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Detector Signal Processing  
Veljko Radeka, BNL 
 
Slide Captions and Notes: 
 
1. Signal Formation and Ramo’s Theorem 
 
Fig. 4.  This figure illustrates Ramo’s theorem for induced signals, current and charge. Ew  
is the weighting field in units of 1/cm, and it is a measure of electrostatic coupling 
between the moving charge and the sensing electrode. The procedure to calculate the 
induced current as a function of time is as follows. First, the weighting field is 
determined by solving Poisson’s equation analytically or numerically assuming unity 
potential on the sensing electrode of interest and zero potential on all other electrodes. 
Next, the velocity of the moving charge as a function of position is determined from the 
operating (applied) field on the detector. This gives the induced current as a function of 
the position of the moving charge. Third, the position of the moving charge as a function  
of time is determined by solving the equations of motion. This is necessary in the case of 
ballistic motion of charge, but it is simple in the case of transport by drift as the charge 
carriers follow the applied electric field. 
If we are interested only in the total induced charge and not in the waveforms, the 
induced charge is simply given by the difference in the weighting potentials between any 
two positions of the moving charge. An example of the weighting-field (potential) 
profiles is illustrated by the plot of equipotential lines for planar geometry with a strip 
sensing electrode. The operating (applied field) in this case is uniform and perpendicular 
to the electrodes. The weighting field map is in general quite different from that of the 
operating field; the two field maps are identical only in some special cases. 
The minus sign in Ramo’s equation for the induced current results from the arbitrary 
assumption of induced current into the electrode being positive.  
 
Fig. 5.   This is a simple case where the real (operating) electric field and the weighting 
field have the same form  =1/d. The induced current waveforms shown are for a 
semiconductor detector with different electron and hole mobilities. For extended 
ionization the waveforms result from superposition of the waveforms for localized 
ionization, and the currents decrease as the carriers arrive at the electrodes from different 
initial positions within the bulk of the detector. 
 
Fig. 6.  The sketch in (a) shows conceptually how is the weighting field (potential) 
defined: the sensing electrode is connected to unity potential, and all other electrodes to 
zero potential. The equipotential lines in (b) illustrate the solution for this case., showing 
two strips next to the sensing electrode. A great variety of results for the induced current 
and charge may arise in an electrode structure, such as this, depending on the particle 
type detected (distribution of ionization) and on the ratio of the charge observation 
measurement or integration) time and the charge carrier transit time. The current 
waveforms shown are drawn qualitatively for a simple example. The operating field is 
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assumed uniform and perpendicular to the electrode planes. Charge qm  traversing the full 
distance between the electrodes along line 1 is observed as Q1= ­qm, while the current 
decreases with distance from the sensing electrode 1, as the electrostatic coupling 
decreases. For a charge moving along line 2, the induced charge (i.e., the difference 
between the weighting potentials) is zero, if the measurement time is longer than the 
transit time. For a short measurement time a net induced charge is observed. The induced 
current waveform (the “crosstalk signal”) is bipolar, since the weighting field direction 
changes along the path. 
 
Fig. 7. Operating principle of a proportional counter. Induced current as a function of the 
position of positive ions and time during their drift from the anode region to the cathode. 
Note that the signal of interest containing most of the timing information is produced 
while the positive ions have moved only a few radii toward the cathode. 
 
Fig. 8. Coplanar grid readout. This type of readout is commonly used with Cadmium 
Zinc Telluride (CZT) detectors. In such materials only electrons are collected (from the 
ionization produced by gamma rays or x-rays), the holes suffering from very low 
mobility and trapping. With planar parallel plane electrodes the induced charge for single 
carrier collection is dependent on the position (depth) where the ionization took place. In 
the coplanar grid concept one set of alternate strips is biased slightly more positively with 
respect to the other set of strips. This results in a drift field such that the signal electrons 
are collected on one set of strips only. The weighting potential (field) for both sets of 
strips is identical. The induced charges and currents are quite different. Their respective 
differences are independent of the position, as can be concluded by following the 
weighting potential plot from any point on the planar sloped part of the plot to unity 
weighting potential for the collecting electrode, and (across the saddle) to zero potential 
for the noncollecting electrode.  
 
Fig. 9.  Weighting field (potential) for strip and pixel electrode configuration. The 
shielding effect is proportional to the ratio of the distance between the planar electrodes 
and the strip width (i.e., pixel radius). The shielding effect is more pronounced for pixels 
than for strips. The result of these configurations is that the signal charge (integral of the 
induced current)  is independent of the position of the origin of ionization for most of the 
volume of the detector except near the readout electrodes. This effect is used in detectors 
where only electrons are collected during the integration time, such as Cadmium Zinc 
Telluride  (CZT), and some gas and noble liquid detectors. To illustrate this, histograms 
are shown for a strip and pixel illuminated by a beam of penetrating x-rays absorbed 
uniformly through the detector. 
 
2 .Noise Mechanisms 
 
Fig. 11.  The basis of a noise process can be represented as a sequence of randomly 
generated elementary impulses that has a Poisson distribution in time and mean rate of 
occurrence <n>. Upon acting on a physical system with impulse response much longer 
than <n>-1 , the characteristic noise waveforms (e.g., such as those we observe on an 
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oscilloscope) are produced as a superposition of responses to individual impulses. The 
noise variance at the output of the physical system (a simple RC filter or a complete 
readout system) is calculated by using Campbell’s theorem, which states that the sum of 
mean square contributions of all preceding impulses equals the variance. The expressions  
for the variance are given after subtracting the mean value. The variance is determined by 
the rate of impulses <n>, their area q (charge), and by the impulse response (i.e., 
the weighting function w(t) of the measurement system, the preamplifier and the 
subsequent readout chain). 
 
For detailed description:  V.R., Ann. Rev. Nucl. Part. Sci. 38 (1988) 217. 
 
Fig. 12. Almost any noise spectrum can be generated from a random sequence of 
impulses (i.e., white noise with “infinite bandwidth”) by using an appropriate filter. 
“Infinite bandwidth” implies a noise spectrum which is flat over the frequency range 
where our measurement system has a non-zero response. Simple integration of white 
noise results in “random walk” with 1/f2 spectrum. An elementary impulse response for 
generation of this noise is the step function U(t). Generation of 1/|f| noise is somewhat 
more elaborate. It requires fractional integration of order one half. The impulse response 
of the transforming filter is U(t)/t1/2, as shown in the figure. The basic feature of any 
noise generating mechanism for low frequency divergent noises is an “infinitely long 
memory”, i.e., very long memory, for individual independent elementary perturbations. 
For a discussion of the basics: [Ref. 10]. 
 
Fig. 13. A noise spectrum very close to 1/|f| can be generated by superposition of 
relaxation processes with uniform distribution of life times. The relaxation process is 
described by the probability U(t) exp(-t/τ), which represents a step change with 
exponential decay. 
 
Trapping-detrapping in semiconductors is one such possible mechanism for generation of  
1/|f| noise. A single trap in the gate oxide (or the interface between the gate oxide and the 
channel) of an MOS transistor results in a drain current waveform shown in the upper left 
of the figure. This phenomenon is referred to as the random telegraph noise [Refs.43,44] 
and it is observed readily in the very small transistors in deep submicron technology. The 
spectral density of such a noise is Lorentzian as shown in the figure. Superposition of the 
spectra for a number of traps with a distribution of life times results in 1/|f| noise. 
 
A hardware generator of 1/|f| noise can be made using the fact that white noise passed 
through a simple RC integrator has a Lorentzian spectral density. A circuit which 
transforms white noise into 1/|f| noise can be made requiring about one time constant 
(one RC circuit) per decade of frequency, as shown in [Ref. 10]. 
 
Fig. 14.  1/f| noise is one of the fractal processes, and its waveform preserves the same 
features independently of the time scale. Another expression of this is independence of 
the measurement variance (i.e., the noise power) upon the time scale of the measurement 
as long as the ratio of the high frequency and the low frequency cutoffs remains constant. 
As the bandpass moves along the frequency spectrum the spectral density integral (i.e., 
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the measurement variance) remains constant for fh/fl=const. In detector pulse processing 
it is well known that the contribution of 1/|f| noise to the equivalent noise charge (ENC) 
remains independent of the shaping time. 
 
3. Equivalent Noise Charge (ENC) Calculation 
 
Fig. 16. This figure illustrates principal noise sources in charge amplifiers and an 
equivalent diagram for calculation of the equivalent noise charge (ENC). 
              
Two elementary noise generators are included in the equivalent circuit, a series noise 
voltage generator representing the noise in the amplifying device, and a parallel noise 
current generator representing various noise sources not inherent to amplification 
(detector leakage current noise, parallel resistor noise, etc.). Both types of noise are 
assumed to have a white spectrum. Two forms of presentation of these two noise sources 
in terms of a sequence of random pulses are shown, as charge (or voltage) at the input of 
the amplifier, and as a current injected into the input capacitance (comprised of the 
detector+amplifier+parasitic capacitances). The presentation of the series noise in terms 
of a current into the detector input is the derivative of the charge (voltage) representation. 
The sequence of voltage impulses representing the amplifier series noise thus 
corresponds to an equivalent sequence of current doublets (derivatives of delta function) 
injected at the detector. The parallel noise is by its origin a current source in parallel with 
the detector, and it is presented by a sequence of impulses (delta functions). It is this 
difference in the location of the two white noise sources with respect to the detector 
capacitance that makes their apparent noise spectra and their effect on the measurement 
quite different.  
 
The series 1/|f| noise contribution to ENC is independent of the peaking time and the time 
scale of the overall system response as long as the shape of the weighting function is 
preserved. This corresponds to a constant ratio of the high frequency and low frequency 
cutoffs, as indicated in Fig. 14. The 1/|f| noise due to a dissipative dielectric depends on 
the dielectric loss factor tan(δ), as shown in Fig. 50. It can be significant with detector-
amplifier connections on glass fiber circuit boards.  
 
The expressions for the equivalent noise voltage spectral density at the input of a 
noiseless amplifier, and for the equivalent noise current spectral density as if originating 
in parallel with the detector capacitance are given in this figure. They are arrived at as 
follows: 
 
1/f noise physical spectral density is defined as 2[ ]fA f in V Hz . 
“Physical” (unilateral) equivalent noise voltage spectral density due to all three noise 
sources defined above and illustrated in Fig. 6.11, referred to the input of the 
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“Physical” (unilateral) equivalent noise current spectral density into the input 
capacitance inC obtained by differentiation of 2

nv , i.e., multiplying by 2 2
inCω  in the 

frequency domain, 
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Fig. 17. The equivalent noise charge (ENC) is calculated by integrating the noise current 
spectral density multiplied by the square of the system response in either the time 
domain (weighting function) or the frequency domain (transfer function), 
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where τ is the time width parameter of the weighting function, either the peaking time of 
the function, or some other characteristic time constant of the filter implemented in 
hardware. 

1 2 3, ,I I I  are the noise integrals for the series (voltage) white noise and the series 1/f  
noise, and for the parallel (current) noise respectively. The integrals are derived in time 
domain from Campbell’s theorem and expressed in frequency domain using Parseval’s 
theorem [Appendix A1]. The coefficients 1 2 3A , A , A  are the form factors of the 
weighting function (and the equivalent transfer function). Their values for some 
frequently used functions are given in Fig. 22. 
 
 
Fig. 18. Some more detail on the calculation of integrals 1 3,I I  and their approximate 
evaluation by piece-wise linear approximation of the weighting function: 
 
 Calculation of equivalent noise charge (ENC) for a signal processing chain described by 
a weighting function w(t). A bipolar weighting function is assumed in this case.  The 
noise calculation is performed in time domain by using Campbell's theorem which was 
introduced in Fig. 11.  For parallel noise, the superposition of effects of all random 
impulses leads to the expression for 2

pENC , where 22 2 qnin = , n  = mean rate of impulses, 
q = impulse charge.  For a current contributing full shot noise (all charge carriers 
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generated randomly) 2
ni  = 2 qeIo, where qe = electron charge and Io = n qe is the mean 

current.  For a resistor in parallel with the detector 2
ni = 4 kT/Rp.  2

ni  is the physical noise 
power spectral density.  The weighting function is normalized to unity so that the 
definition of ENC is "the noise charge which produces an output of the same 
magnitude as an impulse signal of equal charge".  For calculation of the series noise, 
we use the representation in terms of an equivalent current generator connected in 
parallel with the detector.  A doublet Cin δ'(t) acting upon the weighting function w(t) 
produces by convolution Cin · w'(t).  By integration of mean square contributions of all 
previous doublets, the expression for 2

sENC  is obtained, where 2
ne is the noise spectral 

density for series noise in V2/Hz.  In terms of an equivalent series noise resistance        
2
ne  = 4 kTRs.   

 
Noise contributions for both types of noise due to various segments (piece-wise linear 
approximation) of the weighting function are shown in the figure (expressions for 
integrals I1 and I3).  In these calculations, either the impulse response of  
the system or the weighting function (its mirror image) can be used for time-invariant 
systems.  For time-variant (gated or switched) systems, only a weighting function 
describes the performance correctly, while an apparent impulse response (waveform at 
the output) is not correct and can be misleading. Steepest parts of the weighting 
function contribute most to ENCs, as they correspond to larger bandwidth. Flat parts do 
not contribute anything. In contrast, ENCp is largely proportional to the width of the 
weighting function where it has any significant value. 
 
Eqs. for ENC in Figs. 16-18 provide an insight into the general behavior of signal 
processing systems with respect to noise. The ENC due to series white amplifier noise is 
inversely proportional to the slope of the weighting function and therefore proportional to 
the bandwidth of the system. The ENC due to parallel white noise is proportional to the 
width of the weighting function and therefore to the overall integration time. If the 
weighting function form remains constant the ENC due to 1/f noise 
is independent of the width of the weighting function, since the ratio of the high 
frequency cutoff and low frequency cutoff remains constant, Fig. 14.  From Eqs. in Figs. 
17 and 18 the optimum width parameter (known as the “noise corner time constant”) of 
the weighting function is given by, 

      ( )
1 2

1 2
1

3
opt s p in

AR R C Aτ ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 ,                                                                        

and it is not affected by 1/f noise.  
 
A bipolar weighting function, i.e., impulse response h(t), with equal lobes would result in 
square root of two higher ENC than for a unipolar function (single lobe). If the amplitude 
of the second lobe is less than one half, its rms noise contribution becomes small (<12%).  
 
The half-order integral I2  for 1/f noise is not amenable to such a simple interpretation as 
for I1  and I3, and it will be discussed in Fig. 21. 



 - 7 -

                                                                                            
 
 
Fig. 19. Following on the piecewise linear approximation of the weighting function in  
Fig. 18, a simple relation for the equivalent noise charge (ENC) due to series white noise 
is derived. It requires knowledge of three parameters:  noise spectral density en , total 
input capacitance (detector+amplifier)  Cin , and peaking time tm  of the triangle 
approximating the weighting function. Such an approximation is useful for noise 
estimation, since the series noise integral for a 5th order semi-gaussian weighting function 
with the same peaking time differs by only ~10%. In a preamplifier design, the expected 
en  can be determined from the operating conditions (current and transconductance) of the 
first transistor.  
 
Fig. 20. From  Fig. 18 simple relations follow for ENC due to parallel shot noise and 
resistor (thermal) noise. The gated integrator case illustrates that the ENC for shot noise 
is simply the square root of the variance of a Poisson sequence of impulses counted for a 
time tG  (e.g., a gated integrator system). By Campbell’s theorem the contribution of each 
impulse to the variance is determined by the weighting function, and for a given 
weighting function the parallel noise integral I2  has to be determined. For an 
approximation by a triangle with a peaking time tm ,  ( )2 2 3 mI t= . The parallel noise 
contribution for the triangular weighting function is the same as for gated integration one 
third as wide. The contribution by the parallel resistor thermal noise can be compared 
simply to the shot noise by the “50 mv rule”: a dc current I0 causing a voltage difference 
of ~50 mV on a resistor Rp  contributes equal amount of noise as the resistor at room 
temperature. 
 
Fig. 21. Calculation and Estimation of ENC for 1/f Noise. 
 
1/f noise becomes a limiting factor in many physical measurements. We can imagine 
reducing the series white noise in charge measurements to a very low level by continuing 
to increase the measurement (integration) time τ , provided the parallel (leakage or dark 
current) noise is very low. We would eventually reach the “noise floor” due to the 1/f 
noise. Once the 1/f noise spectral density is determined experimentally and defined by the 
parameter Af  in [volts2] as in Eqs. (5) and (6), ENC can be calculated by integral I2 , Eq. 
(8). In time domain this is an integral of a fractional-order (half-order) derivative squared 
of the weighting function (a mathematical operation which cannot be called “trivial” 
before one learns how to do it, and it can be considered “tedious” at best). In frequency 
domain the calculation is somewhat easier for time-invariant systems, but for time-variant 
systems defining the transfer function H(jω) is more difficult and less intuitive than 
determining the weighting function. 
 
We illustrate this here on the example of a commonly used weighting function of 
trapezoidal form . There are many different hardware implementations of this function in 
different applications. Time-invariant versions have used delay line clipping and higher 
order RC prefilters. Gated integrator and higher order prefilters have been used in several 
applications, starting with germanium gamma-ray detectors [Ref. 9 ]. This function is 
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widely used with CCDs in astronomy, implemented by correlated double sampling and 
dual-ramp integration. 
We define the trapezoidal weighting function by the width of  the ramp  τp   and the flat 
top as a fraction of the ramp,  ∆τp . The equivalent noise charge for 1/f noise is then, 
 
     2 2

2f in fENC C A Aπ= ,     where                                                                                           

     ( ) ( )
2

1 2
2A w t dt

∞

−∞
⎡ ⎤= ⎣ ⎦∫                                                                                     

  
 The coefficient A2 vs the flat top Δ of the trapezoidal weighting function, according to an 
exact calculation (not reproduced here), is plotted in this figure. 
The effect of the series 1/f  noise is lowest for a triangular weighting function, Δ =0. As 
the flat top is made longer, A2 increases, since such a trapezoidal function has a higher 
ratio of its cutoff frequencies, which results in integrating a wider band of the 1/f  noise 
spectrum. 
 
Since exact calculations of  ENCf for any weighting function can be time consuming, we 
emphasize here a simple estimation method, which provides results sufficiently close to 
the exact calculations for most purposes. It has been pointed out by Gatti et al. [42] that 
the three integrals in Fig.17  have to satisfy Cauchy-Schwartz inequality, which can be 
expressed in terms of the three weighting function coefficients (i.e., form factors), 
 
     ( )( )1 2

2 1 3A A A≤                                                                                                                      
 
Thus there is an upper limit to A2  in relation to A1 and A3 which are easily calculated 
from Figs 17 and 18, as illustrated by a simple case of a triangular function in Figs. 19 
and 20. A study of the most commonly used weighting functions, reveals that 2 1 3A A A  
falls between 0.64 and 0.87, a spread of less than ±8% in the calculation of rms noise, so 
that for estimation of 1/f noise the following approximate relation can be used, 
     ( )1 2

2 1 30.75A A A≈                                                                                                                

For the trapezoidal weighting function ,  1 2A =  and  ( )3
2

3A = Δ + , and the 

approximation for this case is, 

     ( ) 1 2

2
20.75 2 3A ⎡ ⎤≈ Δ +⎣ ⎦                                                                                                           

 This approximation is plotted in the figure and it is within a few percent of  the exact 
analytical solution.  
 
In any noise analysis of charge amplifiers one will have already calculated, or otherwise 
determined the values of  A1 and A3 , so that the information about the filtering (pulse 
shaping) effect on the series and parallel white noise will also provide an estimate of 
the 1/f noise,  

     ( )2 2 2
2 1 30.75f in f in fENC C A A C A A Aπ π= ≈                                                                   
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It is interesting to note that calculated values are:  for a gaussian weighting function  
A2=1.00; for a triangular weighting function 0.88; for a 4th order semi-gaussian 1.02;  for 
CR-RC 1.18.    
 
Af is a parameter resulting from a measured spectral density and it does not contain any 
specific information about the properties of the amplifying device unless other 
parameters are known.  
For input transistor optimization a parameter which is to the first order independent of the 
device dimensions is more useful [15],  f f GSK A C= [joule]. This constant ranges from     
10-27J for junction field-effect transistors (JFETs) to ~10-25J for p-channel and ~10-24J for 
n-channel MOS transistors. 
 
The discussion here was intended to provide some insight: ENCf  depends (rather 
weakly) only on the shape of the weighting function, but not on the time scale.  
 
Fig. 22. A summary of noise coefficients for some frequently used weighting functions.  
 
Both calculated and approximate values for A2 are given for comparison. ENC 
calculation is straightforward requiring the knowledge of the amplifier series noise 

spectral density ne , total input capacitance inC , shot noise contributing (leakage or 
dark) current I0, and 1/f  noise spectral density parameter  Af  .                                                                                           
 
Fig. 23. Noise corner frequency for 1/f noise and white series noise for an NMOS 
transistor with a fairly high 1/f noise. Transistor 1/f  noise is characterized by the constant 
KF, which is independent of the device width and it is dependent on device technology 
[Refs. 15, 17]. This constant ranges from ~ 10-27 for the best JFETs to ~ 10-24 for some 
NMOS devices.  The value for  Af     is determined from the 1/f  spectral density (where 
the white noise is negligible) multiplied by the measurement frequency. 
 
Fig. 24.  Examples of the 1/f noise corner measurement time for the equivalent noise 
charge (in terms of the weighting function peaking time) for different device technologies. 
The corner is off scale of this plot for JFETs. The well known difference between NMOS 
and PMOS transistors is apparent. In GaAs devices 1/f  noise is dominant to  high 
frequencies, as 1 4c mcf t = . In BJTs series 1/f  noise is very small and not visible in this 
plot. The ENC for BJTs shows a different crossover – between the series (collector 
current) shot noise and the parallel base current noise, as indicated by the general plots 
In Figs. 17 and 18. 
 
Fig. 25. Overview of white noise sources in an NMOS transistor normalized to the 
intrinsic channel series noise resistance γ/gms.  The gate induced noise contribution with 
capacitive sources, such as is the case for most radiation detectors, is usually negligible. 
In particular, at operating conditions to minimize the power in the input transistor, the 
optimum ratio Cgs/Cin is small. The contributions by the gate resistance and substrate 
resistance can be made small by the device design. 
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4. Signal processing, i.e.,”filtering” or “pulse shaping” 
 
Fig. 27.  The concept of weighting function is very useful for time domain noise analysis 
of time variant, sampled and switched systems.  The role of "pulse shaping," "signal 
filtering," or "signal processing" is to minimize the measurement error with respect to the 
noise, various baseline offsets and fluctuations, and at high counting rates to minimize 
the effects of pulse overlap or pileup.  The term "pulse shaping" implies that the 
amplifier-filter system is time invariant.  In such a system the system parameters do not 
vary during the measurement, and a single measurement of amplitude or time is 
performed.  Such a system is described completely by its impulse response. 
In signal filtering, we also use time-variant methods, such as capacitor switching and 
correlated multiple sampling of the signal.  The filtering properties of a time-variant 
system are described by its weighting function w(t).  The weighting function describes 
the contribution that a noise impulse, occurring at time ti, makes at the measurement tm, 
as illustrated in the figure.  It is essentially a measure of the memory of noise impulses 
(or any other signals) occurring before the observation time tm.  As shown, the weighting 
function for time-invariant systems is simply a mirror image in time of the impulse 
response, with its origin displaced to tm.  For a time-variant system, the impulse response 
(output waveform) is generally quite different from its weighting function.  Time-
invariant and time-variant processing could be devised to produce the same result, i.e., 
both methods will be described by the same weighting function, while their 
implementation will be quite different.  The noise-filtering properties of any weighting 
function for detector signal processing can be most easily determined by the time domain 
analysis technique shown in Fig. 19. Such a time domain analysis method was first 
introduced by Wilson [Ref. 3.], and subsequently elaborated on in [Refs. 5,6,17]. 
 
 
Fig. 28.  In general, the composite weighting function for multiple correlated sampling is 
obtained by superposition of weighting functions for individual samples. This is 
illustrated for correlated double sampling (CDS), a technique commonly used for 
readout of CCD’s and large pixel arrays. Single sample processing is described by a 
symmetrical triangular impulse response approximating single RC differentiation and one 
or two RC integrations. The single sample weighting function with respect to the 
sampling time at tm is shown (dashed), and it is a mirror image of the impulse response.  
It is assumed that a (delta function) signal of interest will arrive at time t0+ , and produce a 
response described by the impulse response. In double correlated sampling another 
sample is taken at t0 , just before the arrival of the signal. This sample, sometimes called 
“baseline sample”, is subtracted from the “signal or measurement sample”. The 
weighting function for the baseline sample is shown inverted and earlier in time by tm-t0. 
The composite weighting function (thicker solid line) is bipolar and it has area balance. 
This is another way of saying that CDS has zero dc response and that it attenuates (but 
does not eliminate) baseline fluctuations at low frequencies. The ENC can be easily 
calculated from such a composite weighting function by using the technique for time 
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domain noise analysis shown in Fig. 19. (An analysis of such a case in frequency domain 
and without the use of composite weighting function is considerably more time 
consuming).  
 
Fig. 29.  A low order asymmetrical function (dashed) has higher series noise (steep rise, 
see Fig. 19). A nearly symmetrical function requires a higher order signal processing 
chain, as shown. 
 
Fig. 30. An example of some commonly used functions for unipolar and bipolar pulse 
shaping (left) and their frequency response (right).  The unipolar response is achieved 
with 5 RC integrations and 1 RC differentiation, with RC = 20 ns.  The bipolar response 
is due to 4 RC integrations and 2 RC differentiations (equivalent to a mathematical 
differentiation of the unipolar response).  The noise integrals from figure 17, 

1 1 F
I A τ= and 3 3 FI Aτ= , form factors A1 and A3, and τF = FWHM (approximately equal 
to zero-to-peak time) are: 
 
   τF  I1 [s-1]   I3 [ns]  A1 A3 
________________________________________________________________________ 
 
unipolar  105  2.2 x 107  80  2.3 0.76 
 
bipolar    52  6.2 x 107  58  3.2 1.1 
 
 
Vertical scale for frequency response is in decibels (20 db = factor of 10 in amplitude). 
The series noise 2

sENC  is higher for bipolar function of the same width as the unipolar 
one. As this function has area balance the response at low frequencies is significantly 
lower, and so is the sensitivity to low frequency baseline fluctuations, pileup and noise. 
 
Fig. 31. Impulse response h(t) of (a) the optimum filter for amplifier (series) white noise 
and (parallel) white noise current at the detector electrode.  The filter requires a long time 
to respond.  (b) Triangular impulse response optimized in width with respect to the noise 
corner time constant, given by ( )1 2

c in s pC R Rτ = .  The noise is higher by only 8% 
compared with the ideal filter.  The width of both responses is determined by the noise 
corner time constant τc. The time of the amplitude measurement (peak of the response) is 
at the origin. (c) Trapezoidal weighting function provides uniform weighting at the flat 
top to reduce ballistic deficit for signals of finite width. Implemented with a gated 
integrator  [Ref. 9.]. 
 
Fig. 32.  Schematic representation of basic digital functions in sampled data signal 
processing. An anti-aliasing filter is an essential part of the system. Its function is to limit 
the bandwidth prior to sampling so as to satisfy the Nyquist sampling criterion: the 
bandwidth at the output of this filter must be no more than one half of the sampling 
frequency. If this is not satisfied, the loss in S/N due to aliasing cannot be recovered by 
any subsequent processing. The role of digital filtering in x-ray and gamma-ray 
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spectrometry is to create optimized weighting functions. In spite of the power of digital 
processing it is most efficient to cancel any long tails in the detector-preamplifier 
response by analog means. If the tail cancellation is performed digitally, much larger 
numbers of samples have to be processed (deconvolved) for each event. For 
asynchronous (uncorrelated) sampling for semiconductor detectors see [Ref. 19]. For 
signal processing with multiple synchronous (correlated) samples for liquid argon 
calorimeters see [Ref. 22]. 
 
 
Fig 33.  An example of reconstituted waveforms illustrating formation of trapezoidal 
functions, which can be adapted in their width to the counting rate. The top trace is the 
digitized preamplifier output with numbered x-ray steps.  The middle and bottom traces 
are the corresponding fast and slow filter outputs.   X-ray 1 is adequately isolated, so the 
slow filter output (with better S/N) is not affected by the subsequent event 2.  Pulses 2 
and 3 are resolved by the fast filter but pileup in the slow filter. Pulses 4 and 5 pileup in 
the fast filter, and are rejected on the basis of the fast filter pulse width. The sampling 
period in asynchronous (uncorrelated) sampling has to be much shorter than the peaking 
time of the required weighting function. For example, in high resolution gamma-ray 
spectrometry, 50 ns sampling period may have be used for peaking times in the 
microsecond range. 
 
Fig. 34.   There are various techniques to try to “restore”, “correct” or “stabilize” the 
baseline when measuring random signals from detectors. These techniques often involve 
time-variant or nonlinear operations, and an exact characterization of their properties is  
not straightforward. Baseline restorers perform a part of the function of correlated double 
(or even triple) sampling – taking and storing the first sample before (or just at) the 
beginning of the signal response, i.e., the baseline sample, at t2 in Fig. 34.1. The signal 
with the baseline is then measured at t3 . This 1st order baseline restoration corrects for dc 
offsets, and for slow variations in the baseline (due to previous signals, hum, etc.) relative 
to the time between the two samples. It is usually implemented by a nonlinear active or 
passive diode circuit as in (a) where the baseline sample is stored on C as soon as the 
signal starts rising. (b) and (c) illustrate gated restoration, where the gate is derived from 
a separate timing signal. In all three cases the signal appears at the output with the initial 
value of the baseline subtracted. For a higher order of low frequency rejection triple 
correlated sampling would provide for baseline slope correction. A second order restorer 
was developed in one case for this purpose, [Ref. 39]. Fig. 34.2 shows a feedback circuit 
for “stabilization” of the baseline. If such a circuit is linear, it represents  “ac coupling in 
disguise”, and no other sampling or restoring function. If nonlinear, restorer functions can 
be configured, as in [Ref. 9].  
The noise performance of all such circuits can best be characterized by determining their 
weighting function. An example how to do this is given in [Ref. 39]. The weighting 
function for circuits where nonlinear components play a role, will be different for small 
and large signals. The weighting function for small signals is relevant for the noise 
analysis. 
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5. Charge Amplifier Configuration 
 
 
Fig. 36.  In the most basic charge amplifier feedback configuration only two transistors 
are essential to realize a complementary cascode.  The current sources in positive and 
negative supplies can be realized by resistors or by low noise transistor current sources.  
There is only one significant pole (CoRo) in this circuit.  Higher order poles are given by 
the unity gain frequency of the transistors used.  The cascode alone is an "operational 
transconductance amplifier" (very high output impedance).  With the follower amplifier 
x1 it becomes an operational amplifier. 
 

Gain and input impedance relations for the feedback charge amplifier configuration .  The 
frequency dependence of the open loop gain is inherent to a high gain single pole 
amplifier.  It is described by two parameters, unity gain frequency ωh = gm/Co, and the 
gain "roll off" frequency (3 db point) ωl = 1/RoCo.  The dc gain is then |Go| = ωh/ωl = gm · 
Ro.  gm is the transconductance of the input transistor, Co is the dominant pole capacitance 
and Ro is the dominant pole resistance.  Input impedance with capacitive feedback has 
two terms, a resistance Rin = 1/ωhCf in series with a capacitance CfGo.  The resistance 
term Rin, in conjunction with the total input capacitance, determines the rise time of the 
detector-amplifier.  The rise time constant of the output voltage (i.e., the transfer of 
charge from the detector capacitance to the feedback capacitance) is τr = Rin · Cin = 
(1/ωh) (Cin/Cf) = (Co/gm) (Cin/Cf), where Cin = CDet + Campl.  The resistive input 
impedance has a noise corresponding to the amplifier series noise resistance Rseq, and it 
appears as a resistance with a noise temperature, Teff = T · Rseq/Rin.  For values of Rin 
higher than Rseq, the amplifier can be used as a termination for delay lines with a noise 
lower than that of a termination with a physical resistor Zo at temperature T.  The noise 
temperature of the resistance Zo realized by the capacitance in feedback is Zo · Rseq/Zo, 
and this is why it can be called "electronically cooled termination" or “electronically 
cooled damping”, [Ref. 11].  The resistance in parallel with the feedback capacitance 
adds two more terms to the input impedance of the preamplifier:  inductance Rf/ωh in 
series with a resistance Rf/G0. It is important to note the condition to achieve an aperiodic 
(“damped”) response of the feedback amplifier. 
 
The feedback configuration allows the ultimate in noise performance because the parallel 
noise sources can be made negligible by using a transistor with a very low gate leakage 
current and a very high feedback resistance (megaohms to gigaohms).  The feedback 
resistor can be avoided altogether by the use of optoelectronic feedback or a transistor 
switch to maintain amplifier voltages in the operating range.  Signal integration is 
performed on the feedback capacitance Cf.  The long tail can be cancelled in subsequent 
pulse shaping by a simple pole-zero cancellation circuit (not shown in the figure).  Pulse 
shaping at the preamplifier by reducing RL or Rf would result in increased noise from the 
thermal noise of these resistors.  The object of the design is to avoid dissipative 
components at the detector-amplifier input and thus to make Rf  as large as possible.  
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Fig. 37. Transfer of charge from detector to amplifier. 
 
 In all cases where the amplifier is connected directly to the detector via a resistive 
conductor the charge produced by ionization is distributed among the detector 
capacitance, amplifier capacitance and any stray capacitance according to the ratio of 
capacitances. Due to this, only a fraction of the charge of interest (the signal) arrives 
where it matters – that is to the conduction channel of the input transistor where it 
controls the drain (collector) current. (An exception to this is if the two capacitors are 
connected by an inductor in which case the charge is transferred periodically between the 
two capacitors.) In case of a CCD the ionization charge is moved peristaltically in a 
potential well formed and driven by appropriate clock voltages applied to the gate 
electrodes. The charge shifted a few hundred (or thousand) times arrives at the 
 collection electrode (“floating diode”) which is connected to a source follower. In the 
CCD the charge arriving at the collection electrode is the original charge packet produced 
by ionization except for a few electrons lost to trapping. The charge transport in a 
conductor is by a small displacement of a large number of free electrons.  CCD principle 
allows multiple measurements on the same charge packet as explained by Fig. 38. 
Optimization of the signal to noise ratio requires appropriate matching of the transistor 
active capacitance (which controls the current) to all other capacitances connected to the 
input – a subject addressed in the section on ASIC design. 
 
 
Fig. 38.   Charge coupled devices (CCDs) make possible by their principle an additional 
degree of freedom in the processing of their signals. There is a fundamental difference in 
the treatment of charge produced by ionization (or photo emission) between the devices 
based on charge transfer and all the detectors based on collection of charge. 
Collection of charge allows only “one look” at the charge, no matter for how long 
(weighting function width to optimize the noise). Charge transfer allows a charge packet 
to be moved back and forth in the proximity of the sense electrode, making possible 
“multiple looks” at the induced charge, i.e., a repetitive measurement. If we impose the 
same total measurement time on both types of measurements (single long time vs 
repetitive short times) the result for ENC due to the series white noise will be the same. 
However, the ENC for 1/f  noise will be reduced in the repetitive measurement. We know 
that due to the scaling invariance of 1/f noise, a single measurement is independent of the 
shaping (integration) time, as the filter passband moves up or down the 1/f spectrum, 
while the ratio of the upper and lower cutoff frequency remains constant. In contrast, in 
the repetitive measurement, averaging of samples taken at a frequency f0  performs 
narrowing of the bandpass around the repetition frequency. The higher the repetition 
frequency, the lower is the 1/f spectral density for each sample. An example of ENC 
improvement by this technique is shown in Fig. 34. This method made possible the 
lowest read noise achieved in a CCD readout of less than 1 e rms, [Ref. 40]. 
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6. Timing Measurements 
 
Fig. 40. The timing error (“timing jitter”) due to electronic noise in any timing 
measurement is given by the ratio of the amplitude noise (ENC) and the slope of the 
signal at the crossing of a discriminator threshold. This figure illustrates qualitatively the 
timing “walk” problem, that is the dependence of the threshold crossing time on the 
signal amplitude. For signals with negligible waveform fluctuations, amplitude 
dependence in timing can be eliminated by bipolar pulse shaping and the timing signal 
derived from the zero crossing, which has a well known antiwalk property. Alternatively, 
when both amplitude and time measurements are performed the timing walk can be 
corrected in subsequent processing.  
 Derivation of an optimal weighting function which minimizes the timing error with 
respect to noise for a known and constant signal waveform follows from the derivation 
of optimum filtering in amplitude measurements. In general, the optimum filter 
(weighting function) for timing is the derivative of the optimum filter for amplitude 
measurements. From a unipolar filter for amplitude measurements this results in a 
bipolar one with zero crossing, which has antiwalk properties.  
 
Fig. 41.  Constant fraction timing was developed to address two questions: 1) timing of 
signals with waveforms varying due to either the dependence of the position of the origin 
of the charge in the detector, or the statistical fluctuations; and 2) deriving of the timing 
mark early at the beginning of signals of extended duration. The method that solves 2), is 
also a solution for 1).  
                      A constant fraction (CF) timing signal  is formed by combining the 
delayed signal with the attenuated inverted (undelayed) signal. 
 
The first column in this figure illustrates this for a detector current of indefinite duration. 
The second column is for typical integrated currents from germanium detectors. In both 
cases antiwalk properties of the CF signal are apparent, and in the second column, shape 
invariance for germanium detector signals is also illustrated. In the third column CF 
signals are shown for a signal at the output of a typical pulse shaping circuit. 
 
CF signals have a zero crossing from which the timing mark is derived, but for CF<1 
they do not necessarily have area balance (CF=1 corresponds to simple delay line 
clipping which provides area balance). For CF<1, area balance can be achieved by an 
additional RC differentiation. 
 
The smaller the CF, the earlier is the timing mark derived. As the CF signal before the 
zero crossing has only a fraction of the original signal amplitude, the lower limit to CF is 
set by noise (frequently one would like to time on the first photo electron - but for the 
noise). 
 
This method for timing on the very early part of the signal requires the use of a non-
dispersive delay (i.e., an electromagnetic delay line). 
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Fig. 42.  It is possible to form a constant fraction (antiwalk) signal by RC networks (the 
only way realizable in monolithic circuits) , but a penalty is that the timing mark is 
obtained late (after the peak of the original shaped signal). The signal cannot be delayed 
by RC networks, only its shape can be changed to allow formation of a CF signal. 
Nevertheless, the timing resolution can be very good with this method, [Refs.  23,24]. 
 
 
7. Fluctuations on a Capacitance and Charge    
    Measurement Sensitivity – kTC Noise 
 
Fig. 44.  Integration of  the power spectrum (spectral density) arising on a capacitance 
from the thermal noise of a resistor results in the total fluctuation of charge (and voltage), 
which is independent of the value of the resistance R. The resistance (with the 
capacitance C) determines the bandwidth of the noise. The kTC charge noise is quite high 
even on small capacitances.  Most of this noise does not affect the measurement in 
systems where filtering and a very high parallel (feedback) resistance can be used. Such a 
system “looks” at the portion of the spectrum where the spectral density is very low. An 
example:  high resolution x-ray spectrometry with silicon detectors. When the 
measurement is performed directly on the detector capacitance and the filtering is not 
possible, the full kTC noise is included in the measurement, and it can be reduced only by 
correlated double sampling - if applicable, as discussed in Fig. 48. 
 
The equipartion theorem of statistical mechanics, assigns a fluctuation energy of 
( ) B1 2 k T to each degree of freedom of a system in thermodynamic equilibrium, equal to 

( )( )2
q1 2 σ C  on a capacitance, giving the same result as the RC circuit calculation 

(integration of the entire noise spectrum). The equipartition theorem does not imply that 
there is a resistance in the circuit. 
 
Fig. 45.  Charge and Voltage Total Fluctuations on Capacitance at 300K 
 
Fig. 46.  Transient behavior of noise after circuit parameters have been changed by 
switching can best be studied by applying Campbell’s theorem, as shown in the figure. 
The oscillogram shows build up of noise after switching a white noise source onto an RC 
circuit. Such a build up occurs after a reset switch across a capacitor is opened. 
This is illustrated some more in Figs. 47 and 48. 
 
Fig. 47.  Charge transfer and build-up of kTC noise in active pixel sensors and the 
readout node of CCDs is shown after the reset transistor (or charge transfer transistor) is 
turned on. By the time most of the previously stored charge is reset (or transferred) the 
noise is already fully built up. Resistance R in the expressions for σq and qs(t)  is the ON-
resistance of the transistor switch. The noise in this case is often referred to as the “reset 
noise”, even though its origin is not in the reset action. 
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Fig. 48.  This illustrates more completely what happens with kTC noise in active pixel 
sensors and CCDs. While the reset switch is closed the kTC noise extends to very high 
frequencies corresponding to the very short time constant rONC. When the switch is 
“opened” the time constant increases by many orders of magnitude. A value of the “old” 
kTC noise is stored on the capacitance, and it decays very slowly with this very long time 
constant. At the same time the “new” kTC noise builds up also very slowly, but faster 
than the stored value decays, as shown in Fig.47. From this one can see the conditions 
under which correlated double sampling may reduce significantly the kTC noise: Sample 
1 may be taken any time between opening of the reset switch and the arrival of the 
signal. Sample 2 may be taken any time after the arrival of the signal but before the 
“new” kTC noise has built up.  
 
Some general remarks on kTC noise: 
 
1. Fluctuation-dissipation theorem with Nyquist’s expression for thermal noise is  
            essential for calculation of noise spectra and for detailed information on noise    
            sources. 
2. Equipartition theorem provides no detailed information, but provides a check on 

the integrals of noise spectra (the total fluctuation). 
3. Transient behavior of noise in switched capacitor circuits and matrix readout 

pixel arrays is best understood by means of Campbell’s theorem, which provides 
noise variance vs time, as shown in Figs. 46, 47. 

4. A complete charge reset and charge transfer by a switch result in TCkBq =σ2
,       

            independently of the switch ON resistance.  This noise can be subtracted only if  
            the first sample in the CDS is taken before the signal. 
5. Transfer (i.e., direct transport) of charge without switching (as in a CCD) does not 

result in TCkB  noise.  Reset of the sense amplifier does. 
 
 
8. Noise from Dielectrics 
 
Fig. 50. Thermal fluctuations in dielectrics generate electric noise the magnitude of 
which is related to the loss conductance of the dielectric by the dissipation-fluctuation 
theorem.  This noise was first measured in charge amplifiers and analyzed in [Refs. 7 and 
8]. For a dielectric with low losses, the dissipation factor is a constant over the 
frequencies of interest, 
                                            D = G(ω)/ωCd , 
 
where G(ω) and Cd are the loss conductance and the capacitance of the dielectric as 
measured on an impedance bridge at an angular frequency ω.  The conductance G(ω) 
generates a noise current at the frequency ω, according to Nyquist's formula, 
 
                                     ( )ω2i = 4kT G(ω)df = 4kT (D Cd)ω df 
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This current is converted into a noise voltage on the input capacitance, 
 
                                   2 ( )v ω  = (4kT D Cd/ω) ( df/Cin

2) 
 
The lossy dielectric generates an |f| noise current spectrum in parallel with the input, 
which integrated on the input capacitance becomes 1/|f| noise.  The equivalent noise 
charge due to this noise can be calculated by integrating the noise voltage at the output of 
the filter with respect to frequency and comparing it to the signal output.  One obtains for 
the equivalent noise charge, 
 
                                   (ENC)2 ≈ 2.4 kT (D Cd) . 
 
An interesting characteristic of the dielectric noise is that its contribution is independent 
of both the input capacitance (except for the capacitance of the dielectric) and the filter 
time constant.  It is also little dependent on the type of the filter (weighting function).  In 
cases where the dielectric and/or its capacitance are not known, it is more convenient to 
use the loss conductance as measured on an impedance bridge at an arbitrary frequency fo 
in the range of interest.  Then, 
 
                                              DCd = G(fo)/2πfo      . 
 
Such noise arises in conventional transistor and IC plastic packages with relatively high 
losses.  The noise contributions of these packages at 295°K have been found to range 
from about 25 rms electron charges for the very best to more than 100 rms e for the worst.  
A reduction by a factor of 2 to 3 in the rms equivalent noise charge was observed at 
125°K. Glass fiber (G10, Fr4) circuit boards have relatively high dielectric losses 
(D~2%).  
               A stray capacitance of 1pF of a trace on such a board at 293 K contributes 
ENCD ~ 80-90 rms e!   
 
Clearly, detector-amplifier connections should be on low loss dielectrics (e.g., Teflon 
board), and the stray capacitance should be minimized. 
Insulating materials even in the vicinity of the input lead should be kept to a minimum, as 
their noise is coupled capacitively to the input. 
 
Calculation of the total fluctuation for complex networks (electrical and mechanical) 
shows that it (the integral of the noise spetrum) is given by the equipartition theorem 
(Figs. 44, 45). 
 
 
 
 
9. Signal Return in Multi-Element Detectors 
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Fig. 52. In large multi-wire chambers with 2-dimensional readout the signal return path is 
essentially from the readout of one coordinate to another and it could be very long. 
Amplifier “commons” have to be connected to each other by a low impedance path. 
Signal reflections on long wires may be significant and impedance terminations would 
contribute to the overall noise. The effect of the reflections becomes negligible if the 
pulse shaping (peaking time) satisfies the condition, 4p Dt t≥ , where tD  is the propagation 
time in the longest electrode. 
 
In finely segmented (pixel) detectors (gas, liquid and semiconductor) crosstalk is 
introduced if the signal is not returned by the opposite electrode via a low impedance 
path. Opposite electrode is frequently left floating due to the difficulties in providing a 
bypass with a sufficiently large capacitance (and a low inductance!). Such a crosstalk is 
small for single particles and for a large number of pixels, but it is significant at high 
particle multiplicities or in high resolution x-ray detectors. To minimize the energy stored 
on a large bypass capacitance, an active bypass may be used, as in Fig. 39. 
 
A related subject, grounding and shielding in large detectors is discussed in [Ref. 28]. 
 
                                ======================================== 
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     Appendix 
 
 
A.1.  Noise Calculation : Time Domain and Frequency Domain,    
 
Fig. 58. 
 
A.2. Parallel  Noise due to Dark Current in Devices with Avalanche Gain 
 
Fig. 59. Important to note:  If we measure a dark current  I0  from an avalanche photo 
diode, then the shot noise spectral density is not  2

02i eI=  , but rather, 2
0i = 2eI ⋅M . 

Consequently, the ENC2 is magnified by the avalanche gain M . 
 
A.3. Noise Figure vs Noise Voltage, Noise Current and Noise Temperature 
 
Fig. 60.  Characterization of amplifier noise in terms of the noise figure applies to 
resistive signal sources and not to capacitive ones. 
 
A.4. Noise in Resistors at Different Temperatures and “Electronic Cooling” by 
Feedback 
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Fig. 61. The total fluctuation (by equipartition theorem) is a function of the temperature 
of dissipative components, and the effective temperature for a combination of resistors at 
different temperatures is easily determined. We have seen in Fig.36  that a resistance can 
be realized by capacitive feedback around a transconductance amplifier (the basic charge 
amplifier configuration),  ( ) ( )2 01in m fR R g C C= = . The noise associated with this 
apparent resistance arises from the amplifier equivalent series noise resistance. It can be 
shown that the effective noise temperature T2 of  R2 is given by [Ref. 11], 

                                                             ( )2 2 1naT R R T=  , 
where Rna is the amplifier equivalent series noise resistance at temperature T1. 
The total fluctuation is then reduced by a factor determined by the value of the resistance 
to be achieved by feedback in relation to the amplifier series noise resistance. 
Such a resistance can be used as “electronically cooled” damping or delay line 
termination with a lower noise than with a physical resistor. Since the “cooling” is 
achieved by using an active device, such a system is not considered to be in thermal 
equilibrium. 
 
 
A.5. Zero-Crossing Statistics of Noise  
 
Fig. 62.  Knowledge of noise zero-crossing rate is needed in self-triggered systems when 
the detection threshold has to lowered to increase the detection sensitivity until the noise 
counts exceed a desired limit. As shown, the zero-crossing rate is defined by the second 
moment of the noise frequency spectrum. Due to this the zero crossing rate is affected by 
the shape of the spectrum as it approaches its high frequency cutoff. For an ( )2RC   low 
pass filter applied to white noise, the zero crossing rate equals the 3db cutoff frequency. 
For a uniform spectrum up until an abrupt (or high order) cutoff at fh, the zero crossing 
rate is 3zc hn f+ = .  A discriminator level crossing rate (“noise counts”) is determined 
from the gaussian distribution, as shown in the figure. At ~5 times the rms noise, the 
level crossing rate is reduced by more than 5 orders of magnitude from the zero-crossing 
rate.                                                    
 
 
A.6  Noise Autocorrelation Function as a Diagnostic Tool 
 
Fig. 63. Calculation of correlation functions for more sophisticated filters than the CR-
RC filter becomes tedious and the expressions are rather involved.  In such cases, as well 
as in cases where the noise spectrum is not exactly known, measurement of correlation 
functions might be simpler or necessary.  A method is described here which requires no 
additional equipment except an oscilloscope. 
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It is known from random noise theory that the ensemble average value X (r) of a large 
number of samples, each of them taken at time τ after the noise waveform has crossed 
some fixed level Xo, is given by the correlation function, 
 
X (r)/Xo = k(τ) = K(τ)/K(0)  . 
 
The correlation function can, in turn, be interpreted as the mean of the conditional 
probability density function that the noise will have value X = Xok(τ) at time t = τ, if it 
had value Xo at time t = 0.  
 
It follows from the above that if a trigger signal is derived for the time base of an 
oscilloscope, each time the noise crosses some predetermined level Xo - both with 
positive and negative slope - the mean value of the recorded oscillogram would represent 
the correlation function of noise.  The variance of that mean value is given by 
 
σk

2 = K(0) - K2(τ)/K(0) = σ2[1-k2(r)]  . 
 
As the correlation function K(τ) approaches zero the variance of the mean approaches the 
variance of the noise.  Therefore, to make the amplitude of the observed correlation 
function high compared to σk, trigger level Xo should be set high.  However, the number 
of crossings of that level decreases as a Gaussian function of Xo/√2σ, where σ is the rms 
value of noise, see A.4 and Fig. 64.  It was found that for Xo/σ~4 the number of Xo 
crossings is large enough for observation and recording of noise in a short time. 
 
Fig. 64. An Example of Noise Autocorrelation Measurement by Digital Oscilloscope 
 
While with an analogue oscilloscope the mean value of the (auto) correlation function has 
to be estimated by eye, as in [Ref. 41, which also gives further references], modern digital 
oscilloscopes perform averaging of noise waveforms, and a function with negligible 
fluctuations is obtained. This figure shows an example of atypical autocorrelation 
function for white series noise after a semigaussian filter. 
 
A.7. Pileup Effect on Centroid Position Resolution for unipolar and Bipolar Shaping   
        (Weighting Function) 
 
Fig. 65.  Experimental results show a significant reduction in pileup effects with bipolar 
(area balanced) weighting functions. 
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