Select the Windows “Start” menu;

2. Select the “Programs” submenu;

3. Select the “PLX PCISDK v300” folder; and

4. Select one of the four “Compiler Environment” shortcuts;

• 1. Run the MS-DOS prompt;

2. Type one of the batch files listed in section 2.2.1.3.1 such as “setdiab”, and press the
ENTER key.

2.2.1.3.4 Recompile the Hello World Sample

To rebuild the Hello World application, execute the nmake file contained within the
<INSTALLPATH>\Iop\Samples\Hello directory. To do this, first set up the desired compiler
environment variables using one method listed in the above section, then change to the
<INSTALLPATH>\Iop\Samples\Hello directory if necessary, and type the following to build
the Hello World IOP RAM application for the PCI 9080RDK-401B:

nmake /f 80-401B.mak

To rebuild the Hello World IOP ROM application, type the following line instead:

nmake /f 80-401B.mak ROM=TRUE

The nmake file builds the application properly by using the environment variables set by the
batch file and by any parameters passed in from the command prompt.

In the <INSTALLPATH>\Iop\Samples\Hello directory, there is only one source file, being the
Hello World application’s main file hello.c and a nmake file for each supported RDK. When
rebuilding the IOP application, the nmake file links in the appropriate libraries from the PCI SDK
library directory for all the support functions needed by the IOP application.

2.2.1.3.5 Troubleshooting During the Compilation

During the recompiling process, if you have difficulty compiling, look into the following factors,
which might lead to the compiling problems:

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 2-9

• Have you updated the batch file for setting up the compiler environment variables?

• Is Nmake.exe utility program in the directory indicated by the PATH variable?

• Is Nmake.exe utility program in the directory indicated by the PATH variable the right
utility program you intend to use?

• Have you set up your compiler environment variables?

• Have you run the batch file to set up the compiler variables?

2.2.1.3.6 “Out of Environment Space” Message on Windows 98

When you run the MS-DOS prompt under Windows 98, the environment space for existing
variables are allocated by default. This may lead to the “Out of environment space” message
when you are trying to set up the compiler environment variables by running one of the batch
files mentioned above. There are two ways to fix this problem.

• 1. Run a MS-DOS prompt;

2. Type “set” and press the ENTER key;

3. Record the string after the “COMSPEC=”, let’s assume it is C:\windows\command.com;

4. Use a text editor such as notepad.exe to edit the c:\config.sys file. C: is assumed
to be Windows 98 boot-up hard drive;

5. Check there is a “SHELL=” line in the config.sys file.

• If there isn’t the line, add the following line “SHELL=C:\Windows\Command.com
c:\ /E:2048 /P”. The bolded string in the line is the string recorded in step 3.

• If there is the line, check the number after the “/E:” and increase it to multiples of
256;

6. Save the C:\Config.sys file and reboot.

• 1. Run a MS-DOS prompt either by selecting “Menu” -> “Programs” -> “PLX

PCISDK v3.00” and then selecting one of the compiler environment shortcuts or by running
another MS-DOS prompt shortcut;

2. Select “Properties” from the popup menu and select the tab “Memory” from the
dialogue box that appears;

3. Change the item labeled in the “Initial Environment” from “Auto” to 2048 or even
bigger;

4. Click “Apply” pushbutton and then click “OK” when a warning dialogue box appears;

5. Exit the MS-DOS prompt by typing “Exit”;

6. Re-run the MS-DOS prompt and you should not get the “Out of environment space”
message. If you still do, repeat the step 1 to 5 and increase the size to a bigger environment
size.

2-10 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

2.2.2 Windows Based Host Software

2.2.2.1 Introduction

The PCI SDK contains six distinct device drivers, an API, and a Windows monitor application

(see Figure 2-2). They are as follows:

• Three PLX WinNT Device Drivers supporting the PCI 9080, the PCI 9054, and IOP 480;

• Three PLX WDM Win98 Device Drivers supporting the PCI 9080, the PCI 9054, and IOP
480 ;

• PCI API, a powerful API compatible with all PLX devices and PLX device drivers; and

• PLXMon 99, a Graphical User Interface (GUI) application that can be used to monitor and
modify PLX chip registers. It can also download software to a PLX RDK board, and
communicate to the software running on the RDK board.

All Win32 executables included in the PCI SDK are located in the “<INSTALLPATH>\bin”
directory. Furthermore, this path is added to the environment variables when the PCI SDK is
installed.

For more information on PLXMon 99, please refer to the PLXMon 99 User's Manual.

PLXMon 99

PLX PCI API

Custom Application

Custom Application

Custom Application

Sample Application
Sample Application

Sample Application

User Space

Kernel Space

Launched From PLXMon99

Lauched From PLXMon99

PCI 9080
WDM
Device
Driver

IOP 480
WinNT
Device
Driver

PCI 9080
WinNT
Device
Driver

IOP 480
WDM
Device
Driver

PCI
9080RDK

IOP480RDK
PCI

9080RDK
IOP480RDK

Win98 WinNT

PCI 9054
WDM
Device
Driver

PCI
9054RDK

PCI 9054
WinNT
Device
Driver

PCI
9054RDK

Figure 2-2 Windows Host software Layout for PCI SDK V3.0

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 2-11

2.2.2.2 Windows NT Device Drivers

The PCI SDK includes Windows NT device drivers for each PLX device. All device drivers are
located in the <WINDOWS SYSTEM DIR>\system32\drivers directory. The naming
convention used for the device drivers is: Pci<DEVICETYPE>.sys. or iop480.sys. For
example, the device driver for the PCI 9080 device is named Pci9080.sys.

2.2.2.2.1 Starting And Stopping

There may be times when you will need to restart the Windows NT device driver. For instance,
you must restart the device driver after changing the supported device list.

To restart the Windows NT device driver you should use the Windows NT Control Panel. The
Control Panel contains a utility called ‘Devices’ that allows you to start and stop the device driver
(see Figure 2-3).

Note: Before stopping the device driver, all PCI SDK applications should be closed.

By default, the device driver is configured to startup automatically at Windows NT boot time.
You may configure the device driver to start manually by selecting the ‘Startup…’ button.
However, no PCI SDK applications will function without the device driver being started.

You may also use the PCI SDK applet DriverWizard to restart the device drivers. Consult Section
2.2.2.2.4 for more details.

2.2.2.2.2 Event Logging

The Windows NT Device Driver has the capability to record errors into the Windows NT Event
Viewer. When trouble shooting problems with the device driver it is recommended that the event
viewer be used.

Events can be viewed by selecting an event item. Figure 2-4 shows an example of the event

Figure 2-3 The Devices Utility Window.

2-12 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

viewer and Figure 2-5 shows details of an event.

2.2.2.2.3 Registry Configuration

Every Windows NT device driver requires an entry in the registry. The registry contains lots of
information used by the operating system as well as information used by the PLX device driver if
necessary. The name in the registry for the PLX PCI SDK device driver will be the same as the
driver name. For instance, the pci9080.sys device driver has a pci9080 registry item as
shown in Figure 2.6. All device drivers are located under the
LocalMachine\System\CurrentControlSet\Services tree.

Figure 2-4 The Event View Window.

Figure 2-5 The Detailed Event Window

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 2-13

The figures below show the required registry settings for the PCI SDK device drivers. The values
displayed in the figures may be different from those in your system after you use the PCI SDK
package. These figures are shown here to demonstrate the registry entries used by PCI SDK.

Figure 2-6 Registry Information For PCI 9080 Device Driver on Windows NT

Figure 2-7 Registry Information for PCI 9054 Device Driver on Windows NT

Figure 2-8 Registry Information for IOP 480 Device Driver on Windows NT

2-14 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

Note: The registry editor should be used to modify registry entries only by advanced users with
administrative rights. It is recommended that you NOT change any values contained in the
registry.

The registry entries for each of the PLX device drivers are listed as follows:

• CommonBufferSize: This value sets the size of the user buffer (the "hbuf" in PLXMon 99).
Its default value is set to 64KB. Warning: First, the device driver makes a request to the
operating system for a buffer with the size indicated by this registry entry. However, if the
device driver fails to get the buffer requested due to a lack of system resource, then it will
decrement the size until it is given an allocated buffer by the operating system. You should
use the PlxPciCommonBufferGet() API function to determine the actual buffer size.

• ErrorControl: This value is required by the operating system and should not be modified.

• EventLogLevel: This value sets the event-logging mode in the device drivers. If this value is 0
then events will not be logged. If this value is 1 then high severity events will be logged. If
this value is 2 then all events will be logged.

• MaxPciBus: This value sets the highest PCI bus that the device driver will scan for PLX
devices. By default it is set to 0x3.

• MaxSglTransferSize: This value sets the size of an internal buffer that is required for SGL and
Shuttle DMA transfers.

• Start: This value is required by the operating system and should not be modified.

• SupportedIDs: This value contains the Vendor Ids and Device Ids for the PLX devices that
the driver supports. Users should use the PCI SDK application DriverWizard to modify
this field. Modification of this field directly might make the DriverWizard application run
erratically.

• Type: This value is required by the operating system and should not be modified.

2.2.2.2.4 Driver Configuration

Before using the device driver with a customer board, the driver must first be configured with the
appropriate Vendor ID and Device ID. PLXMon 99 has a hot-link to a PCI SDK utility called the
Device Driver Wizard, which is also in the program menu for the PCI SDK package. This utility
is used to add or remove vendor and device IDs of the boards from the SupportedIDs entry for
the appropriate device driver. It also lets you enable or disable the desired PLX device driver to
start automatically at startup.

Note: If you are not using the PCI 9054 or PCI 9080 or IOP 480 device driver you should disable
it by using this utility. You must either restart your computer or restart the device driver before
the settings take effect.

2.2.2.2.5 Known Problem of Windows NT Device Drivers

There is one known problem for Windows NT device drivers. The problem is that the use of the
PlxIntrAttach() function with SGL DMA transfers in Windows NT leads to exception faults.

An exception fault can occur when attaching a User Signal to the interrupt on the termination of a
SGL transfer in Windows NT. This is due to the Windows NT subsystem getting I/O completion
requests at too near an interval in time. The best remedy for this is to place a __try- except

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 2-15

handler around the code where the exception occurs. This will successfully handle the exception
and no loss of data will occur.

2.2.2.3 Windows 98 Device Drivers

The PCI SDK includes Windows 98 device drivers for each PLX device. All device drivers are
located in the <WINDOWS SYSTEM DIR>\system directory. The naming convention used for
the device drivers is: Pci<DEVICETYPE>.sys or iop480.sys. For example, the device
driver for the PCI 9080 device is named Pci9080.sys.

2.2.2.3.1 Starting And Stopping

Unlike Windows NT drivers, Windows 98 device drivers are started and stopped as needed by the
operating system. The PLX device drivers are started when Windows 98 detects a device that
needs it. If, at a later time, the device is removed (by hitting the “Remove” button for a device
from the Device Manager window), the device driver will be stopped unless there was another
device that still needs it.

There is no applet that controls the starting or stopping of a device driver under Windows 98.

2.2.2.3.2 Event Logging

Event logging is not accessible on Windows 98.

Figure 2-9 The PCI SDK Device Driver Wizard

2-16 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

2.2.2.3.3 Registry Configuration

Every Windows 98 device driver requires an entry into the registry. The registry contains
information required by the operating system as well as information required by the device driver.
All device drivers are located in the registry under the:
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\Class\Unknown\000X

tree, where 000X is the driver number within the “Unknown” class of drivers. The PLX device
driver can be found within the Unknown class by looking at the NTMPDriver value of each key,
which should describe the driver name (pci9080.sys or pci9054.sys or IOP480.sys,
depending on the PLX chip in use).

Note: The registry editor should be used to modify the registry entries only by advanced users. It
is recommended that you NOT change any values contained in the registry.

2.2.2.3.4 Known Problems of Windows 98 Device Drivers.

Windows 98 contains a few features that do not yet perform as expected. The following list
contains some known features that affect the operation of the PCI SDK.

Scatter-Gather and Shuttle DMA

The Win98 device driver can periodically fail to transfer huge Scatter-Gather and Shuttle DMA
data buffers. This affects the following PCI API functions: PlxDmaSglTransfer() and
PlxDmaShuttleTransfer(). It is recommended that all data buffers used in the DMA transfers NOT
exceed 1 MB in size.

Changing Device Slot Numbers

If the RDK board is removed and placed into another PCI slot, Windows 98 will consider the
board as a “New Hardware device” and will show the “Add New Hardware Wizard”. You must
then repeat the Win98 device driver installation procedure (see section 2.1.4.2.2 for information
on installing Win98 device drivers).

Using Power Management Features of the PCI 9054 and IOP 480

Windows 98 Power Management support was not complete when the PCI SDK was released.
Therefore, the method recommended by Microsoft in its documentation to change the power level
of a device does not work as expected. To overcome this problem two possible methods can be
used:

1. Change the PCI 9054 or IOP 480 power level using a different method than the one
recommended by Microsoft. The intended behavior can be obtained. However, this could
cause problems in future releases of Windows 98.

2. Leave the device driver sections as is, in hopes that Microsoft will correct the problem in
future releases of Windows 98.

The PCI SDK uses the first option in order to maintain Power Management capabilities. Both the
IOP 480 driver and the PCI 9054 driver use the same algorithm for changing power levels.

2.3 Using The PCI SDK With A New Board
The following steps can be used as a guide on how to use the PCI SDK with a new board.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 2-17

1. Program the desired Vendor and Device IDs into the configuration EEPROM.

2. If using Windows NT, you will need to add the new Vendor and Device IDs to the Supported
Device List. To add support for new IDs, use the Device Driver Wizard utility (see section
2.2.2.2.4).

3. If using Windows 98, you will need to consult section 2.1.4.2.2 to register the new device
with the Windows 98 device drivers.

4. Edit the MiniBSP application as necessary to support the new board.

5. Program the board’s FLASH with the modified MiniBSP application binary image file.

6. PLXMon 99 can now access the board’s configuration EEPROM. Using PLXMon 99’s
EEPROM Configuration window, customize the EEPROM settings for the new board and
reboot the system for the changes to take effect.

7. Try accessing IOP memory by using the Direct Slave memory accesses to the board (This
means the memory controller for the IOP memory has been set up and direct master access to
the IOP memory by the PLX device has been initialized as well).

When the above steps have been performed and are working properly, modify the IOP Board
Support Package (BSP) module to begin porting the PCI SDK to the new board. Consult the PCI
SDK Programmer’s Manual for more information on porting the PCI SDK to new boards.

2.4 Using The IOP API libraries With Other Compilers
The PCI SDK contains IOP API libraries and a PCI API library. The PCI API library is compiled
to work with Windows operating systems (Windows NT and Windows 98). However, the IOP
API library is compiled for a special microprocessor such as Motorola MPC860 by a compiler
chosen, such as DIAB PowerPC compiler, in a format chosen, such as ELF format. The following
list can be used to determine some causes of warning or errors:

• Ensure that the IOP base data types for S8, U8, S16… are type-casted to the appropriate data
types for the compiler used;

• If the embedded operating system/compiler supports 64 bit code ensure that the appropriate
64 bit data type is used for S64 and U64 data types; and,

• Some embedded operating systems/compilers may not provide functions that are needed by
the PCI SDK. It may be necessary to recreate the operation of these functions or redirect
these functions to similar functions provided by the operating system/compiler.

2-18 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

This page is intentionally left blank.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-1

3. PCI SDK Software Architecture Overview

3.1 Assumptions
This section discusses some assumptions made in the design of the PCI SDK.

3.1.1 PCI SDK Assumptions
The assumptions for the PCI SDK are as follows:

• Mailbox register 5, 6 and 7 are reserved for communication between PLXMon 99 and the
IOP software when PLXMon 99 downloads RAM applications to the IOP.

• When a PLX PCI device driver is started, mailbox register 3 of the device supported by the
driver will contain the address of the PCI common buffer, and mailbox register 4 will contain
the size of the buffer.

3.1.2 IOP API And IOP Software Assumptions
The assumptions for the IOP API and the IOP software are as follows:

• For the Back-End Monitor (BEM) to function properly, the IOP board must have one
available serial port, configurable by the Board Support Package software;

• The data received by the serial port must be retrieved in a timely manner in order to eliminate
any lost data;

• The initialization of the PLX chip is done by the IOP software only;

• The data expected by the application will not contain any data that could be interpreted by the
BEM as a command if the BEM is linked into the application;

• All IOP applications must relinquish the processor periodically to avoid starvation of the
BEM (cooperative or non-preemptive multitasking);

• When an application is downloaded to the IOP RAM or the application wants to reprogram
the on-board FLASH using a serial connection, the IOP BSP must execute the
CheckPciDownloadToRam() and the CheckSerialDownloadToRam() functions at
microprocessor reset or re-execution of boot-up code initialized by the software;

• The BlinkLed() function assumes that the LED is connected to the PLX chip’s USERo pin, or
users can comment this function out if there is no LED connected, or choose to provide
another way to blink a LED such as 9080RDK-RC32364 does; and,

• Supplied IOP Libraries are compiled for Big Endian processors only and contain no support
for 64 bit processors or compilers. However, the source code does support Little Endian
processors but it must be recompiled for that purpose. Please send an email to
software@plxtech.com if you require support for Little Endian processors.

3.1.3 PCI API And Win32 Software Assumptions
The assumptions for the PCI API and the Win32 software are as follows:

mailto:software@plxtech.com

3-2 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

• All Win32 applications supplied with the PCI SDK will provide full functionality to all PLX
registered devices; and,

• The doorbell interrupts, QUERY_EEPROM_TYPE, DOORRBELL_KERNEL_RESET,
FLASH_READ, and FLASH_WRITE are reserved for PCI SDK purposes.

3.2 Overview
The PCI SDK is separated into two distinct sets of software, the IOP software that runs on the
RDK board and the PCI software that runs on the Windows host system (as shown in Figure 3-1).
Each API contains distinct function calls that emphasize the features of the PLX chip. Some
function calls look and react similarly in both API’s but may have different parameter lists.

The IOP software contains three modules (excluding the IOP application), the IOP API library,
the Board Support Package (BSP) and the Back-End Monitor (BEM). The IOP API is designed
specifically for each PLX chip or for a combination of PLX chips on one RDK board. The IOP

PLXMon99

IOP Applications

PCI Bus

IOP API

(Specific for
each solution)

Back-End
Monitor
(BEM)

HOST

IOP

IOP Image File (RomApp.bin)

Board Support
Package

(BSP)

PCI Communications
(Using PCI API Library and

PLX Device Drivers)

Serial Communications

RS-232

Figure 3-1 The PCI SDK Software Architecture

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-3

API can be customized to run on any RDK board by modifying the Board Support Package. IOP
debugging can be performed with PLXMon 99 by including the Back-End Monitor into the IOP
application.

The PCI software can be separated into two different packages, the Serial Communication
package and the PCI Bus Communication package (see Chapter 3.5). The Serial Communication
package accesses the information from the board using messages sent through the serial port of
the board. This communication method requires having the Back-End Monitor included into the
IOP application running on the desired RDK board. This package is implemented within the
PLXMon 99 application.

The PCI Communication package consists of two modules, being the PCI API Dynamic Link
Library (DLL) and the Windows Device Driver. PCI applications make calls to the PCI API DLL
where they are translated into the appropriate device driver calls. The device driver performs the
requested action and provides a response, where appropriate, to the PCI API DLL. The status of
the API call is returned to the calling application.

3.3 Software Architecture
The PCI SDK software architecture is shown in Figure 3-1. The SDK software is divided into
five major components:

• PLXMon 99: this module includes PCI Bus communication and serial communication to the
Back-End Monitor;

• PCI API library file PLXApi.dll which translates API function calls into device driver
function calls to the PLX device drivers;

• PLX device drivers which actually control the access to the PLX devices;

• IOP API Library: this library contains the code that performs the API functions and accesses
the PLX chip. There are at least two IOP APIs for each PCI device: Release and Debug. Both
libraries are the same except the release version eliminates many of the parameter validation
steps that are performed in the debug version, and hence performance is increased if the
release version of the API is used. All debug libraries contain a ‘d’ suffix in their name (E.G.
api860d.a). Release libraries do not contain the ‘d’ suffix in their name (E.G. api860.a).

• BSP Module: this module contains all board specific code, including the IOP bus memory
map, the board and microprocessor initialization routines and the interrupt service routine for
the PLX chip;

• Back-End Monitor: this module provides a monitor for debugging IOP applications which
supports PLXMon 99 through the serial port; and,

• IOP Applications: this module contains the main application for the RDK board and the IOP.

3.4 IOP Software Architecture
The IOP software architecture is separated into four modules, being:

• The Board Support Package (BSP);

• The IOP API library;

• The Back-End Monitor (BEM); and,

3-4 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

• The IOP application software (user application modules).

The IOP software architecture is shown in Figure 3-2.

PLX
Chip

µP

IOP Image File (RomApp.bin)

User Applications

µP Initialization
Module

Board
Initialization

Module

BSP

Back-End Monitor
(BEM)

DMA Resource
Manager

IOP API

PLXMon 99

3.4.1 Board Support Package (BSP)
The Board Support Package (BSP) contains all the information needed by the IOP API that is
specific to the board. This module provides the necessary entry points needed to port the PCI
SDK to new platforms. The BSP is composed of two main sub-modules, being:

• The Microprocessor Initialization module; and,

• The Board Initialization module.

Figure 3-2 The IOP Software Architecture

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-5

Note: Prior to porting the PCI SDK to new boards an understanding of the BSP and its
functionality should be acquired.

3.4.1.1 Microprocessor Initialization Module

The microprocessor initialization module contains all the necessary information about the
microprocessor required by the IOP API. Some of the information contained within this module
are the microprocessor boot code, the main default interrupt service routine (ISR) for the PCI
SDK and the default PLX chip interrupt trigger support functions.

3.4.1.1.1 Microprocessor Boot Code

When the board is powered up, the microprocessor starts executing the boot code. The boot code
initializes the microprocessor, configures the memory controller, copies data and code (if
necessary for performance reasons) from the boot FLASH to RAM memory and brings the
microprocessor to a ready state. The sequence of events is as follows:

1. The board is powered on.

2. The microprocessor begins at the reset address where it immediately jumps to the boot code.

3. The boot code configures the memory controller.

4. The data section and the code section (if necessary) of the boot application is copied to RAM
memory.

5. The exception vector table is initialized.

6. Any other microprocessor specific initialization is done, such as configuring the endian
registers, configuring the clock (if internal clocks are available), setting up any peripheral
units internal to the microprocessor.

7. Once the microprocessor is initialized and is ready to run, the boot code jumps to the board
initialization routine (see section 3.4.1.2).

Note: The MiniBSP application included in the PCI SDK provides a good starting point for users
who have untested boards. The application is limited in features and functionality and should be
the basis for porting the PCI SDK to new boards. (See section 3.4.5.2 for more information).

3.4.1.1.2 Interrupt Service Routine

The interrupt service routine (ISR) provided in the BSP controls all interrupts generated by a PLX
chip. The ISR is divided into one main routine with one function to service each interrupt trigger
on the chip. When an interrupt is generated, the ISR determines the interrupt trigger and calls the
appropriate interrupt trigger service routine to service the interrupt.

This method allows modification of individual interrupt trigger service routines or modification
of the main interrupt service routine to customize the handling of interrupts for each application.

3.4.1.2 Board Initialization Module

The Board Initialization module contains information on the features of the board and the board
initialization routine. Some of the information it provides includes the memory map of the IOP
bus, specifically where the following devices are located in memory:

• SRAM address and range, if any;

3-6 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

• DRAM address and range, if any;

• SDRAM address and range, if any;

• PLX chip Register Base address;

• UART ports (Control/Status, Data);

• Flash Memory address and range;

• Direct Master Memory Remap address and range;

• Direct Master I/O Remap address and range; and,

• Boot-up address.

The PCI SDK needs to know the endianness for each memory region. If the IOP bus is less than
32 bits wide, the PCI SDK needs to know how the IOP bus is connected to the PLX chip
(specifically which bytes and byte lanes are used by the IOP bus).

The Back-End Monitor needs to use UART-related functions. The necessary UART ISRs and
serial communication functions are included in this module.

3.4.1.2.1 Board Initialization Routine

The board initialization routine contains the necessary API functions to configure and initialize
the PLX chip, the IOP API library, the Back-End Monitor and any other device on the RDK
board. This function is called from the microprocessor initialization routine (the microprocessor
boot code, see section 3.4.1.1.1) at start up. The board initialization sequence is as follows:

1. Initialize the PLX chip. A list of IOP API initialization functions is provided with each of its
parameters set to the PLX chip’s default values (set by calling the PlxInitApi() function).

2. Change the default values for the parameters as necessary before calling the respective IOP
API initialization function.

3. Set the Local Initialization Status bit when the PLX chip is initialized (this asserts the NB#
pin low). This bit allows the PCI BIOS to access the PLX chip. Once the PCI BIOS finished
assigning the appropriate values to the PLX chip’s PCI configuration registers, the PLX chip
is completely initialized and is ready to run.

4. Initialize the different debugging levels of the Back-End Monitor with the necessary board
specific information.

5. Initialize any other peripheral on the board.

6. Connect the Interrupt Service Routines to the appropriate interrupt lines of the
microprocessor.

7. Initialize the application, if necessary, once all devices on the RDK board have been
initialized and are operational.

8. Jump to the AppMain() application routine.

3.4.1.3 The Main() And AppMain() Functions

The BSP Library contains the main() function for any application using the PCI SDK. This
function controls the operation of the IOP API. The function starts by initializing the
microprocessor and its peripherals, the PLX chip (when there is no EEPROM connected to it), the

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-7

UART chip, and the Back-End Monitor. The function proceeds to test the available memory on
board and begins the main application section.

The main application section consists of a loop that allows execution of several tasks on a round-
robin priority scheme. Each task is allowed as much time as it needs to run (non-preemptive and
no priority levels). This loop runs without interruption in a cyclic fashion and therefore all the
tasks must eventually return (tasks must be reentrant).

The Back-End Monitor can be used to filter the stream of data, supplied by the UART Services
functions, to help in debugging new applications. The UART Services functions receive a stream
of data from the RS-232 port on the RDK board and buffer it. This stream can be received by any
task requiring data from the serial port.

The Back-End Monitor, BemMain(), does simple debugging. This monitoring task is used with
PLXMon 99. The BemMain() monitor task accepts a variety of standardized commands for
reading from, writing to memory or EEPROM, resetting the IOP.

With the stream of data received from the serial port (see Figure 3-3), the BemMain() task
receives and parses through it, searching for commands. When BemMain() finds a command that
it recognizes, the monitor removes the command from the stream, reacts accordingly to the
command and returns a response when appropriate. Once the stream of data has been completely
parsed and all BemMain() commands have been removed from it the filtered stream is made
available to the next task wishing data from the serial port. The filtered data stream is received by
the application, AppMain().

The filtering of the data stream can be bypassed by a task at any point in time by calling the
UART Services functions. An example of this feature is when a task starts an application
download to memory. The application binary file being downloaded may contain data that looks
similar to a command for the BemMain() task. If the BemMain() task is retrieving the data from
the UART Services functions, then some information about the application will be lost.
Therefore, while the task downloads an application, it calls PlxGetChars() directly to retrieve the
unfiltered data from the UART chip until the application is completely downloaded. Once the
download is complete, the task returns control to the BSP Module’s main loop to allow other
tasks to run.

This feature should be used with caution however because it directly affects the operation of the
other tasks dependant on the data stream coming from the serial port. When an application
requests unfiltered data the task calls PlxGetChars() function and this function returns an
unfiltered data stream. This task should not return to the main loop (within the BSP Module) to
continue processing of debug commands until all the necessary unfiltered data has been received

BemMain() AppMain()

U
A

R
T

 S
er

vi
ce

s

Figure 3-3 The Data Stream Flow Diagram.

3-8 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

by the application. By doing this the Back-End Monitor task will not scan through the data and
remove command data from the stream that was not intended to be a command for the debug
monitors.

3.4.2 IOP API Library
The IOP API library contains the code for all the documented API functions. This code is
standard for all IOP applications and is independent of the board configuration. The code directly
calls the PLX chip (no intermediary functions).

There are at least two IOP APIs for each PCI device: Release and Debug. Both libraries are the
same except the release version eliminates many of the parameter validation steps that are
performed in the debug version, and hence performance is increased when using the release
version of the API. All debug libraries contain a ‘d’ suffix in their name (E.G. api860d.a).
Release libraries do not contain the ‘d’ suffix in their name (E.G. api860.a).

For the PowerPC CPU type supported by DIAB compiler, two sets of release and debug version
IOP API libraries are created: Release and Debug versions in ELF format; Release and Debug
versions in COFF format. Libraries in ELF or in COFF format exist in DIAB-ELF or DIAB-
COFF subdirectory respectively under the directory <INSTALLPATH>\Iop\Lib\RDK_NAME.

RDK_NAME is one of the following five RDK directory names.

• IOP 480RDK;

• 9054RDK-860;

• CPCI9054RDK-860;

• 9080RDK-860; and

• 9080RDK-401B.

For the 9080RDK-401B and IOP 480 RDK, one more set of release version and debug version
IOP API libraries are created with the IBM High C/C++ PowerPC Cross-Compiler. Libraries
created by IBM High C/C++ PowerPC Cross-Compiler are located under the
<INSTALLPATH>\Iop\Lib\RDK_NAME\IBM-ELF directory where RDK_NAME can be either
9080RDK-401B or IOP480RDK.

Note: Each PLX chip has its own IOP API library specifically designed to complement its
features. To implement more than one PLX chip on one board, a new library must be created.
This library would combine the features of each chip and have new functions to accent the
features achieved by grouping the PLX chips.

3.4.2.1 DMA Resource Manager

The IOP API supports three different DMA (Direct Memory Access) transfer types and manages
the DMA resources. The supported DMA transfer types are:

• Scatter-Gather DMA: Transfers data using Scatter-Gather Lists (SGL) and can transfer
several blocks of data at a time (formally called chaining DMA);

• Block DMA: Transfers data one block at a time (IOP 480 Flyby DMA is a special block
DMA); and,

• Shuttle DMA: a circular Scatter-Gather DMA transfer.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-9

The Scatter-Gather DMA transfer is most commonly used of all DMA transfers. This method
supports DMA transfers where either the source or destination memory locations are not
contiguous (this is common with most operating system memory allocation) the best. By
grouping multiple DMA transfer requests, the IOP application is interrupted less, therefore the
performance is improved.

The Block DMA transfer is used primarily for single DMA transfers and where the number of
transfer requests is small.

The Shuttle DMA Transfer is best used when the data transfers are repetitive (where the source
and destination locations remain relatively constant but the transfer direction may switch or the
transfer size is different).

Scatter-Gather DMA Transfers

In Scatter-Gather DMA transfers (see Figure 3-4), a SGL DMA channel is opened (steps 1-2).
With a successful return (step 3), a Scatter-Gather List (SGL) is acquired from the DMA resource
manager (steps 4-6) by calling PlxDmaSglBuild() and a handle to a list of DMA transfer element
addresses is returned (step 7). The DMA transfer elements are programmed with the appropriate
source and destination data addresses, the transfer size and the DMA transfer descriptors by

SGL
Waiting
Queue

Current SGL
Address

APP

P
lxD

m
aS

glT
ransfer()

PlxDmaSglBuild()

DMA
Channel 0

DMA
Channel 1

1.

2. 2.

3. 4.

5.

7.

11.

DMA
ISR

SGL
Waiting
Queue

15.

14.

Current SGL
Address

10.

13.

12.

Scatter-Gather List

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

Free
Queue

DMA
Transfer
Element

Free
Queue

6.

PlxDmaSglFill()

8.

8.

9.

PlxDmaSglChannelOpen()

Figure 3-4 Scatter-Gather DMA Flow Diagram

3-10 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

calling PlxDmaSglFill() (step 8). The SGL is passed to the PlxDmaSglTransfer() function (step
9). If there is not a SGL currently executing on the DMA channel, this function programs the list
address into the DMA descriptor register for the opened DMA channel and also into the Current
SGL Address buffer (one buffer for each DMA channel), and the DMA transfer is started (step
10). If there is a SGL executing then this function places the SGL address into the SGL Waiting
Queue (one queue for each DMA channel) (step 11). When the SGL currently executing is
completed the ISR reads the Current SGL Address buffer (step 12) and frees the DMA transfer
elements for this SGL to the DMA Transfer Element Free Queue (one queue for each DMA
channel) (step 13). The ISR then removes all the current SGL entries in the SGL Waiting Queue
and joins them together (step 14). The new SGL address is placed into the Current SGL Address
buffer and it is placed and started on the DMA Channel (step 15).

Block DMA Transfers

In Block DMA transfers (see Figure 3-5), a Block DMA channel is opened (steps 1-2). With a
successful return (step 3), the PlxDmaBlockTransfer() function is called with the appropriate
source and destination data addresses, the transfer size and the DMA transfer descriptor (step 4).
This function checks the status of the DMA channel to determine if there is a transfer in progress
by checking the DMA Done flag. If there is a transfer in progress then the function returns the “In

DMA Done

APP

PlxDmaBlockChannelOpen() PlxDmaBlockTransfer() PlxDmaBlockFastTransfer()

DMA
Channel 0

DMA
Channel 1

1.

2.

2.

3.

4.

DMA
ISR

5.

DMA Done

6.

7.

8.

DMA
Channel 2

(IOP 480 only)

Figure 3-5 Block DMA Transfer Flow Diagram

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-11

Progress” error code. Otherwise the DMA data is programmed into the DMA registers for the
DMA channel and the transfer is started. When the transfer is completed, the ISR will set the
DMA Done flag (step 5). If the PlxDmaBlockTransfer() function is set to not return immediately
then this function polls the DMA Done flag (step 6) and when the flag is set the function will
return. The PlxDmaBlockTransferRestart() function is used to quickly restart a Block DMA
transfer that was pre-programmed with the PlxDmaBlockTransfer() function (step 7). The only
parameter needed is the transfer size. All other DMA information is reused from the previous
transfer. This function also supplies an immediate return feature where, when the parameter is set
to FALSE, the function polls the DMA Done flag (step 8) until it is set then returns.

Shuttle DMA Transfers

In Shuttle DMA transfers (see Figure 3-6), a Shuttle DMA Engine is started by opening a Shuttle
DMA channel (steps 1-2). A number of DMA transfer elements are acquired from the DMA
resource manager (step 3). The DMA transfer elements are linked to create a Shuttle List (step 4).
This Shuttle List is placed on the opened DMA channel and is started thereby starting the Shuttle
DMA Engine. A list of the DMA transfer element addresses is returned to the application (step 5).

DMA
Transfer
Element

Free
Queue

APP

PlxDmaShuttleChannelOpen() PlxDmaShuttleFastTransfer()PlxDmaShuttleTransfer()

DMA
Channel 0

DMA
Channel 1

1.

2.2.

5.

7.

DMA
Transfer
Element

Free
Queue

Shuttle List

3.

4. 6.

6.

7.

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

DMA
Transfer
Element

Figure 3-6 The Shuttle DMA Flow Diagram

3-12 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

From this point, each DMA transfer element of the Shuttle List can be treated as a unique DMA
channel. To start a transfer, the PlxDmaShuttleTransfer() function is called with the appropriate
source and destination data addresses, the transfer size and the DMA transfer descriptors (step 6).
This function checks the status of the Shuttle DMA channel to determine if there is a transfer in
progress by checking the transfer size for the given DMA transfer element. If there is a transfer in
progress then the function returns the “In Progress” error code. Otherwise the DMA data is
programmed into the DMA transfer element provided by the application and the transfer is
started. When the transfer is completed the PLX chip (through the PLX DMA Descriptor Write
Back Feature) sets the transfer size for the completed DMA transfer element to zero. If the
PlxDmaShuttleTransfer() function is set for blocking then this function will poll the DMA
transfer element’s transfer size and when the size is set to zero the function will return. The
PlxDmaShuttleTransferRestart() function is used to quickly restart a Block DMA transfer that
was pre-programmed with the PlxDmaShuttleTransfer() function (step 7). The only parameter
needed is the transfer size. All other DMA information is reused from the previous transfer. This
function also supplies a blocking feature where it polls the DMA transfer element’s transfer size
until it is set to zero.

3.4.3 Back-End Monitor
The Back-End Monitor (BEM) provides features that help debugging IOP applications. The BEM
allows the host application PLXMon 99 to send commands to the IOP application using a serial
connection to a RDK board. The Back-End Monitor supports several commands, including
reading from and writing to IOP memory locations (these commands support different data sizes),
resetting the IOP software, reading from or writing to the EEPROM connected to the PLX chip,
and reprogramming the on-board FLASH (if supported), etc. These commands provide a generic
interface for an IOP application. PLXMon 99 uses this monitor to retrieve data from the IOP. In
normal operation, the BEM accesses the UART Services functions to get a stream of data that has
been received by the UART chip. The monitor extracts commands (that the monitor recognizes)
from the data stream, performs the necessary action and provides an appropriate response. The
monitor provides the filtered data stream to the next task requiring serial data in the daisy chain if
the data is not designed for the BEM.

There are times when a task may not want other tasks to extract data (or commands) from the data
stream. Other tasks are prevented from extracting data from the data stream passed by the UART
if one task access the UART support functions directly. A task, which wants to receive raw data
and bypasses the previous task in the daisy chain, can call PlxGetChars() to retrieve an unfiltered
data stream. If a task chooses to access the unfiltered data stream, it should take all the data
necessary to perform the action and return control back to the main routine (contained within the
BSP) once the action is completed.

The next application in the daisy chain, if required, retrieves the filtered data stream from the
BEM monitor. The application can do whatever it needs to do with the data. The application can
choose to provide a filtered stream of data from what is left over from its parsing of the data
stream so that the data stream can be passed down to the next task in the chain.

The Back-End Monitor (BEM) can recognize different commands coming from PLXMon 99:
reset the IOP microprocessor; read a memory location and write to a memory location etc. The
protocol for the serial communication between the IOP application and the host PLXMon 99 is
documented in the following sections.

Some commands use parameters. Parameters listed are normally necessary for the command
except when a parameter is within square braces (‘[‘ and ‘]’). These parameters are optional to the
command.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-13

Parameters listed with the vertical bar (‘|’) indicate that “one or another” parameter must be
provided.

Carriage returns are denoted as <CR>.

3.4.3.1 BEM Command Format and Commands

Please note:

• All BEM commands are case sensitive except hexadecimal value parameters.

• There will be no leading zero in the hex number string to speed up the serial
communication. Of course, if the data is zero, there will be only one zero ASCII letter.

• If two consequent hexadecimal values are required, then they are separated by a space
ASCII letter (0x20h).

• There is no space between a hexadecimal letter (0 . . 9, a . . f, or A . . F) and another non-
hexadecimal letter such as P.

• Due to the fact the Microsoft Word automatically toggles the case of the first letter in the
sentence when you type, there is a possibility that the command letter in this document
might not be accurate even though every effort is made to make it accurate. For the latest
and most accurate information on BEM, please read <INSTALLPATH>\inc\Bem.h file.

Command Format

|____2 Bytes____|____1 Byte____|____Extra Bytes___________|<CR>
| Header (~p) | BEM Command | Command-Specific Info |

BEM Command Definition
! Reset the IOP board
@ Query the information for the board

g Read a 8-bit data from IOP local memory
h Read a 16-bit data from IOP local memory
i Read a 32-bit data from IOP local memory
j Read a 64-bit data from IOP local memory
k Read from EEPROM into the EEPROM data buffer
m Read multiple 8-bit data from IOP local memory
n Read multiple 16-bit data from IOP local memory
o Read multiple 32-bit data from IOP local memory
p Read multiple 64-bit data from IOP local memory
z Read from IOP 480 or 401B CPU register

G Write a 8-bit data to IOP local memory
H Write a 16-bit data to IOP local memory
I Write a 32-bit data to IOP local memory
J Write a 64-bit data to IOP local memory
K Write from the EEPROM data buffer into the EEPROM
M Write multiple 8-bit data to IOP local memory

Table 3-1. BEM Commands

3-14 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

BEM Command Definition
N Write multiple 16-bit data to IOP local memory
O Write multiple 32-bit data to IOP local memory
P Write multiple 64-bit data to IOP local memory
Z Write to IOP 480 or 401B CPU register

3.4.3.2 BEM Reply Format

Reply Format

|___1 Byte _________|________ Extra Bytes ________|<CR>
| REPLY_HEADER (0x1)| Data or message returned |

Message Symbols Explanation
! Reply Success
@ Reply Error

3.4.3.3 BEM Command Protocols

• Single Read__

Host to BEM:

~p<g | h | i | j><Address><CR>

BEM to Host:

<REPLY_HEADER><DATA><CR>

• Single Write___

Host to BEM:

~p<G | H | I | J><Address><Space><Data><CR>

BEM to Host:

None

• Reading from EEPROM___

Host to BEM:

~pk<ByteSize><CR>

BEM to Host:

1. Data is stored at the local memory indicated by the BufferAddressLow and
BufferAddressHigh to be mentioned later in this section.
Note: The <ByteSize> cannot be bigger than the physical byte size of the on-
board EEPROM.

2. <REPLY_HEADER>!<CR> if OK
3. <REPLY_HEADER>@<CR> if error

• Writing to EEPROM___

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-15

Host to BEM:

1. Data is stored by the host at the local memory indicated by the BufferAddressLow and
BufferAddressHigh to be described in section.
2. Then, the host issues the following string:
~pK<ByteSize><CR>

Note: The <ByteSize> cannot be bigger than the physical byte size of the on-board
EEPROM.

BEM to Host:

<REPLY_HEADER>!<CR> if OK
<REPLY_HEADER>@<CR> if error

• Block Read___

Host to BEM:

 ~p< m | n | o | p ><StartAddress><Space><ItemCount><CR>

BEM to Host:

The following data themselves are used to demonstrate.

For 8-bit read, the output will be:

<REPLY_HEADER>0 1 10 20 30 0 4 5 60. . .<CR>

For 16-bit read, the output will be:

<REPLY_HEADER>0 1 1234 104 0 1345 890 798. . .<CR>

For 32-bit read, the output will be:

<REPLY_HEADER>0 12345678 0 1234 78900 0. . .<CR>

For 64-bit read, the output will be:

<REPLY_HEADER>0 123456789abcdef0 . . . <CR>

• Block Write__

Host to BEM:

The following data themselves are used to demonstrate.

8 bits:
~pM<StartAddress> 0 10 2 3 45 67 89 90 a . . . <CR>

16 bits:
~pN<StartAddress> 0 10 2 3 4 5 7890 1234 6789 . . .<CR>

32 bits:
~pO<StartAddress> 0 12345678 12 48 90000 12345 . . . <CR>

64 bits:
~pP<StartAddress> 0 123456789abcdef0 4 567890. . .<CR>

3-16 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

The input data can be as long as it is necessary, the BEM will continuously write data
until it receives the ending <CR> or the format does not fit. For example, 16-bit data can
not be longer than 5 hexadecimal numbers.

BEM to Host:
None.

• Reading from IOP 480 CPU or IBM401GF Registers____________________

Host to BEM:

~pz<IOP480_CPU_INDEX><CR>

BEM to Host:

<REPLY_HEADER><DATA><CR>

• Writing to IOP 480 CPU or IBM401GF Registers_______________________

Host to BEM:

~pZ<IOP480_CPU_INDEX><Space><Data><CR>

BEM to Host:

 None

The IOP 480 CPU Registers are indexed as follows:

/* 32 General Purpose Register */
#define CPU480_R0 0
#define CPU480_R1 1
#define CPU480_R2 2
#define CPU480_R3 3
#define CPU480_R4 4
#define CPU480_R5 5
#define CPU480_R6 6
#define CPU480_R7 7
#define CPU480_R8 8
#define CPU480_R9 9
#define CPU480_R10 10
#define CPU480_R11 11
#define CPU480_R12 12
#define CPU480_R13 13
#define CPU480_R14 14
#define CPU480_R15 15
#define CPU480_R16 16
#define CPU480_R17 17
#define CPU480_R18 18
#define CPU480_R19 19
#define CPU480_R20 20
#define CPU480_R21 21
#define CPU480_R22 22
#define CPU480_R23 23
#define CPU480_R24 24
#define CPU480_R25 25

#define CPU480_R26 26
#define CPU480_R27 27
#define CPU480_R28 28
#define CPU480_R29 29
#define CPU480_R30 30
#define CPU480_R31 31

/* Machine State Register */
#define CPU480_MSR 32

/* Condition Register */
#define CPU480_CR 33

/* Special Purpose Registers */
#define CPU480_CDBCR 34
#define CPU480_CTR 35
#define CPU480_DAC 36
#define CPU480_DBCR 37
#define CPU480_DBSR 38
#define CPU480_DCCR 39
#define CPU480_DCWR 40
#define CPU480_DEAR 41
#define CPU480_ESR 42
#define CPU480_EVPR 43
#define CPU480_IAC 44
#define CPU480_ICCR 45
#define CPU480_ICDBDR 46

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-17

#define CPU480_LR 47
#define CPU480_PID 48
#define CPU480_PIT 49
#define CPU480_PVR 50
#define CPU480_SGR 51
#define CPU480_SKR 52
#define CPU480_SLER 53
#define CPU480_SPRG0 54
#define CPU480_SPRG1 55
#define CPU480_SPRG2 56
#define CPU480_SPRG3 57
#define CPU480_SRR0 58

#define CPU480_SRR1 59
#define CPU480_SRR2 60
#define CPU480_SRR3 61
#define CPU480_TBHI 62
#define CPU480_TBHU 63
#define CPU480_TBLO 64
#define CPU480_TBLU 65
#define CPU480_TCR 66
#define CPU480_TSR 67
#define CPU480_XER 68
#define CPU480_ZPR 69

Note: Because the General Purpose Registers (GPRs) of IOP 480 are used constantly by
the local CPU, it is probably meaningless to read any one of them. It is EXTREMLY
DANGEROUS to modify IOP 480 CPU registers, no matter what registers are, GPRs or
Special Purpose Registers (SPRs) unless you have a hardware or software debugger
running.

• Query the Information About The Board Connected._________________________

Host to BEM:

~p@<CR>

BEM to Host:

1. Interface structure between PLXMon 99 and BEM

The following structure is an interface used by the PLXMon 99 and the BEM to pass information
from the BEM to the PLXMon 99. The exact information passed from BEM to PLXMon 99 will
be described in detail later.

typedef struct _PLATFORM_PARAMS
{
 U32 Version; /* BEM Version & Platform type */
 U32 PlxAddressLow; /* Lower 32-bits of PLX Chip base address */
 U32 PlxAddressHigh; /* Upper 32-bits of PLX Chip base address */
 U16 PlxChipType; /* PLX Chip Type */
 U16 Capability; /* Capabilities of the BEM */
 U8 EEPROMType; /* EEPROM type, not used by BEM */
 U8 FlashType; /* FLASH type, not used by BEM */
 U16 Reserved; /* Space for future use */
 U32 FlashAddressLow; /* Lower 32-bits of FLASH base address */
 U32 FlashAddressHigh; /* Upper 32-bits of FLASH base address */
 U32 BufferAddressLow; /* Perm. buffer for EEPROM programming */
 U32 BufferAddressHigh;
 U32 BufferSize; /* Permanent Buffer size */
 U32 FlashBufferAddressLow; /* Temp Buffer for FLASH programming */
 U32 FlashBufferAddressHigh;
 U32 FlashBufferSize; /* Temp FLASH buffer size */
} PLATFORM_PARAMS, * PPLATFORM_PARAMS;

Version is defined as follows:

3-18 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0

9 8 7 6 5 4 3 2 1 0

Version Major Version Minor Version Revision
Plat-
form
*

Reserved

Platform:
Bit 6: 0 = 32-bit addressing

1 = 64-bit addressing

Bit 7: 0 = 32-bit data size

1 = 64-bit data size

Capability is defined as follows:
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Read from or

Write to
Memory

FLASH
Programming

EEPROM
Programming

Reserved

3-Bit Field Description

0
Specifies whether operation is supported.
0 : Not supported
1 : Supported

2:1 Reserved

Example:
 0x2080 (Memory R/W , No FLASH programming, EEPROM programming)

0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0

2. BEM responds to the inquiry posed by PLXMon 99.

BEM will respond to the PLXMon 99 inquiry with the following information separated by a
space char between the consequent two items in the bolded block.

<REPLY_HEADER>

Version Information

PlxAddressLow

PlxAddressHigh

PlxChipType

Capabilities

EEPROMType (Note: An ASCII string from EEPROM_TYPE defined in PlxTypes.h)

FLASHType (Note: An ASCII string from FLASH_TYPE defined in PlxTypes.h)

FlashAddressLow

FlashAddressHigh

BufferAddressLow

BufferAddressHigh

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-19

BufferSize

FlashBufferAddressLow

FlashBufferAddressHigh

FlashBufferSize

<CR>

For example:

Version Information = 3000000 (Major 3, Minor 0, Rev0, 32-bit data and address)

PlxAddressLow = 20000000

PlxAddressHigh = 0

PlxChipType = IOP 480

Capabilities = 2480 (All programming supported: EEPROM, FLASH, Memory R/W)

EEPROMType (String: e.g. Eeprom93CS66)

FLASHType (String: e.g. AT49LV040)

FlashAddressLow = FFF80000

FlashAddressHigh = 0

BufferAddressLow = 10000

BufferAddressHigh = 0

BufferSize = 100

FlashBufferAddressLow = 10000000

FlashBufferAddressHigh = 0

FlashBufferSize = 80000

IOP 480 BEM would respond with the following data:

<REPLY_HEADER>3010000 20000000 0 480 2480 Eeprom93CS66
AT49LV040 FFF80000 0 10000 0 100 10000000 0 80000<CR>

• FLASH Programming__

Because of serial mode communication properties, the host has to write the data, either for
EEPROM or FLASH programming, into the local memory first, and it then informs the local
CPU to program either EEPROM or FLASH. That’s the reason why buffers are provided.

Query the local CPU for the data structure mentioned above. If the Capabilities bits indicate the
BEM supports FLASH programming, then continue.

Write IOP_SERIAL_FLASH_PROTOCOL to the MailBox 6 and write the starting FLASH
offset to program at to the MailBox 7, and write the FLASH image size to the MailBox 5. Finally,
the host resets the local CPU.

When the local CPU is reset, it checks MailBox 6 for the IOP_SERIAL_FLASH_PROTOCOL. If
the MailBox 6 contains IOP_SERIAL_FLASH_PROTOCOL, then the local CPU initializes and
begins to receive FLASH image data through serial mode using X-Modem file transfer protocol.

3-20 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

When all the FLASH image data has been received, the local CPU begins to reprogram the
FLASH. When the reprogramming is done, it resets itself.

Note:

The protocol for downloading a FLASH image from the host program to the embedded follows
the same guidance as the downloading of a RAM application through a serial channel. Both
targets of the serial downloading download a file in the Binary Block Format defined in the
protocol.h. For FLASH, the block reads like this:

FlashBufferAddressLow | BlockImageSize | . . data . . | 0 | 0
U32 | U32 | U32 units | U32 | U32

Please notice that the buffer for the FLASH programming is to the DRAM or SDRAM buffer for
storing FLASH image instead of directly to the FLASH itself.

• EEPROM Programming___

1. Query the local CPU for the BufferAddressLow, BufferAddressHigh, BufferSize parameters as
well as whether EEPROM programming is supported or not.

2. If the IOP side supports the EEPROM programming, write EEPROM data to the local Buffer
using BEM commands if the host wants to write data to the EEPROM;

3. Issue WRITE_TO_EEPROM command for writing to the EEPROM or
READ_FROM_EEPROM command for reading from EEPROM to the BEM module or
issue;

4. Read EEPROM data from the local Buffer using BEM commands if the host wants to read
data from the EEPROM.

3.4.4 Methods For Debugging IOP Applications
The PCI SDK supports two methods for debugging IOP applications. They are:

• Win32 Debugging: Using PLXMon 99. This method assumes that there is no IOP application
running on the RDK board. With new RDK boards, this method provides the preliminary
debugging and validation of new RDK boards.

• PLXMon 99 with the BEM: With the BEM linked into the IOP application, PLXMon 99 can
communicate to the RDK board through the PC’s COM port to the serial port on the RDK
board. PLXMon 99 can be set up to communicate to the RDK board or IOP application using
either the serial port or the PCI bus.

3.4.4.1 Operation Of The Back-End Monitor In A System

This section describes how the BEM can be used on an RDK board and how it affects system
performance.

The Back-End Monitor combinations are as follows:

1. AppMain() only: the IOP application is running without any BEM tasks; and,

2. BemMain() and AppMain(): the IOP application is running with BEM debugger.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-21

Method 1: This method is used once the application has been fully tested and is working
properly. There is no monitor tasks running so this method provides the best performance for the
application. PLXMon 99 can be used to debug the application if the RDK board is inserted into a
free slot in the host system’s PCI Bus and PLXMon 99’s PCI Communication is turned on.

Method 2: PLXMon 99 is used to debug the application through the serial port. IOP application
performance will be affected using this method because the BEM monitor is processing
commands and copy data to and from different memory buffers. There is a possibility of lost data
destined for the IOP application. If IOP application data matches BEM commands, the monitor
will remove them from the serial data stream. When the IOP application requires data that could
be captured by the monitor, the IOP application should access the UART Services module
directly, bypassing the monitor (by calling PlxGetChars()).

3.4.5 IOP Applications
The IOP API, the BSP and the Back-End Monitor libraries are linked with the IOP application
objects to create the binary image. This image is then programmed into FLASH memory, or
downloaded to RAM memory and executed.

All IOP applications have an AppMain() function which is the main application function. The
main() function is kept within the BSP module. This limitation is imposed on all applications
because of the way the Back-End Monitor (BEM) is implemented. The BEM needs to run
periodically to operate properly. Since there can only be one execution thread running at one
time, a cycle is created using the main() function. This cycle loops forever calling the BEM and
then the main application function sequentially (cooperative multitasking or non-preemptive
multitasking). The AppMain() function should be cyclic in nature and should return control
periodically back to the main() function.

3.4.5.1 IOP Memory And IOP Applications

IOP applications running in ROM or in RAM use memory in different ways. When an IOP
application is executed as a ROM program, it contains all the modules it needs, such as the Back-
End Monitor. A ROM application contains:

• The main IOP application module;

• The IOP API;

• The BSP module; and,

• The Back-End Monitor.

Figure 3-7 shows how the ROM application uses memory.

IOP RAM applications are built differently from IOP ROM applications. The IOP RAM
applications look very similar to IOP ROM applications as far as the source code is concerned,
but they differ when the IOP RAM application is linked to the libraries. IOP RAM type
applications borrow the Back-End Monitor from the resident IOP ROM application. The size of
IOP RAM applications is normally smaller because a lot of the code used by the IOP RAM
application resides in the IOP ROM application. Therefore the IOP ROM application on the RDK
board must have the modules needed for the IOP RAM application and the IOP ROM application
must provide the links to those modules. The BSP provided with the PCI SDK contains the links
for IOP RAM based applications into the resident ROM application.

3-22 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

All Available
Memory

(FLASH, SRAM,
DRAM, ...)

RAM BSP

IOP API

RAM Application

RAM Application Data Segment
(Stack, Heap, BSS)

RAM Application

ROM BSP

IOP API

Back-End Monitor

ROM Application

ROM Application Data Segment
(Stack, Heap, BSS)

ROM Application

3.4.5.2 MiniBSP Application

MiniBSP is included in the PCI SDK to provide a good starting point for users who have an
untested board. Therefore, it is limited in features and functionality. It provides bare minimum
boot up code for the Reference Design Boards. This application configures the microprocessor,
the PLX chip, and proceeds to blink the LED that is connected to one of the PLX chip’s USER
pins (if exists). To use the MiniBSP application, program the binary image into the FLASH using
a FLASH chip programmer. Once the FLASH is programmed, reboot the Reference Design
Board, and if the LED blinks then the MiniBSP application configured the Reference Design
Board properly. If this test is successful, the FLASH can be reprogrammed with the PCI SDK
Monitor image (supplied with the PCI SDK).

Note: The MiniBSP application is provided as a bare bones IOP ROM application useful for
confirming the functionality of new Reference Design Boards. It does not contain any PCI SDK
features that are described in the PCI SDK manuals.

3.4.6 Porting The PCI SDK To New Platforms
All information needed to port the PCI SDK to new platforms is contained within the BSP
module. Some of the information contained within the BSP includes:

• The memory map of the IOP bus;

• The microprocessor boot code;

Figure 3-7 Diagram of the IOP Memory Usage

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-23

• The PLX chip interrupt service routine;

• The UART interrupt service routine or the polling mechanism for retrieving data from
UART;

• The board initialization routine; and,

• The board and/or application specific controls for the IOP API and the Back-End Monitor.

The IOP API and the Back-End Monitor need to know where certain devices are located on the
IOP bus, such as the PLX chip, DRAM, SRAM and the UART. These values need to be updated
when creating an application for new boards.

When the microprocessor is changed on a board, the microprocessor boot code must be modified
to support the new microprocessor. This boot code is provided within the BSP module.

Most interrupt service routines are customized to the application. To customize the PCI ISR for
an application, either modify the interrupt trigger service routines or modify the main ISR.

The Back-End Monitor relies on the UART to send and receive data from the serial port. Modify
the UART code to support the UART on the board.

To initialize the PLX chip, modify the parameters for the IOP API initialization functions
contained within the board initialization routine.

Within the BSP, there is some control parameters for the IOP API and the Back-End Monitor that
can be modified to improve performance of the PCI SDK. These parameters are platform and
application dependent and can affect the operation of the application differently on different
systems.

3.4.7 Support For Multiple PLX chips On One Board
Each PLX chip has its own IOP API library. When two or more chips are present on one
Reference Design Board, a new IOP API library must be created. This library will contain the
normal API functions (defined in this document) and some new or modified functions that
represent new features made available by combining the features of the multiple chips. Some
multiple chip libraries will be available (for the more popular implementations), however it will
be up to the designer to create his/her own library for multi-chip combinations not currently
supported.

3.5 Host Win32 Software Architecture
This section describes the Win32 software provided in the PCI SDK. The Win32 software
provided in the PCI SDK includes a Graphic User Interface (GUI) application PLXMon 99, a PCI
API library (PLXApi.dll), PLX device drivers and sample programs.

3-24 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

3.5.1 GUI Application PLXMon 99
PLXMon 99 can communicate with PCI devices via two different paths (see Figure 3-8):

• Direct Serial Communications;

• Host API/Device Driver Interface.

3.5.1.1 Serial Communication

This method of communicating with a PLX RDK board is mainly used for debugging purposes.
While a custom host Win32 device driver is being created, it is helpful to be able to read and
write values directly to and from the RDK board.

If PLXMon 99 is set to serial mode, it calls functions that reside in the PLXMon 99
Communications Module. It is the responsibility of the PLXMon 99 Communications Module
code to convert the valid PLXMon 99 commands into a serial data stream. The protocol used in
passing the data is based on an ASCII translation scheme (for more information on the serial
protocol, see section 3.4.3. This stream of data is sent to the IOP application. The Win32
operating system provides a device driver to control the serial port. The Win32 SDK provides
services to access this device driver.

Serial
Communication

PCI Bus
Communication

PLX Services Module

Win32 Driver Module

WDM (Win32 Driver)

PCI API

PCI
IC

µP

PLXMon99

Figure 3-8 The Host Software Architecture

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-25

When the data arrives, the RDK board’s microprocessor must have a means of handling the
incoming data. The Back-End Monitor calls UART service routines to retrieves data from the
UART module, which can be implemented as interrupt-driven or polling. The Back-End Monitor
decodes the command and data, and acts on the command and returns a reply. If the data received
by the Back-End Monitor is not a command the data is queued for the IOP application.

3.5.1.2 PCI API/Device Driver Communication

PCI Bus Communication is performed using the PCI API dynamical-link library (DLL) file
(PLXApi.dll) and the Win32 device driver supplied with the PCI SDK.

3.5.1.2.1 PCI API Library

The PCI API consists of a library of functions, from which multiple PCI RDK boards can be
accessed and used. The PCI API provides API function groups, which manage the features of
each PLX chip. Groups such as DMA access, direct data transfers, and interrupt handling contain
functions that can be universal to any PCI RDK board.

The PLXMon 99 application makes extensive use of the PCI API functions. For the most part, the
PCI API’s purpose is to translate application functions calls and send them to the appropriate
device driver. The only functionality present in the PCI API is to connect to the various PLX
device drivers. This includes opening, closing, and searching for PLX devices that are present on
the PCI bus.

3.5.1.2.2 Win32 Device Driver

The device driver’s role in the system is to store device data within the kernel and to execute the
commands given to it from the PCI API. The device driver can be used as a framework to create
custom software for managing PCI devices as well.

The Win32 Driver Model (WDM) is a new platform for developing device drivers on the
Windows 98 and Windows NT 2000 operating systems. It is very similar in device driver
architecture to that of Windows NT 4.0 and allows the creation of one device driver that can be
used for both operating systems without extensive porting or modifications.

The architecture of the device driver is designed to reduce the time needed to create a new device
driver for customer boards that contain a PLX device. By modifying the source code provided for
the device driver, a new custom device driver can be created in minimal time.

3.5.2 Win32 Applications And The PCI SDK
All Win32 applications connect to and use the PCI API DLL. The Win32 application can
communicate to any PCI device with a PLX chip by using the PCI API DLL. Each Win32
application can be created like any other Windows application. For more information on creating
a Win32 application using the PCI API DLL, see the PCI SDK Programmer's Manual.

3.5.3 Win32 Device Driver Overview
This section describes the overall layout and concept of a PLX device driver. To accommodate
the need for one common PCI API as well as to reduce development time for device driver design
for new Reference Design Boards, the following device driver model was created.

3-26 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

One device driver handles one type of PLX chip, as seen in Figure 3-9. Each device driver
communicates with the PCI API on a one-to-one basis; there is no device driver inter-
communication. If a new device driver is developed and added to the system, it can be integrated
simply by installing it into the Win32 operating system. If more than one PLX chip is present on
a Reference Design Board, the device driver can only see the one that is directly connected to the
PCI bus on which the Windows system is running. All PCI API functions will access this PLX
chip only.

3.5.3.1 PLX Chip Device Driver Module

This module provides the management of the PCI RDK boards in Windows NT/98. This
management includes storing device specific information, processing PCI API and system
messages, handling interrupts, and allocating resources for each RDK board. Some non-PLX
specific functionality is handled in this module, such as reading from and writing to PCI
configuration registers.

3.5.3.2 PLX Chip Services Module

This module has access to the entire register set of the PLX chip, and thus is in charge of
providing the functionality for the device driver.

3.5.4 Creating A New Driver
This section briefly covers how a new device driver can be created using the existing device
driver as a template. When a new PLX chip Services Module, which provides the real
functionality for the device driver, is updated to support a new PLX chip, the old PLX chip
Services Module is replaced. The new PLX chip Services Module would reflect the new register

PCI API

9080 Services
Module

9080 Driver
Module

PCI 9080
Driver

9054 Services
Module

9054 Driver
Module

PCI 9054
Driver

Services
Module

 Driver Module

Future PLX
Driver

PCI
9080

µP

PCI
IC

µP

PCI
9054

480 Services
Module

480 Driver
Module

IOP 480
Driver

PCI
ChipIOP

480

Figure 3-9 The PLX Device Driver Layout

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-27

set of the PLX chip and would support the existing PCI API by accessing the appropriate registers
on the new PLX chip based on the PCI API function requested.

The PLX chip Device Driver Module would need some modifications to create a new PCI device
driver. When a new API function is introduced, the Device Driver Module has to be modified to
support the API the function.

3.5.5 Device Driver Features
The Win32 device driver supports the sharing of interrupts between many PLX RDK boards. The
device driver uses one interrupt line on the PCI bus that all PLX RDK boards share to interrupt
the host PC. The interrupt service routine determines which board caused the interrupt and
services the interrupt from the board.

The device driver supports event logging into the system log file. When the device driver
determines an error in operation, it updates the system event log file with the appropriate
information concerning the cause of the error. This log file can be used to debug the device driver
when the device driver is started at boot time. This file contains the reasons why the device driver
was not loaded and started.

3.5.6 Distribution of PLX Device Drivers and PLXApi.Dll File
A Windows application, which uses PCI API functions from the PCI SDK package, requires 2
things:

1. the PlxApi.dll file installed in the system-wide path; and

2. PLX Windows device driver(s) installed properly and started.

It is legal to distribute the PlxApi.dll and device driver files, i.e. Pci9080.sys,
Pci9054.sys and Iop480.sys, however it is ILLEGAL to distribute the entire PCI SDK
without proper authorization by PLX. Customers must choose their own installation methods,
such as using InstallShield® software to create installation disks, so that the device driver(s) and
the DLL file can be correctly installed to their designated locations.

3.5.6.1 Installation of PlxApi.dll File

The PlxApi.dll file should be installed to:

• Windows\System directory on Windows 98; or

• WinNT\System32 directory on Windows NT.

Note: “ Windows\” and “ WinNT\” directories mentioned in the above two lines are the default
installation paths for Windows 98 and Windows NT respectively. Therefore, it has to be
determined at run time by the installation program where the Windows 98 or Windows NT
directory is really located and it is strongly recommended that the above paths NOT be hard-
coded in the installation program. In InstallShield® terminology, the above “Windows\” and
“ WinNT\” are denoted as <WINDIR>.

3.5.6.2 Installation of PLX Device Driver

The installation of a device driver involves the following steps:

• Copy relevant files to their proper destination locations; and

3-28 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

• Set up registry entries on the Windows NT system (Refer to section 2.2.2.2.3 on page 2-12
for registry entry description).

3.5.6.2.1 Installation of PLX Device Drivers On Windows NT

1. Copy the device driver file (Pci9080.sys, Pci9054.sys, or Iop480.sys) to
WinNT\System32\Drivers directory. The device driver files are located at
<INSTALLPATH>\Win32\Driver\WinNT\<DriveName>\i386\free directory, where
DriveName is Pci9080, Pci9054, or Iop480;

2. Add the following registry entries (DriverName = Pci9080, Pci9054, or Iop480)

Under HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services, add:

• Services\<DriverName>\CommonBufferSize = 65536 in decimal, data type
REG_DWORD;

• Services\<DriverName>\ErrorControl = 1, data type REG_DWORD;

• Services\<DriverName>\Start = 2, data type REG_DWORD;

• Services\<DriverName>\Type = 1, data type REG_DWORD;

• Services\<DriverName>\MaxSglTransferSize = 1048576 in decimal, data type
REG_DWORD;

• Services\<DriverName>\MaxPciBus = 3, data type REG_DWORD

• Services\<DriverName>\EventLogLevel = 2, data type REG_DWORD

• Services\<DriverName>\SupportedIDs = Dev0Vend Dev1Vend …, data type
REG_SZ. Dev0 and Dev1 are the four hexadecimal letters for the device IDs, Vend is the
four hexadecimal letters for the vendor ID. One example is “908010B5 040110B5”.
One pair of device ID and vendor ID must be separated from another pair by a space.
There is no tailing space at the end of the string.

• Control\Session Manager\Memory Management\SystemPages = 80000 in
decimal, data type REG_DWORD.

The registry key <DriverName> is the name of the executable without the .sys suffix.

In order for the Event Viewer under Windows NT to retrieve the messages logged by the PLX
device drivers, the following registry values must be added as well.

Under HKEY_LOCAL_MACHINE\System\CurrentControlSet\Services\ , add:

• EventLog\System\<DriverName>\EventMessageFile =
%SystemRoot%\System32\IoLogMsg.dll;%SystemRoot%\System32\drive
rs\<DriverName>.sys, data type REG_EXPAND_SZ;

• Services\EventLog\System\<DriverName>\TypesSupported = 7, data
type REG_DWORD;

3.5.6.2.2 Installation of PLX Device Drivers On Windows 98

1. Copy the device driver file (Pci9080.sys , Pci9054.sys , or Iop480.sys) to
Windows\System directory. The device driver files are located at

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 3-29

<INSTALLPATH>\Win32\Driver\WDM\<DriveName>\i386\free directory, where
DriveName is Pci9080, Pci9054, or Iop480;

2. Copy the setup information file (INF) PciSdk.inf to Windows\Inf\Other directory.
The PciSdk.inf file is in the <INSTALLPATH>\WIN32\Driver\WDM directory.

The PciSdk.inf must be modified first to include customized device and vendor IDs. When
Windows is rebooted, the operating system will detect a new PCI card and should use the INF file
to assign the correct driver to handle the PCI card. Refer to Windows documentation for INF files
or consult book Inside The Microsoft Windows 98 Registry written by Ghnter Born, published in
1998 by Microsoft Press, ISBN 1-57231-824-4.

3-30 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

This page is intentionally left blank.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 4-1

4. Real Time Operating System Support

4.1 General Information
This PCI SDK contains VxWorks BSP for PCI 9054RDK-860 and CompactPCI 9054RDK-860
boards. We will provide a VxWorks BSP for IOP 480RDK in the near future. Please send an
email if you are interested in VxWorks BSP for IOP 480RDK to software@plxtech.com

If you are interested in developing a driver for other RTOS, then you can use almost all of the
IOP API library functions from this version of the PCI SDK. The IOP API library is a set of
functions that can be called from within a RTOS. The RTOS code needs to call the
PlxInitApi() function to initialize the PLX API. This will integrate the IOP API with your
RTOS. You may use this chapter as a reference.

4.2 Getting Started
This chapter assumes that you are familiar with PLX PCI 9054RDK or CompactPCI 9054RDK-
860 reference design boards, PLX PCI SDK 3.0, and WindRiver’s Tornado. Please refer to the
PLX PCI 9054RDK-860 Hardware Reference Manual or CompactPCI 9054RDK-860 Hardware
reference Manual for more details about the PLX reference design boards.

4.3 Minimum Requirements
Minimum requirements for the VxWorks IOP Porting Kit Extension for PCI/CPCI 9054RDK-
860:

• PLX PCI 9054RDK-860 or CompactPCI 9054RDK-860 reference design board;

• PLX PCI SDK v3.0;

• Windows NT or Windows 98 based PC;

• WindRiver Tornado v1.0.1 or v2.0 Integrated Development Environment;

• Windows HyperTerminal using Xmodem protocol. (Baud rate 38400, 8 data bits, no parity, 1
stop bits, no flow control)

4.4 Installation
• Turn the power off on your Windows PC.

• Install either the PLX PCI 9054RDK-860 or CompactPCI 9054RDK-860 reference design
board or your PCI 9054 based prototype board in an empty PCI slot in your PC.

• Turn your PC on.

• Install the PLX PCI SDK and the Tornado software, and

• reboot your PC.

Make a plx9054-860 directory in <TORNADO_INSTALLPATH>\tornado\target\config\

directory (TORNADO_INSTALLPATH is where you have installed the Tornado software). The
“<INSTALLPATH>\Rtos\VxWorks BSP” contains two folders: “PCI 9054RDK-860” (for the

4-2 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

PCI 9054RDK-860 board) and “CPCI 9054RDK-860” (for the CompactPCI 9054RDK-860
board). Copy the appropriate files from the “<INSTALLPATH>\Rtos\VxWorks BSP”
subdirectory into <TORNADO_INSTALLPATH>\tornado\target\config\ directory.

4.5 What’s Included?
<TORNADO_INSTALLPATH>\tornado\target\config\plx9054-860 directory will include
the following source code files:

1. API860_vw.a: this is the PLX API library object file.

2. rominit.s, sysalib.s, sysserial.c, ppc860sio.c, syslib.c files initialize
and configure the Motorola MPC860, connect SCC1 interrupt handler to handle interrupt
from RXD1 pin in MPC860 port PA15, load VxWorks kernel and setup communication
protocol with HyperTerminal or Tornado Host Shell.

NOTE:

In rominit.s file insert a line “#define BSP_CPCI9054” for PLX CompactPCI9054RDK-
860, insert a line “#undef BSP_CPCI9054” for PCI 9054RDK-860.

3. plxvwdrv1.c, plxvwdrv2.c files initialize and configure the PCI 9054 chip, initialize the
PLX API library, DMA resource manager, and connect interrupt handler for external
interrupt IRQ1 pin in MPC860 from LINTO of PCI 9054 and IDMA2 interrupt handler for
IDMA request from DREQ1 in MPC860 Port PC14.

4. plxvwapp1.c, plxvwapp2.c files create the sample test application. These samples
demonstrate how to use the PLX API library to test Direct Master and DMA capabilities of
the PCI 9054 chip and IDMA capability of the MPC860.

5. usrconfig.c file: In usrRoot() routine : Insert the line “plxdemo();” before the line
“shellInit(..);” in order to run the plxdemo as shown in figure 1. Insert the line
“plxinit();” before the line “taskSpawn(..)”, so that PCI 9054 chip will be initialized
correctly after rebooting vxWorks_rom and it will allow you to download a new flash image
using PLXMon 99.

6. VxWorks_rom (ELF format) and VxWorks_rom.hex (S record format) are the ROM code
that can communicate with the Tornado Host Shell.

7. VxWorks.res_rom (ELF format) and vxWorks.res_rom.hex (S record format) are the
standalone ROM code, acts as a VxWorks target shell. VxWorks.res_rom code calls the
plxdemo program. plxdemo allows you to test the Direct Master, DMA and IDMA features
from the Windows HyperTerminal.

8. makefile is the makefile to make last two set of ROM files.

9. Plxdemo.make creates the vwPlxDemo object file. This file can be loaded from the Tornado
Host Shell into the local RAM on the PCI 9054RDK-860 or CompactPCI 9054RDK-860
board.

10. Config.h:

• #define TARGET_SHELL to generate vxWorks.res_rom;

• #undef TARGET_SHELL to generate vxWorks_rom.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 4-3

4.6 Which VxWorks ROM Image Should I Use?
Two special versions of the PCI 9054 RDK boot code are provided in the directory
<TORNADO_INSTALLPATH>\tornado\target\config\plx9054-860.

1. VxWorks_rom.hex is the ROM code that can communicate with the Tornado Host Shell.

2. VxWorks.res_rom.hex is the standalone ROM code, which acts as a VxWorks target shell.

If you don’t have WindRiver Tornado tools yet, you can follow section 4.7.2.1 to download the
vxWorks.res_rom.hex to the reference design board and exercise the plxdemo program from
the HyperTerminal connected to the serial Port.

If you have WindRiver Tornado tools available, you can follow section 4.7.2.2 to download
vxWorks_rom.hex, use plxdemo.make to make vwPlxDemo file, download this file to the PCI
9054RDK-860’s or CompactPCI 9054RDK-860’s RAM, and execute the plxdemo program from
the Tornado Shell and Target server console connected to the serial Port.

If you don’t have a PCI 9054RDK-860 or CompactPCI 9054RDK-860 board, and you like to
integrate the PCI 9054 chip into your design, please refer to section 4.5 and make the necessary
modifications to the files listed there.

4.7 PLX VxWorks BSP/PLX API Demonstration
This section will show the user how to use the PLX VxWorks BSP (Board Support Package),
download the VxWorks boot ROM and application program images included in the PLX PCI
SDK v3.0, and use the PCI 9054 chip under the VxWorks Real Time Operating System (RTOS).

4.7.1 Updating the PCI 9054RDK-860 or CompactPCI 9054RDK-
860 onboard FLASH
Start the PLXMon 99 utility (included in the PLX PCI SDK). Select Command from the pull
down menu. Click on “Download to IOP”. Choose a file you want to download (please refer to
section 3.3, you can pick either vxWorks_rom.hex or vxWorks.res_rom.hex S record files).
Choose “FLASH Device” as your Device Type. Select “S record” as your Image Type. Select
memory Offset in Hex as “00000” and hit “Download” to update your FLASH to VxWorks boot
ROM.

Note: It is very important that you refer to PLXMon 99 User’s Manual before reprogramming the
FLASH.

4.7.2 PLX API functions Demonstration
The VxWorks BSP demonstration consists of two parts. The first part assumes that you have no
Tornado and no Target Server. The second part assumes that you have the Tornado Host Shell.

4.7.2.1 Stand alone VxWorks Target Shell Demo (No Tornado and no
Target Server present)

Update the PCI 9054DK-860’s or CompactPCI 9054RDK-860’s FLASH with
vxWorks.res_rom.hex, you can execute the plxdemo without Tornado tools running on your
host system.

4-4 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

1. Attach a serial cable from the PCI 9054DK-860 or CompactPCI 9054RDK-860 board to the
serial port of the host development system (your PC). The RS232 port communicates via
HyperTerminal using Xmodem protocol. (Baud rate 38400, 8 data bits, no parity, 1 stop bits,
no flow control).

Now you can use the plxdemo program from the HyperTerminal as shown in Figure 4-1.
You have six options. By selecting 0 through 4,you can run one of the following tests: Direct
Master, Block DMA, SGL DMA, Shuttle DMA, and IDMA. Select 5 to do the multitask
demo. Select 6 if you want to go into VxWorks target shell.

2. From shell, You can run PLX IOP API functions, examples:

• type "PlxUserWrite(2,0,1)" to turn on PLX RDK LED

• type "PlxUserWrite(2,0,0)" to turn off PLX RDK LED

3. From Shell, type “reboot” as will do a local reset and go back to test menu.

4. This standalone ROM is used purely for demonstration only, You need to get Tornado tools
from WindRiver to be able to recompile the sample source programs running under VxWorks
RTOS. We will discuss how to modify and recreate new application program in section 4.8.

4.7.2.2 Tornado VxWorks Host Shell Demo

Update the PCI 9054DK-860 or CompactPCI 9054RDK-860 onboard FLASH with
vxWorks_rom.hex. You will have Tornado target agent active when you reboot from this
ROM. The target agent in the ROM will talk to the Target Server through the serial port.
Following steps will guide you through these processes.

Figure 4-1 Stand Alone VxWorks Target Shell Demo Screen

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 4-5

1. Attach a serial cable from the PCI 9054DK-860 or CompactPCI 9054RDK-860 board to the
serial port of the host development system. The RS232 port communicates using Baud rate
38400, 8 data bits, no parity, 1 stop bits, no flow control.

2. In Host Tornado Integrated Development Environment, select “Tools” from the pull down
menu, choose “Target Server”, then “Configure...” as shown in Figure 4-3.

3. At the “Configure Target Servers” dialog box, enter the following information for the given
fields: - “Description”: Configuration1, “Target Server Name”: plx1.

4. Select the “Change Property” item to be: Back End, and enter the following information for
the given fields: - “Available back Ends”: wdbserial, “Serial Port”: this depends on your
system, “Speed”: 38400, “Log File”: User specified.

5. Select the “Change Property” item to be: Core file and symbols, and perform the following,
select the “File” radio button, and then
<TORNADO_INSTALLPATH>\tornado\target\config\plx9054-860\vxWorks_rom.
(Please see Figure 4-4).

Figure 4-2 Reboot the Stand Alone VxWorks Target Shell Demo

4-6 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

6. Select the “Change Property” item to be: Virtual Console, and select the “use Target Server
Windows as Virtual Console” radio button. See Figure 4-5.

Figure 4-3 Back End Property Page

Figure 4-4 Core File and Symbols Property Page

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 4-7

7. Select the Launch button, the following text window should appear (see Figure 4-6):

8. If the previous output text is displayed, the host tornado target server is successfully talking
to the target agent on the boot ROM and you can continue to step 9. If not, re-check your
configuration information and launch the target server again.

Figure 4-5 Virtual Console Property Page

Figure 4-6 Tgtsvr - Console

4-8 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

Note: If the local bus of the PCI 9054RDK-860 or CompactPCI 9054RDK-860 board is
hung, then re-launching the target server will fail. You need to reset the target system if this
happens.

9. In Tornado, select the Tools menu title, and choose the Shell… menu item.

10. At the Shell Launch dialog box, select the OK button.

11. A Shell window should be displayed with a -> prompt, type “lkup”, if you see the symbols
for PLX IOP API functions listed in PLX PCI SDK (examples: PlxBusPciRead(),
PlxDmaIsr(), etc.), you know the PLX vxWorks BSP boot ROM has been installed
correctly.

12. At the Shell prompt, type “cd <TORNADO_INSTALLPATH>\target\config\plx9054-
860”, then perform the following commands to reset standard input, standard output, and
standard error to virtual I/O channel 0 (in our case, it will go to target server console), also
send logging output to the same virtual device. (refer to WindRiver Tornado User’s guide)

Í vf0=open(“/vio/0”,2,0)

Í ioGlobalStdSet(0,vf0)

Í ioGlobalStdSet(1,vf0)

Í ioGlobalStdSet(2,vf0)

Í logFdAdd(vf0)

or you can type“ < start ” to save some time. (“start” is a script file included)

13. From shell, You can run PLX IOP API functions, examples:

• type "PlxUserWrite(2,0,1)" to turn on PLX RDK LED

• type "PlxUserWrite(2,0,0)" to turn off PLX RDK LED

Figure 4-7 Tornado Shell Prompt

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 4-9

14. At the Shell prompt, type “ld < vwPlxDemo” and press <Enter> key to load the Plx Demo
program object code into the PCI 9054RDK-860 or CompactPCI 9054RDK-860 on board
RAM. See Figure 4-7.

15. At the Shell prompt ->, type “plxdemo” then press <Enter> key to start executing the PLX
demo program, the target server console will show the main test menu as shown in Figure
4-8. From here, you can select from one of the seven choices: Direct Master, Block DMA,
SGL DMA, Shuttle DMA, IDMA, multitasking and Exit. Figure 4-9 shows an example
where, test #5, Multitasking was selected.

Figure 4-8 Tgtsvr - Console No. 1

Figure 4-9 Tgtsvr - Console No. 2

4-10 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

4.8 How to rebuild the BSP and Application images?
This section will show the user how to rebuild the VxWorks boot ROM, driver and application
program from the source code included in this SDK under the WindRiver Tornado Integrated
Development Environment.

4.8.1 Setup the makefile to build PLX VxWorks Boot ROM
Copy the makefile included into the “<TORNADO_INSTALLPATH>\target\config\plx9054-
860” directory. Now start the Tornado. You will see the entry “Make PLX9054-860” under the
Tornado “Project” menu item. Choose “Make Plx9054-860”, then “VxWorks Target”, then
either “vxWorks_rom.hex” to build Host shell version bootrom, or choose
“vxWorks.res_rom.hex” to build resident stand alone boot ROM. Other entries are not fully
tested in this release.

Note:

1. Modify Config.h to add “#define TARGET_SHELL” and generate vxWorks.res_rom,
and add “#undef TARGET_SHELL” to generate vxWorks_rom.

2. In rominit.s insert a line “#define BSP_CPCI9054” for PLX CompactPCI9054RDK-860,
insert a line “#undef BSP_CPCI9054” for PCI 9054RDK-860.

4.8.2 Setup the custom project to build PLX demo application
1. In Tornado, select the Project menu title.

2. In the Customize Builds dialog box, choose Add button, and Browse button to open the
plxdemo.make file, edit the Menu Text window, Build target window as shown in Figure
4-10 and Figure 4-11. This completes the setup for building the VxWorks application.

3. “Plxdemo vwPlxDemo” to create application image vwPlxDemo.

Figure 4-10 Customize Builds Screen No. 1

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 4-11

4. “Plxdemo clean” to remove image vwPlxDemo and related object files.

4.9 Tornado 1.0.1 and Tornado 2.0 compatibility
WindRiver provides compatibility between Tornado 2.0 and 1.0.1. However, you may have to do
some minor configuration changes in Tornado 2.0 to make it compatible with Tornado 1.0.1

1. After start Tornado 2.0, go to Tools-Options-Project, Check the ”Show Tornado 1.0.1 menu
item” box, this will causes a customize item “standard BSP Build” to be added to the Build

Figure 4-11 Customize Builds Screen No. 2

Figure 4-12 Options

4-12 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

menu. This allows you to perform Tornado 1.0.1-style builds in BSP directories, to use
existing Tornado 1.0.1-style Build menu items, and to create additional Build menu
customizations. (Figure 4-12)

2. Copy and modify usrconfig.c file from
<TORNADO_INSTALLPATH>\tornado20\target\config\all.

3. Tornado supports virtual I/O to the host from target applications. “Redirect target I/O
“redirect the target global stdin,stdout, and stderr to the target server. “Create Console
Window” create a virtual console window on the target server host for target I/O. “Redirect
target Shell” starts a console window into which the target shell’s standard input,output, and
error will be redirected.

Figure 4-13 Build VxWorks

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 4-13

Figure 4-14 Configure Target Servers

4-14 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

This page is intentionally left blank.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 5-1

5. RDK Software Quick Reference
The information below should be used as a guide to the PCI SDK software requirements for each
PLX RDK board.

5.1 IOP 480RDK
The table below describes the memory requirements of the PCI SDK for the IOP 480RDK.

Item IOP 480RDK

SDRAM Address 0x0000 0000 –> 0x01FF FFFF
(32MB)

FLASH Type ATMEL AT49LV040

FLASH Address 0xFFF8 0000 –> 0xFFFF FFFF
(512KB)

FLASH Image Offset at which to
reprogram the FLASH

0x0006 0000 (If the user has a
bigger FLASH image, this has to
be decreased to proper offset.)

EEPROM Type 93CS66LEN

Memory space used by ROM code 0x0000 0000 –> 0x0003 FFFF

Memory space used by RAM code
(PCI SDK Samples)

0x0004 0000 –> 0x0007 FFFF

Direct Master to PCI memory
space Address

0x4000 0000 –> 0x4FFF FFFF
(256MB)

Direct Master to PCI IO space
Address

0x5000 0000 –> 0x5FFF FFFF
(256MB)

IOP 480 Configuration Register
Base Address

0x5000 0000 (default and EEPROM
settings)

IOP 480 Configuration Register
Base Address in PCI SDK

0x3000 0000 (re-initialized from
default and used in SDK)

IOP 480 Serial Port Unit Base
Address

0x1000 0000

Memory space recommend for
user’s use.

0x0008 0000 -> 0x01FF FFFF
(31.5MB)

Users, who have upgraded the PCI SDK and intend to use it with an existing PLX RDK, must
first reprogram the configuration EEPROM connected to the PLX chip. Skipping this step can
cause unpredictable behavior of the PCI SDK. If you have purchased the PCI SDK with a PLX
RDK then there is no need to upgrade the EEPROM because it was programmed at the factory
before shipping. The following diagram shows the default EEPROM settings for the RDK.

Table 5-1. Basic Information About IOP 480RDK

5-2 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

5.2 PCI 9054RDK-860
The table below describes the memory requirements of the PCI SDK for the PCI 9054RDK-860.

Item PCI 9054RDK-860

SDRAM Address 0x0000 0000 –> 0x01FF FFFF
(32MB)

FLASH Type AT49LV040(default as shipped)

AM29F040 also supported in
software

FLASH Address 0xFFF0 0000 –> 0xFFF7 FFFF
(512KB)

FLASH Image Offset at which to
reprogram the FLASH

0x0000 0000

Memory space used by ROM code 0x0000 0000 –> 0x0003 FFFF

Memory space used by RAM code
(PCI SDK Samples)

0x0004 0000 –> 0x0007 FFFF

Direct Master to PCI memory 0x4000 0000 –> 0x40FF FFFF

Figure 5-1. Configuration EEPROM Settings for the IOP 480RDK

Table 5-2. Basic Information About PCI 9054RDK-860

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 5-3

Item PCI 9054RDK-860

space Address (16MB)

Direct Master to PCI IO space
Address

0x5000 0000 –> 0x50FF FFFF
(16MB)

PCI 9054 Register Address 0x3000 0000 -> 0x3000 01FF

Memory space recommend for
user’s use.

0x0008 0000 -> 0x01FF FFFF
(31.5MB)

Users, who have upgraded the PCI SDK and intend to use it with an existing PLX RDK, must
first reprogram the configuration EEPROM connected to the PLX chip. Skipping this step can
cause unpredictable behavior of the PCI SDK. If you have purchased the PCI SDK with a PLX
RDK then there is no need to upgrade the EEPROM because it was programmed at the factory
before shipping. The following diagram shows the default settings for the RDK.

5.3 CompactPCI 9054RDK-860
The table below describes the memory requirements of the PCI SDK for the CompactPCI
9054RDK-860.

Figure 5-2. Configuration EEPROM Settings for the PCI 9054RDK-860

5-4 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

Item CompactPCI 9054RDK-860

SDRAM Address 0x0000 0000 –> 0x01FF FFFF
(32MB)

SBSRAM Address 0x2000 0000 –> 0x2007 FFFF
(512KB)

FLASH Type AT49LV040(default as shipped)

AM29F040 also supported in
software

FLASH Address 0xFFF0 0000 –> 0xFFF7 FFFF
(512KB)

FLASH Image Offset at which to
reprogram the FLASH

0x0000 0000

Memory space used by ROM code 0x0000 0000 –> 0x0003 FFFF

Memory space used by RAM code
(PCI SDK Samples)

0x0004 0000 –> 0x0007 FFFF

Direct Master to PCI memory
space Address

0x4000 0000 –> 0x40FF FFFF
(16MB)

Direct Master to PCI IO space
Address

0x5000 0000 –> 0x50FF FFFF
(16MB)

PCI 9054 Register Address 0x3000 0000 -> 0x3000 01FF

Memory space recommend for
user’s use.

0x0008 0000 -> 0x01FF FFFF
(31.5MB)

Users, who have upgraded the PCI SDK and intend to use it with an existing PLX RDK, must
first reprogram the configuration EEPROM connected to the PLX chip. Skipping this step can
cause unpredictable behavior of the PCI SDK. If you have purchased the PCI SDK with a PLX
RDK then there is no need to upgrade the EEPROM because it was programmed at the factory
before shipping. The following diagram shows the default settings for the RDK.

Table 5-3. Basic Information About CompactPCI 9054RDK-860

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 5-5

5.4 PCI 9080RDK-401B
The table below describes the memory requirements of the PCI SDK for the PCI 9080RDK-
401B.

Item PCI 9080RDK-401B

SDRAM Address 0x0000 0000 –> 0x00FF FFFF
(16MB)

SRAM Address 0x1000 0000 –> 0x1007 FFFF
(512KB)

FLASH Type AM29F040

FLASH Address 0xFFF8 0000 –> 0xFFFF FFFF
(512KB)

FLASH Image Offset at which to
reprogram the FLASH

0x0006 0000 (If the user has a
bigger FLASH image, this has to
be decreased to proper offset.)

Memory space used by ROM code 0x1000 0000 –> 0x1003 FFFF

Memory space used by RAM code 0x1004 0000 –> 0x1007 FFFF

Figure 5-3. Configuration EEPROM Settings for the CompatctPCI 9054RDK-860

Table 5-4. Basic Information About PCI 9080RDK-401B

5-6 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

Item PCI 9080RDK-401B

(PCI SDK Samples)

Direct Master to PCI memory
space Address

0xB800 0000 –> 0xBFFF FFFF
(8MB)

Direct Master to PCI IO space
Address

0xB000 0000 –> 0xB7FF FFFF
(8MB)

PCI 9080 Register Address 0x2000 0000 -> 0x2000 01FF

Memory space recommend for
user’s use.

0x0 -> 0x00FF FFFF (16MB)

Users, who have upgraded the PCI SDK and intend to use it with an existing PLX RDK, must
first reprogram the configuration EEPROM connected to the PLX chip. Skipping this step can
cause unpredictable behavior of the PCI SDK. If you have purchased the PCI SDK with a PLX
RDK then there is no need to upgrade the EEPROM because it was programmed at the factory
before shipping. The following diagram shows the default settings for the RDK.

5.5 PCI 9080RDK-860
The table below describes the memory requirements of the PCI SDK for the PCI 9080RDK-860.

Figure 5-4. Configuration EEPROM Settings for the PCI 9080RDK-401B

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 5-7

Item PCI 9080RDK-860

DRAM Address 0x1000 0000 –> 0x10FF FFFF
(16MB)

SRAM Address 0x0000 0000 –> 0x0007 FFFF
(512KB)

FLASH Type AM29F040 (IOP programming only)

FLASH Address 0xFFF8 0000 –> 0xFFFF FFFF
(512KB)

FLASH Image Offset at which to
reprogram the FLASH

0x0000 0000

Memory space used by ROM code 0x0000 0000 –> 0x0003 FFFF

Memory space used by RAM code
(PCI SDK Samples)

0x0004 0000 –> 0x0007 FFFF

Direct Master to PCI memory
space Address

0x4000 0000 –> 0x40FF FFFF
(16MB)

Direct Master to PCI IO space
Address

0x5000 0000 –> 0x50FF FFFF
(16MB)

PCI 9080 Register Address 0xC000 0000 -> 0xC000 01FF

Memory space recommend for
user’s use.

0x1000 0000 -> 0x10FF FFFF
(16MB)

Users, who have upgraded the PCI SDK and intend to use it with an existing PLX RDK, must
first reprogram the configuration EEPROM connected to the PLX chip. Skipping this step can
cause unpredictable behavior of the PCI SDK. If you have purchased the PCI SDK with a PLX
RDK then there is no need to upgrade the EEPROM because it was programmed at the factory
before shipping. The following diagram shows the default settings for the RDK.

Table 5-5. Basic Information About PCI 9080RDK-860

5-8 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

5.6 PCI 9080RDK-SH3
The table below describes the memory requirements of the PCI SDK for the PCI 9080RDK-SH3.

Item PCI 9080RDK-SH3

DRAM Address for SH3 access 0x0C00 0000 –> 0x0CFF FFFF (16MB)

DRAM Address for PCI 9080
access

Not Supported

SRAM Address for SH3 access 0x0900 0000 –> 0x0903 FFFF (256KB)

SRAM Address for PCI 9080
access

0x4000 0000 –> 0x4003 FFFF (256KB)

EPROM Type TMS27C010A-10

EPROM Address for SH3 access
(if boot device)

0x0000 0000 –> 0x0001 FFFF (256KB)

EPROM Address for PCI 9080
access

Not Supported

FLASH Type MBM29LV160B-90

FLASH Address for SH3 access 0x0000 0000 –> 0x001F FFFF (2MB)

Figure 5-5. Configuration EEPROM Settings for the PCI 9080RDK-860

Table 5-6. Basic Information About PCI 9080RDK-SH3

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 5-9

Item PCI 9080RDK-SH3

(if boot device)

FLASH Address for SH3 access
(if non-boot device)

0x0100 0000 –> 0x011F FFFF (2MB)

FLASH Address for PCI 9080
access

Not Supported

FLASH Image Offset at which to
reprogram the FLASH

0x0000 0000

Memory space used by ROM code 0x0C00 0000 –> 0x0C03 FFFF and

0x0900 0000 -> 0x0900 0FFF

Memory space used by RAM code
(PCI SDK Samples)

0x0900 1000 –> 0x0900 FFFF

Direct Master to PCI memory
space Address for SH3 access

0x0A00 0000 –> 0x0A0F FFFF (1MB)

Direct Master to PCI IO space
Address for SH3 access

0x0B00 0000 –> 0x0B0F FFFF (1MB)

PCI 9080 Register Address for
SH3 access

0x0800 0000 -> 0x0800 01FF

Memory space recommended for
user’s use for SH3 access.

0x0901 0000 -> 0x0903 FFFF (192KB)

Memory space recommended for
user’s use for PCI 9080 access.

0x4001 0000 -> 0x4003 FFFF (192KB)

Users, who have upgraded the PCI SDK and intend to use it with an existing PLX RDK, must
first reprogram the configuration EEPROM connected to the PLX chip. Skipping this step can
cause unpredictable behavior of the PCI SDK. If you have purchased the PCI SDK with a PLX
RDK then there is no need to upgrade the EEPROM because it was programmed at the factory
before shipping. The following diagram shows the default settings for the RDK.

5-10 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

5.7 PCI 9080RDK-RC32364
The table below describes the memory requirements of the PCI SDK for the PCI 9080RDK-
RC32364.

Item PCI 9080RDK-RC32364

DRAM Virtual Address 0x0010 0000 –> 0x004F FFFF
(4MB)

SRAM Virtual Address 0x0000 0000 –> 0x000F FFFF
(1MB)

EPROM Type M27C801-100

EPROM Virtual Address 0xBFC0 0000 –> 0xBFC7 FFFF
(512KB)

EPROM Image Base Address 0x0000 0000

Virtual memory space used by
ROM code

0x0000 0000 –> 0x0003 FFFF

Virtual memory space used by
RAM code (PCI SDK Samples)

0x0004 0000 –> 0x0007 FFFF

Direct Master to PCI memory 0x1500 0000 –> 0x15FF FFFF

Figure 5-6. Configuration EEPROM Settings for the PCI 9080RDK-SH3

Table 5-7. Basic Information About PCI 9080RDK-RC32364

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 5-11

Item PCI 9080RDK-RC32364

virtual space Address (16MB)

Direct Master to PCI IO virtual
space Address

0x1600 0000 –> 0x16FF FFFF
(16MB)

PCI 9080 Register Virtual
Address

0x1400 0000 -> 0x1400 01FF

Virtual Memory space recommend
for user’s use.

0x0008 0000 -> 0x004F FFFF
(4.5MB)

Due to hardware design, the configuration EEPROM on this RDK does not work. So, the
configuration EEPROM is not provided. However, the original hardware design for the serial
EEPROM is 93CS56.

5-12 ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

This page is intentionally left blank.

PCI SDK User’s Manual ©PLX Technology, Inc., 1999 I

Appendix A. Index

A

AppMain............................... 3-6, 3-7, 3-20, 3-21

B

BEM ..
3-2, 3-3, 3-12, 3-13, 3-14, 3-15, 3-16, 3-17, 3-
19, 3-20, 3-21

BemMain ...3-7, 3-20
Block DMA 3-8, 3-9, 3-10, 3-12
Boot up code...................................2-7, 3-5, 3-22
BSP..

1-1, 2-4, 2-17, 3-1, 3-2, 3-3, 3-4, 3-5, 3-6, 3-7,
3-12, 3-21, 3-22, 3-23

C

CompactPCI.............................. 1-3, 2-5, 5-3, 5-4

D

Diab Data, Inc. Compiler..................1-3, 2-7, 2-8
Direct Master ...

3-6, 5-1, 5-2, 5-3, 5-4, 5-6, 5-7, 5-9, 5-10, 5-
11

Direct Slave .. 2-17

E

Endian... 3-1
Exception vector table 3-5

G

GNU compiler ...1-3, 2-7

I

I2O... 1-1
IBM 401 EVB... 1-3
IBM High C/C++ PowerPC Cross-Compiler . 1-3
IDT/c Cross Compiler.......................1-3, 2-7, 2-8
IOP 480..

1-2, 1-3, 2-4, 2-10, 2-13, 2-14, 2-16, 3-8, 3-
13, 3-14, 3-16, 3-17, 3-19, 5-1

IOP 480RDK 1-3, 2-7, 5-1
ISR 3-5, 3-10, 3-11, 3-23

L

LED.. 2-7, 3-1, 3-22

M

Microprocessor 1-4, 3-4, 3-5
MiniBSP 2-6, 2-17, 3-5, 3-22
MPC860... 1-3, 2-7, 2-17

P

PCI 9054RDK-860 1-3, 2-5, 5-2
PCI 9080RDK-401B........................ 1-3, 2-5, 5-5
PCI 9080RDK-860 1-3, 2-5, 5-6, 5-7
PCI 9080RDK-RC32364 1-3, 2-5, 2-7, 5-10
PCI 9080RDK-SH3 1-3, 2-5, 2-7, 5-8
PCI API DLL...3-3, 3-25
PCI BIOS...2-5, 3-6
PLXMon 99 ...

...1-1, 1-2, 2-1, 2-4, 2-5, 2-6, 2-10, 2-11, 2-14,
2-17, 3-1, 3-3, 3-7, 3-12, 3-20, 3-21, 3-24, 3-
25

Power Management2-16
Protocols ...3-14

R

Registry.. 2-5, 2-12, 2-16

S

SGL DMA 2-16, 3-8, 3-9
Shuttle DMA................2-14, 2-16, 3-8, 3-9, 3-11

U

UART3-6, 3-7, 3-12, 3-21, 3-23

W

WDM ... 2-1, 2-10, 3-25

II ©PLX Technology, Inc., 1999 PCI SDK User’s Manual

This page is intentionally left blank.

	Table of Contents
	List of Figures
	List of Tables
	Introduction
	General Information
	About This Manual
	PCI SDK Features
	Where To Go From Here
	Other PCI SDK Manuals
	Conventions
	Windows Programming Conventions

	Terminology
	Development Tools
	IOP 480 Third Party Development Tools

	Customer Support

	Getting Started
	PCI SDK Installation
	Unpacking
	Minimum System Requirements
	Development Requirements
	Software Installation

	Understanding The PCI SDK
	IOP Software
	Windows Based Host Software

	Using The PCI SDK With A New Board
	Using The IOP API libraries With Other Compilers

	PCI SDK Software Architecture Overview
	Assumptions
	PCI SDK Assumptions
	IOP API And IOP Software Assumptions
	PCI API And Win32 Software Assumptions

	Overview
	Software Architecture
	IOP Software Architecture
	Board Support Package (BSP)

	Host Win32 Software Architecture

	Real Time Operating System Support
	General Information
	Getting Started
	Minimum Requirements
	Installation
	What™s Included?
	Which VxWorks ROM Image Should I Use?
	PLX VxWorks BSP/PLX API Demonstration
	How to rebuild the BSP and Application images?
	Tornado 1.0.1 and Tornado 2.0 compatibility

	RDK Software Quick Reference
	IOP 480RDK
	PCI 9054RDK-860
	CompactPCI 9054RDK-860
	PCI 9080RDK-401B
	PCI 9080RDK-860
	PCI 9080RDK-SH3
	PCI 9080RDK-RC32364

	Index

