SPIE Astronomical Telescopes and Instrumentation

[LSST Instrument Concept

B. Starr, C. Claver, S. Wolff, J.A. Tyson, L.Daggert,
M. Lesser, R. Dominguez, R. Gomez, G. Muller

NOAO
Bell Labs / Lucent Technologies
University of Arizona



LLSST Project Overview

8.4 meter telescope

3 mirror /1.25 optical design

3 degree diameter circular FOV
80% encircled energy in 0.2 *
24% magnitude in 10s

Designed to maximize fig of merit:
N _ ¢, AQQEe
t (SNR)2(Psky (BQ)
e Single optical instrument (0.3 — lum)

e Battle cry: “Go Faint Fast !!!”

Picture Courtesy of Warren Davison of Steward Observatory ref 4836-18 2



[LSST Operation Mode

® Survey the entire visible sky every 4 nights

® Requires cadence of 15 seconds

— 10 sec. exposure

15 sec
— 5 sec. overhead
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[LSST Operation Mode
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LSST Instrument Definition

e Focal plane diameter:
 55cm (3 deg FOV, {/1.25)
e Image plate scale:

51 microns/arcsec

e Pixel sampling:

e <(.2 arcsec/pixel

e Focal plane curvature

e 25-30 m radius of curv.
e Or??? Flat !

Picture Courtesy of DMT Website: http://dmtelescope.org/.



LSST Focal Plane Definition

e Focal plane format :

EEE « Fully filled circular mosaic
EEE e Pixel size = 10 um pixels
=EEEEEEEE============EEE == © Image size: 2.27 G pixels/image
;:E"HEEEEHEEEIEEEEEEHEEEE > ~ Eq 47k x 47k mosaic
EEE EEE : E.EEE mmm EEE e Readout rate < 2 seconds
= EEE EEEEEEEEEEE? e | MHz readout rate for
- EEEE 2kx2k detector (2 amp each)
EEE 5 EEEE  Or 2MHz/# of outputs
"RRRgEEEERNNN Minimum 4 color nightly

operation capability



Key Periormance Criteria
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Key Periormance Criteria

——
——

MTF effects
 Pixel to pixel crosstalk
* Charge diffusion
« CTE

Channel to channel crosstalk
Fixed pattern noise (FPN)

Photo-response
Nonuniformity (PRNU)

Fringing effects in the red
Anti-blooming

Residual image

Radiation detection



Key Performance Criteria
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[LSST Priority:
Observing Efficiency

* Every photon’s sacred...
» Telescope time 1s an increasingly costly commodity.

* Support the relentless acquisition of images.
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Instrument Constraints

® Primary issue:
— Instrument inside optical beam

e Volume
— Limit radial size to prevent vignetting

e Weight

— Limit moment for mounting and
structure components

e Power dissipation

— must be controlled to prevent thermal
convection effects in the optical beam

® Cost <20 million
® Schedule: build in 5 years
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[LSST Data Acquisition Requirements

NOAO Monsoon
Scalable Image Acquisition System

e 10s “typ” exposure time
e 2 s readtime
e Avg exp efficiency = 0.82

e 2.27 G pix/exp/2s readtime
= 1.14 G pix/s peak pixel rate
= 2.27 G bytes/s peak data rate

® This can be handled with
e« 12 2.4 Gb/s SL.240 Fibers
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System Level Approach to Design

e Examine :
e Performance
e Cost (Component&System)
e System Complexity

* Power Consumption
e Reliability
« Risk
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Instrument Design Fundamental Concepts:
“Total Cost of Ownership”™

Purchase Costs
— All components, hardware & software, cables, power supplies...

Integration Costs

— Packaging, cabling, software development, documentation development,
physical size, weight, power and cooling requirements.

Maintenance Costs

— Manpower costs for calibration, troubleshooting, replacement time,
documentation, organization overhead from lack of common systems.

Replacement Cost
— Cost of components, modularity, delivery times, control of technology

Loss of Science Time
— Loss of time due to inefficiency, overheads, down-time, reliability....
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Instrument Concept

e Dewar within a dewar design

e Dewars “non-evacuated”
— N, partial pressure in outer dewar
— Xenon 1n inner dewar

e 3 refractive optical elements

® QOuter dewar holds:
— 2 optical elements (1.6m outer)
— Acts as active lense support cell
— Filter mechanism
— Inner dewar assembly

® Inner dewar holds:
— Window is 3™ refractive element
— 2.3 G pixel focal plane as§émbly
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Filter Mlechanism

!

“Flower petal” design

Design driven by volume
constraint

Classic filter wheel or filter
cassette not viable

Compound movement

Separate locking
mechanism

4 Filters \
— 60-cm diameter
— 34 to 17 thick

~ 40-50 Ibs -



Inner Dewar

568 2k x 2k 10um devices

Provide mechanical electrical
and thermal interface to the
focal plane

Xenon filled dewar
-20 C operation

Flexcircuit electrical vacuum
feedthru interconnects

Fiberoptic interface to data
acquisition computers
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Hippo Weighs ~ 3 tons
6-7 Tons




Mosaic Physical Format Issues

e Focal Plane Metrology
— Fit to focal surface (+/- Sum)
— >90% fill-factor
— 4-side-Buttable Packaging
e 100um gaps???

e Optical Bafﬂing

— No Shiny Bits!!!
e Electrical Interconnect
® Thermal Control

‘ ‘ — “Warm” Focal Plane
* Cooling to about —20C
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Z Module Technology

e Detector interface
circuitry contained within
footprint of detector

Readout and
Sig. Process.

4 Thmned %

Chlps

&

%7 ;4
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Z Module Technology

e Detector interface
circuitry contained within
footprint of detector

e ASIC solution ideal but has
risk and high NRE associated
with 1t
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Z Module Technology

e Detector interface
circuitry contained within
footprint of detector

e ASIC solution 1deal but has
risk and high NRE associated
with it

e Standard component solution

exists now and provides ASIC
backup

28




ASIC Approach... Standard
Components... We’ve Got Options

e SDSU II Dual Channel
Video Board

— 2 channels

— 1 Mpixel/sec
— CDS, 16 bit ADC
— 15 W power

® Analog Devices 9826

8-channel
— 3 channels (RGB) 1| OTA controller

— 15 Mpixel/sec

— CDS, 16 bit ADC
— 400 mW power

29



ASIC Approach... Standard
Components... We’ve Got Options

e SDSU II Dual Channel *-"?-'-... 8=
Video Board Lt = S
A 1 1 N i . E -
MONSOON 12-CHANNEL CCDPROTOTYPE




Focal Plane Interftace

® Need for efficient electrical
interface

e Focal plane organized in
segments

e Flexible circuit interconnects
and vacuum feedthroughs

e Efficient serial LVDS interface

e All detector interface immediate
to detector

31
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Key Visible Detector Technologies

1. “Classic” Back-Illuminated Science Grade CCDs

2. “Hi-Resistivity” CCDs (“Red Hot™)
3. CMOS “Active Pixel Sensors” (APS) Sensors
4. Hybrid FPA Solutions
5. Orthogonal Transfer
Arrays (OTAs) fﬂw

b b | | |
200 300 400 500 GO0 700 BOOD 900 1000 100
Wavelength (nm)

Atmospheric cutaff

8i bandgap at =150 K

Graph Courtesy of Don Groom SPIE 4008-70 37



Focal Plane Metrology Issue

DETECTOR

FOCAL PLANE RADIUS=Z2 meters o}

2a.0em

“Focal plane” 1s actually “focal surface”

25-30 m radius of curvature

Size limit to mosaic “flat devices” of curved surface
+/- 5 micron desired depth of focus.

1571 Tmicrons

38



[Focal Plane Assembly

® 568 2k x 2k devices

e 3.8 um deviation from

25m radius focal surface
for perfect 2k x 2k
detector

® 4 edge buttable devices
e > 90% fill factor

39



[Focal Plane Assembly

® 568 2k x 2k devices

e 3.8 um deviation from

25m radius focal surface
for perfect 2k x 2k
detector

g ® 4 edge buttable devices
QP . o >90% fill factor
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MONSOON Image Acquisition System

e Scalable multi-channel high-speed Image Acquisition System
e Scalable at all levels based on cost/performance trade-offs
e Specifically designed to address the needs of

next-generation IR & CCD mosaic systems
— ORION (2k x 2k) InSb & HgCdTe development
— NEWFIRM (4k x 4k)
— WYIN QUOTA (8k x 8k) => ODI (32k x 32k)
— LSST (47k x 47k) and growing....

e Increased performance over existing solutions

— With reduced total cost
— With reduced size
— With reduced power consumption




MONSOON Fundamental Concepts:

“Image Server”or “Pixel Server”

e Integrated Systems Concept:
Image Acquisition System vs. “Controller”
Key element in “LSST Observatory” system
More than “Interface Electronics™
Focus on all key 1ssues:
Signal acquisition
Data flow
Processing
System management
Remote location / reliability 1s of vital importance

42



MONSOON Scalable Architecture
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3 Layer System Architecture

Monsoon System Context Diagram (ewi0)

Science Client System

® Supervisor Layer
— Provide single point contact to system | (Geaarvason Coioe Svetem)
— Control only, not pixel data

— Provides client access security

e Pixel Acquisition Node (PAN) Layer
— All low-level data processing (except digital averaging) T [Supervsory sl
— No knowledge of other PAN-DHE pairs EEETE
— Single exposure sequencing ! ———
(Fowler Sampling, coadds, MSR techniques, OT imaging) \ < Y
e Detector Head Electronics (DHE) Layer NS |
— Integration timing (if master) ;
— Detector readout sequencing & digital avgs. MONSOON

— Shutter control & array temperature control

44



MONSOON System Data
Pertformance Metrics

All data pipelines 32-bit for future expansion

Data rates: Up to 120Mpixel/sec per fiber link

Data processing rates: “scalable’ (w/Fiber broadcast)

Data storage rates: “scalable” (w/Fiber broadcast)

Data display rates: “scalable” (w/Fiber broadcast)

# of Channels/DHE:
e Up to 216 ch per DHE chassis (w/out Bridge, 8 Slot backplane)
e Up to 532 ch per DHE chassis (w/Bridge, 16 Slot backplane)

# of Controllers/System: >100

45



Visible MOSAIC Development Path
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3) LSST: 47K x 47K
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1) QUOTA: 8K x 8K

2) ODI: 32K x 32K



QUOTA to ODI to LSST
System Scaling
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System Design Allows
[mmediate Software Development
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Thermal Considerations

e Radiative losses through
dewar window ~ 50 — 80W

e Conductive losses through
electrical interconnects

e Internal power dissipation of
devices and interface circuitry

e Convective losses through
xenon gas ~ 100 — 150W

e Evaluating cryocooler
technology and thermoelectric

49



Spiral Development Lifecycle Model

Planning
Risk Analysis
Customer

Communication

Project entry
point axis

Engineering

Customer
Evaluation Construction & Release

l__:] Product Maintenance Projects
[::l Product Enhancement Projects
I:l New Product Development Projects

Concept Development Projects

50



Risk Management

e 4 Step Method
1) Identify 2) Evaluate 3) Avoid 4) Mitigate

AS REQUESTED, I T CONCLUDED THAT <] (DO YOU HAVE
DID A "RISK THERE WAS NO ANYTHING TO
MANAGEMENT" RISK OF ANY 5| | ADD?
ASSESSMENT, MANAGEMENT, g

: I1L GET
“_ BACK TO
d -
| ]
/ff@

w- :

e Continuous risk management process throughout project lifecycle.
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Maslow’'s Model Applied to Projects

Self- \ Self- \
.-"Actuulizati()n"“\_ Al:tuali'}_.ation\
- \ y (ongoing
' " professional
development)

Self-Esteem 7 T

+ Self-Esteem

i (feeling productive,
belief in project’s importance)
Social Contact,

Belongingness and Love i
e Belongingness and Love

(healthy team dynamics)

Safety Needs 3 Safety Needs X
(avoid pain, fear, and insecurity) \ / (meeting personal promises for schedule and functionality)
/ = \

) i L Survival Needs
Ph_vsmlqgwa] Needs \ / (project not canceled, team not fired, adequate
(food, air, water, etc.) \ physical working conditions, and so on)

FiGURe 1-1  Maslow’s human need hierarchy. Lower level needs must be satisfied before FIGURE 1-2 Software project need hierarchy. Needs of the project are only approxi-
mately the same as the needs of the project’s participants.




