
1

Parallax, Inc.
Basic Stamps

US First Seminar
Plymouth, MA

2

3

Dear Attendee,

Thank you for coming to the BASIC Stamp Seminar. This seminar will cover
stamp basics, including basic programming, and practical electronics as it pertains
to stamp applications. The seminar culminates with each student or student pair
wiring and programming an autonomous robot - The BoeBot. If time permits, we
will delve into code optimizing techniques and write a script based command
parser using more advanced commands and programming methods.

We prefer a relaxed environment so feel free to ask questions at any time. We
will take several small breaks during the day with an hour-long break for lunch at
the usual time. Of course, attendees are welcome to remain in the lab to complete
their projects and/or experiment beyond the scope of the course. The instructors
will remain available to help out in any way.

The documentation style of this pamphlet was chosen because of its flexibility.
We recognize that people learn different concepts at different rates. Those who
wish to work ahead can, and those who wish to spend more time on a particular
part may do so, then catch up later. Naturally, we recommend that you try to stay
in step with the rest of the class.

Quick Start Guide

1) If there is not an icon on your desktop for the stamp, insert the stamp floppy
diskette into the A drive. Access the A drive, click on and drag the Stampw.exe
icon over to the desktop. You may close the A drive window now.

2) Start the stamp software by double clicking on the Stampw.exe icon.
3) Verify that the BS2 is correctly inserted into the Board of Education (BOE). If

not, do so by plugging the BS2 into the 24-pin DIP socket with the largest chip
on the BS2 closest to the Parallax, Inc. logo on the BOE.

4) Apply power to the BOE; the on-board LED should glow green. Disconnect the
power if the LED glows any other color, or not at all, and alert a trainer for
assistance.

5) Connect the serial cable between the PC’s serial port and “J2” on the BOE.
6) Using the mouse, click on “Run” and drag down to “Identify”, then release the

mouse button. The stamp software will attempt to find and communicate with
the BS2. If this is successful, a message box will announce that the BS2-IC was
found. If not successful, alert one of the trainers for assistance.

You’re ready to begin!

4

Lesson #1 - Notes

If you are familiar with the Basic language, you will find many similarities
between it and the PBASIC language used by the BS2. Labels must be located
in column 0 (the most left position in the editor). Commands may be located
anywhere, but to enhance the readability of the program, they are generally
tabbed in. Comments may be added to your program to enhance readability, and
need only be preceded by a single quotation mark, (‘), so the compiler knows to
ignore it while generating the output file. The programs written in these lessons
are formatted to show what is considered by most programmers to be good form.

Within the BS2, program execution starts at the top of the program. Each
instruction is executed, and when completed, the next instruction is executed.
This continues endlessly unless a goto or gosub instruction is encountered. The
gosub instruction is explained in a later lesson, the goto instruction is covered
below.

New Commands Used in This Lesson

High n The high command makes the specified pin n an output, and drives
that output high (to 5 Vdc). Valid values for n are 0 through 15 and
correspond to the I/O pin numbers found on the BS2, P0 - P15.

Low n The high command makes the specified pin n an output, and drives
that output low (to 0 Vdc). Valid values for n are 0 through 15 and
correspond to the I/O pin numbers found on the BOE, P0-P15.

Goto label The normal program execution is interrupted, and redirected to start
executing the code following the specified label. This instruction is
handy for jumping over code that you wish to skip, or when the
program execution gets to the bottom of the page, to send it back up
to the top of the page.

Pause n The pause command suspends program execution for the specified
amount of time. Outputs are maintained during this idle time. The
amount of time n is in milliSeconds (mSec) and may range from 1
to 65535, (1 mSec to 65.5 Seconds).

5

THE BASICS – Lesson #1

Construct the following circuit:

The 270 Ohm resistor is colored with
Red, Violet, Brown, and Gold bands.
LEDs are polarity sensitive. The top view
of the LED should reveal a flat. The leg
nearest the flat is the cathode and should
be connected to ground (Vss).

Once the circuit is complete, type the following

Start: high 2 ‘Turn on the LED

Once the code is complete type the Ctrl-R key sequence
or click on the tool button shaped like a triangle to program your BS2.

Notice the following:

The status bar flashes on the screen to indicate the status of the download.

The LED should light.
If you stare at the LED closely, you should notice that the LED flickers at a consistent rate.
Specifically, it stays on for 2.3 seconds and flickers off for ~18 mS, (0.018 Seconds).
Why is this so?

Extra for Experts

For those who want to work ahead, make the LED blink at a 2 Hz rate.
Now try to fade the LED on and off at a 2 Hz rate.

6

Lesson #2 - Notes

New Terms Used in This Lesson

Remove the previous circuit. The BS2 uses several predefined names to access
the I/O pins in various ways. Using different names to address the input pins
allows you to read an individual pin (a bit), a group of four pins (a nibble), a
group of 8 pins (a byte), or all of the input pins in one swell foop! (a word).

InX InX is the name of the group of any input pin P0 through P15
whereas X is any number 0 through 15 which correspond to that
pin.

InA InA is the name of the group of input pins P0 through P3
InB InB is the name of the group of input pins P4 through P7
InC InC is the name of the group of input pins P8 through P11
InD InD is the name of the group of input pins P12 through P15

InL InL is the name of the group of input pins P0 through P7
InH InH is the name of the group of input pins P8 through P15

if cond then label The if – then statement allows you to command the
stamp to make a decision in real-time, that is, while the
program is running. If the cond evaluates to non-zero or
a true condition, then the program control jumps to the
label specified and continues execution thereafter. If
cond evaluates to a zero or a false condition, program
execution is resumed with the next instruction.

7

THE BASICS – Lesson #2

Construct the following circuit:

The pushbutton is a small button with four legs.
Care should be taken to ensure that the pushbutton
is inserted the proper way into the breadboard. The
switch element is across the two narrow legs of the
switch.

Once the circuit is complete, type the following

Start: pause 200 ‘Wait 0.2 seconds
Debug ?in1 ‘Show the status of P1 on the debug screen
goto Start ‘Repeat endlessly

Once the code is complete, type the Ctrl-R key sequence
or click on Run|Run to program your BS2.

Notice the following:

After the program downloads, a debug window pops open to display the default status of P1
(which should be a ‘1’). Depressing the pushbutton results in the ‘0s’ in the debugging window.

Why the resistor?

The resistor is necessary to assure a clear transition from 5 Vdc to 0 Vdc and back to 5 Vdc as the
switch is pressed and released.

Extra for Experts

Use the ‘if’ statement to read the pushbutton, and display one of two messages to the debug
window.

8

Lesson #3 - Notes

Remove the previous circuit.

New Commands Used in This Lesson

rctime n,s,r The RCTIME function makes the specified pin n an input and
starts a timer. As the flux capacitor charges, the I/O pin drifts
from 5 Vdc to 0 Vdc. When the voltage passes the threshold,
1.4 Vdc, the timer stops and places the time value measured in
the result register r. The s parameter configures the polarity
(depends on how the circuit is wired up) and should be a ‘1’ for
this test.

Debug r The debug command is not really a command at all but a
powerful debugging tool. You may use it to echo the value of
any and all RAM bytes to the debugging window. The many
variations of ‘debug’ allow you to format the data being sent to
the debugging window in a multitude of ways. We will be
exploring several of those ways throughout this course.

/ * + - = The basic mathematical operators are used to make the stamp
perform 16-bit integer math. Of course, many more
mathematical operators are available but for now these are the
only ones we’ll mention here.

var Var is a BS2 directive, not a command, that directs the compiler
to allocate some RAM memory and to assign an alias by which
to reference it. RAM comes in various sizes as shown below
with examples of how to declare the various types.

Awake var bit ‘1-bit range = 0-1
MyIQ var nibble ‘4-bits range = 0-15
MyWeight var byte ‘8-bits range = 0-255
MyAge var word ‘16-bits range = 0-65535

9

THE BASICS – Lesson #3

Construct the following circuit:

The photoresistor is the small ceramic white disk with two rather long
legs on one side. The speaker is a relatively large black cylinder with
two short legs on one side. The speaker is polarity sensitive; connect
the positive leg (marked “+” on the top of the speaker) to P5 and the
other leg to ground. The 1uF capacitor is a small, yellow ceramic
capacitor that is polarity sensitive. There is a “+” sign near the leg that
goes to Vdd (+5VDC). If you cannot see the “+” sign, the dark line
points to the positive leg.

Once the circuit is complete, type the following

result var word ‘Declare a 16-bit variable called result

Start: high 12 ‘Discharge the capacitor
rctime 12,1,result ‘Measure the rc charge time and put that value in ‘result’
debug ?result ‘Show the results on the screen
pause 100 ‘Wait 0.1 seconds
goto Start ‘Repeat endlessly

Once the code is complete type the Ctrl-R key sequence
or click on Run|Run to program your BS2.

Notice the following:

After the program downloads, a debug window pops open and displays the result of the rctime
function. Notice the value change as you move your hand over the photoresistor.

Extra for Experts

For those who want to work ahead, enter a math expression that will change the range values
received to a range of frequencies suitable for the speaker, then output that value to the speaker.

Display the frequency that you are sending to the speaker in as: “Freq: xxx.x Hz” using the debug
command.

10

Lesson #4 - Notes

Remove the previous circuit. Lesson #4 begins the second phase of this seminar
– building the BoeBot. The BoeBot circuitry is more extensive than what we
have had to deal with thus far, so it is essential to be considerate of where the
components are located on the breadboard. So, from now on, we will suggest
locations to place the components we will be adding.

New Commands Used in This Lesson

gosub label Program control is redirected to label just as the goto
instruction does, but the address of the instruction following the
gosub is memorized also. This is done so that, when the
subroutine has completed and a return instruction is executed,
program control is redirected to the instruction following the
gosub.

return The return command retrieves the last address memorized (by a
gosub command) and redirects the program to the instruction
immedately following the gosub that called the subroutine
containing this return statement.

dec, hex Basic Stamps internally maintain numbers in binary, but we
may view them in either decimal or hexadecimal form when we
use the debug command just by placing a modifier before the
variable.

debug You may format the data Debug displays by mixing literal
strings with variable data. Anything within a set of double
quotation marks will simply be printed on the screen.

11

THE BOE-BOT – Lesson #4

Construct the following circuit:

The LTC1298 is a two channel A/D converter. It is
important to orient the chip properly and insert it
into the breadboard close to the middle, straddling
the trough. Please find the notch at one end of the
IC. If you orient the IC such that the notch is at the
top, pin one will be located immediately to the left.
The pins are numbered counter-clockwise from
there. Straddle each potentiometer across the trough
just as the LTC1298, and locate one at the top and
the other at the bottom of the trough.

Once the circuit is complete, type the following and download it to the stamp.

CS con 0 ' A/D Chip Select; 0 = active
CLK con 1 ' A/D Clock; out on rising, in on falling edge
DAT con 2 ' A/D Data I/O pin

temp var word ' Temporary register
ch1 var word ' A/D channel 1
ch2 var word ' A/D channel 2
config var nib ' Configuration nibble for A/D
ch var config.bit2 ' Channel selection bit for A/D

Init: high CS ' Deactivate ADC to begin.
high DAT ' Set data pin for first start bit.
config = %1011 ' Cfg A/D: Start Bit, Sgl/Dif, Ch#, msbf

Start: gosub ReadAD ' Get raw speed command inputs.
debug “Ch1: “,dec ch1,” Ch2: “,dec ch2,cr
goto Start ' iteration. Not much room for other stuff!

ReadAD: ch = 0 ' Set AD channel = 0
gosub Convert ' Get ch0 AD 12 bit value
ch1 = temp
ch = 1 ' Set AD channel = 1
gosub Convert ' Get ch1 AD 12 bit value
ch2 = temp
return

Convert: low CS ' Activate the ADC.
shiftout DAT,CLK,lsbfirst,[config\4] ' Send config bits.
shiftin DAT,CLK,msbpost,[temp\12] ' Get data bits.
high CS ' Deactivate the ADC.
return ' Return to program.

Notice the following:

If everything went well, you should be able to adjust potentiometer and see the values change in
the debug window. Since this is a 12-bit A/D converter, the expected range is 0 – 4095.

Extra for Experts

For those who want to work ahead, change the code as necessary to convert the 12/bit A/D output
to an 8-bit value. What is the range of output now?

12

Lesson #5 - Notes

Lesson #5 differs from the previous ones in that we do not remove the previous
circuit but add the new circuit to the previous one.

New Commands Used in This Lesson

<<, >> Logical Operators to shift data to the left and right. Usefull for
dividing by or multiplying by a power of 2. Ex: divide ch1 by
4:

ch1 = ch1>>2

13

THE BOE-BOT – Lesson #5

No circuit to construct.

Now that we have programmed the stamp to report data regarding the potentiometers, its time to
massage the data into something usefull.

Amend your stamp program to resemble the following, then download it.

CS con 0 ' A/D Chip Select; 0 = active
CLK con 1 ' A/D Clock; out on rising, in on falling edge
DAT con 2 ' A/D Data I/O pin

temp var word ' Temporary registers
ch1 var word ' A/D channel 1
ch2 var word ' A/D channel 2
config var nib ' Configuration nibble for A/D
ch var config.bit2 ' Channel selection bit for A/D

Init: high CS ' Deactivate ADC to begin.
high DAT ' Set data pin for first start bit.
config = $B ' Cfg A/D: Start Bit, Sgl/Dif, Ch#, msbf

Start: gosub ReadAD ' Get raw speed command inputs.
gosub CalcDemand ' Calculate the speed and direction demands
debug “Fwd/Rev: ”,sdec ch1, “ Left/Right: “,sdec ch2,cr
goto Start

ReadAD: ch = 0 ' Set AD channel = 0
gosub Convert ' Get ch0 AD 12 bit value
ch1 = temp >> 4 ' Convert to 8 bit value
ch = 1 ' Set AD channel = 1
gosub Convert ' Get ch1 AD 12 bit value
ch2 = temp >> 4 ' Convert to 8 bit value
return

Convert: low CS ' Activate the ADC.
shiftout DAT,CLK,lsbfirst,[config\4] ' Send config bits.
shiftin DAT,CLK,msbpost,[temp\12] ' Get data bits.
high CS ' Deactivate the ADC.
return ' Return to program.

CalcDemand: ch1 = ch1 – 127 ' Establish the center position of each
ch2 = ch2 – 127 ' potentiometer to be = to 0
return

Notice the following:

Adjusting the potentiometers now yeild signed numbers signifying speed and direction. Note: the
numbers within the stamp are still unsigned binary, but it helps us understand the outputs if we
have the stamp display those numbers as signed decimal numbers.

Extra for Experts

For those who want to work ahead, add a subroutine to merge the outputs and compensate for an
offset to produce two complementary differential outputs that range from 623 to 879. (750+-128).

14

Lesson #6 - Notes

Servos are DC motors that have been geared down for high torque, and have a
feedback system such that they can position their servo horn (on the shaft) based
on a proportional signal.

New Commands Used in This Lesson

pulsout n,d Pulsout generates a pulse on pin n for the duration d. Pin
number should be between 0 and 15. Duration is specified in
2uS increments. The range of the time parameter is 1 – 65535,
which corresponds to 2uS to 131 mSec.

15

THE BOE-BOT – Lesson #6

Add the following to your circuit:

The servos that provide the motion for the BoeBot
are already installed on the BoeBot chassis. There
are three wires used connect each servo to the
BoeBot board. The Black wire should be connect to
Vss (ground), the Red wire should be connected to
Vdd (+5Vdc), and the white wire should be
connected to the stamp I/O pin specified in the
schematic. The capacitor is large and has a strip
near the leg that goes to Vss.

Amend your stamp program to resemble the following, then download it.

CS con 0 ' A/D Chip Select; 0 = active
CLK con 1 ' A/D Clock; out on rising, in on falling edge
DAT con 2 ' A/D Data I/O pin
Mid con 750

temp var word ' Temporary registers
ch1 var word ' A/D channel 1
ch2 var word ' A/D channel 2
config var nib ' Configuration nibble for A/D
ch var config.bit2 ' Channel selection bit for A/D

Init: high CS ' Deactivate ADC to begin.
high DAT ' Set data pin for first start bit.
config = $B ' Cfg A/D: Start Bit, Sgl/Dif, Ch#, msbf

Start: gosub ReadAD ' Get raw speed command inputs.
gosub CalcDemand ' Calculate the speed and direction demands
gosub CalcDirect ' Correlate the demands into a vector
debug “Left Servo: “,dec Rspeed,” Right Servo: “,dec Lspeed,cr
goto Start

ReadAD: ch = 0 ' Set AD channel = 0
gosub Convert ' Get ch0 AD 12 bit value
ch1 = temp >> 4 ' Convert to 8 bit value
ch = 1 ' Set AD channel = 1
gosub Convert ' Get ch1 AD 12 bit value
ch2 = temp >> 4 ' Convert to 8 bit value
return

Convert: low CS ' Activate the ADC.
shiftout DAT,CLK,lsbfirst,[config\4] ' Send config bits.
shiftin DAT,CLK,msbpost,[temp\12] ' Get data bits.
high CS ' Deactivate the ADC.
return ' Return to program.

CalcDemand: ch1 = ch1 – 127 ' Establish the center position of each
ch2 = ch2 – 127 ' potentiometer to be = to 0
return

CalcDirect: Rspeed = Mid+ch1-ch2 ' Figure the direction command into
Lspeed = Mid-ch1-ch2 ' the speed command for each servo.
return

Notice the following:
When the potentiometers are in their respective center positions, the Rspeed and Lspeed values
debugged should be 750.

16

Lesson #7 - Notes

Now that we have the rough form of the BoeBot done, its time to polish it a
little. You have porbably noticed that it is difficult to dial in the pots to get the
servo motors to stop. A deadband can make this easier, and thus more practical.

New Commands Used in This Lesson

<, > Logical Operators to compare the magnitude of two numbers .

() Parenthesis can change the order of operation in an expression.
Typically, stamp math expressions are evaluated from left to
right, regardless of hierarchical operations.

17

THE BOE-BOT – Lesson #7

No circuit to construct.

In practical applications, it is often necessary to add in deadbands and offsets. We’ve already
handled the offset for the servos, now we will add the deadband logic.

Add the following code to your current program, then download it.

In the declarations area add:

Deadband con 10 ' Midpoint + - deadband = no movement

In the main code, after the calcdemand subroutine but before the servodrive subroutine add:

gosub CheckDband ' Do deadband logic

Add the following subroutine to the end of your code:

CheckDband: if Rspeed > (Mid+Deadband) then RdbOK ' If inside deadband range
if Rspeed < (Mid-Deadband) then RdbOK ' limit the value to 'Null'
Rspeed = Mid

RdbOK: if Lspeed > (Mid+Deadband) then LdbOK ' If inside deadband range
if Lspeed < (Mid-Deadband) then LdbOK ' limit the value to 'Null'
Lspeed = Mid

LdbOK: return

Notice the following:

Adjusting the potentiometers now yields a more generous mid point in which the servos are still.
Ideally, you should adjust the ‘Deadband’ constant to suit your liking.

Extra for Experts

This code is written such that it is easy to read, but is it efficient? Click on Run|Memory Map and
note the usage. Try to combine subroutines and optimize the code, then note the difference in
memory usage. How did you do?

18

19

THE BOE-BOT – Lesson #8

No circuit to construct.

Fully optimized? We may never know. There are many ways to skin this cat, and there is always
someone more clever than yourself ready to prove it! Here’s what we came up with.

'--
'Boe-Bot Joystick Simulator 12mS js9.bs2
'--
'Define Variables and Constants 5% 104 bytes 3.25 words
'--
CS con 0 ' A/D Chip Select; 0 = active
CLK con 1 ' A/D Clock; out on rising, in on falling edge
DAT con 2 ' A/D Data I/O pin
Lservo con 15 ' Left servo on P15
Rservo con 3 ' Right servo on P3
Mid con 755 ' Null midpoint of servos
Deadband con 10 ' Midpoint + - deadband = no movement
Range con Deadband*2 ' Range = twice the deadband
LowPoint con Mid-Deadband ' LowPoint = Midpoint - deadband

Rspeed var word ' Reg for Rservo & Ch1
Lspeed var word ' Reg for Lservo & Ch2
ch1 var byte ' A/D channel 1
ch2 var byte ' A/D channel 2
config var nib ' Configuration nibble for A/D
'--
' Main Code
'--
Init: high CS ' Deactivate ADC to begin.

high DAT ' Set data pin for first start bit.
ReadAD: gosub Convert ' Get ch1 AD 12 bit value

ch1 = ch2 ' Convert to 8 bit value
gosub Convert ' Get ch2 AD 12 bit value

CalcVector: Rspeed = Mid+ch1-ch2 ' Figure the direction command into
Lspeed = Mid-ch1-ch2+255 ' the speed command of each servo.

CheckDband: if (Rspeed-LowPoint>Range) then ChkL
Rspeed = Mid

ChkL: if (Lspeed-LowPoint>Range) then Drive
Lspeed = Mid

Drive: pulsout Lservo,Lspeed ' Generate pulses for servos
pulsout Rservo,Rspeed
goto ReadAD

'--
' Subroutine
'--
Convert: config = config ^ 4 ' Sel other channel

low CS ' Activate the ADC.
shiftout DAT,CLK,lsbfirst,[~config\4] ' Send config bits.
shiftin DAT,CLK,msbpost,[ch2\8] ' Get data bits.
high CS ' Deactivate the ADC.
return ' Return to program.

'--

