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Introduction

: : strips
Double-sided strip detectors: P Strip

To pre-Amps, 0 V

« Two dimensional position sensitivity

e Minimum channel number (2N)

* Minimum radiation length
But:
SiDe‘ @E Sif, @i | S ik Sils @& Sits @5 Sil,
* Two-sided process !
about 3-4 times more Netype S © ®O b
complicated/expensive |
than single-sided process
« Radiation soft due to the S
the complicated structure
on the n-side

* Two-hit ambiguity

* Two polarity of readout n strips

electronics p+ channel stoppers



Pixel detectors:

« Two dimensional position sensitivity

Bump—-konded To
pre—Amps in a
seperate read-out

 No two-hit ambiguity e
e Minimum radiation length [ [ [ [ [
« Single-sided process S F oS —
But: = e e e

. i Al C;:%j Al C;;%j Al C;:%j Al C;:%j Al C;:;j
« Maximum channel number % SE LA Lm0 L6 [ 2 LS5 [ 4 (56

N2 !

N-type S © @0 n 5

« Complicated and difficult | :

bumper bonding technology

Positive
Bias

limited position
resolution by the size of
bumper bonding pads
210 um



Novel Stripixel Detector Concept

In June 2000, BNL Instrumentation Division developed a novel stripixel
detector concept that (z. Li, BNL #67527, June 10, 2000, accepted for NIMA publication, 2003):

* has many advantages for both strip detectors and pixel detectors
« Two dimensional position sensitivity
e Minimum channel number (2N)
* Minimum radiation length

» Single-sided process
 Is without many disadvantages for strip and pixel detectors:
*  no bumper bonding technology needed

* single polarity of readout electronics

e asradiation hard as single-sided strip detectors
 Is with some unique advantages:

» Sub-micron position resolution in 2 dimensions (ISD mode)

* No two-hit ambiguity (ISD and ASD modes)



Alternating stripixel detectors (ASD)

Individual pixels are alternately connected by X and Y readout lines (strips)

« Two dimensional position sensitivity
Is achieved by charge sharing between
X and Y pixels

* In principle, the pixel pitch should not

be larger than the size of charge cloud
caused by diffusion process X W
L

é Y readouts

d =200 pm

Positive Bias



Alternating stripixel detectors (ASD)

Unique advantages of ASD:

Both pixels and strips can be made small to get very small pitches in both directions

With pitches in the order of a few um’s, it is possible to obtain sub-micron position
sensitivities in two dimensions with charge sharing and interpretation

small current and capacitance/strip

The choices for pixel shape and X and Y readout

schemes can be almost infinity

Disadvantages of ASD: FWHM for
charge
) ) cif fusion
« Can not be made in large pitches ( <20 um) %

4 um dia circle
8482 um pitch
c um lines
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Interleaved stripixel detectors (1SD)
Each IS divided into two halves: X-cell and Y-cell, and

connected by X and Y readout lines ( ) respectively
X-cell and Y-cell are interleaved (coupled)

Unique advantages of I1SD:

Disadvantages of I1SD:

large capacitance/strip
due to interleaving scheme
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Some typical pixels shape for both ASD and ISD

] ]

Rectanqgular Squared Round-corner Round-corner
Rec tangular Sgquared

O = O VAN

Circle Fllipse Hexagonal Triongle

Some typical interleaving schemes for ISD

. A =FWHM for
] % AN charge diffusion
Finger Sawtooth Spiral
(Three (Three (Two rings, N=2

fingers, N=3) teethes, N=3)

or combs



Schematic of a spiral interleaving scheme for ISD
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To solve two-hit ambiguity problem:

=  The stereo angle of connecting X and Y strips can be made from a few
degrees to 90° ----- same as double-sided strip detector, partial improvement
Good for both ASD and ISD

-

X
= Athird strip, Z, can be introduced ----- unique for ASD, total improvement
: : Y
Signals on Z strips can be used
to resolve ambiguity
| Z

X

= Uneven partitions of X and Y pixels: different X and/or Y strip widths (uneven
X and/or Y signal according to different positions -----
unique for ISD, total improvement



One alternative scheme for I1SD to solve multi-hit ambiguity problem:

Adding a 3 set of strips (X, Y, I

X strips

Y strips

FWHM for charge
diffusion

I" strips



Choices for stereo angle o between X and Y strips (ISD):

P, : pixel pitch in X; P, : pixel pitch in Y; N,: pixel array # in X; N, : pixel array #in Y
o: stereo angle
0<a<90° by changing P,, P,, or k (1<k <N,),

) o

a =tan(P, / P,)

Y strip

Y strip

\ o
a =tan(2P,/P,) a = tan(kP, / P,)
(L<k<N,.-1)




One alternative connection scheme for I1SD:

The same stereo angle o
Shorter X strip line (by a factor of sin o) ------ good for small o




Choices for stereo angle o between X and Y strips (ASD):

P, : pixel pitch in X; P, : pixel pitch in Y; I1 : shift of pixels in X
o: stereo angle
0<a<90°, bychangingP,,P,,orIT(0<II<P,)

X strip Y strip

\\ _—

7 o

— AN

P, I1
a = tan[pP, /(P, +II)] + tan'|P, /(P, - I)|
=2tan(P,/P,) (II=0)
=90° (P,=P,,and IT=0)

The shape of pixels can be arbitrary, and X and Y pixels may be different



An example of uneven partitions of X and Y pixels: different Y strip widths (uneven
Y signal according to different positions -----
unique for I1SD, total improvement --- no two-hit ambiguity

Cell partition
If the hits are (X1,Y1) and (X2,Y2) XY
: : 2:8
Signal on strip X2 > X1 Y1
3.7
4.6
If the hits are (X1,Y2) and (X2,Y1) 5.
Signal on strip X1 > X2 6:4
7:3
Y2
8:2
Signal on Y strips do not change for

Both cases




A design layout of a spiral I1SD

ol Th
82 um p

ne w

o um L
L =224 um,

tch

[Ixcut

IxsTepcut

cover

Y

L

A
Fo

t

L




5 um pitch)

A design layout of a X and Y ASD (8
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A design layout of a X, Y, Z ASD (8.5 um pitch)
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A design layout of ASD with square pixels (20 um pitch)
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Microns

Simulation of the 8.5 um pitch ASD

d =200 um
V=23V

ATLAS
Data from circle-4dumdia-2umgap-1_23.std
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First Prototype Stripixel Detector: ASD
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First Prototype Stripixel Detector, ISD

Circular spiral

85 um pitch

FWHM for charge
diffusion

Floating pixels —

In the spaces between
Each 4 pixels




Stripixel Test Structures (560 um pitch, even X and Y): ISD with

Square spirals
Laser test (red laser)
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Some Test Results on Test Structures (560 um pitch, even X and Y): I1SD with
Square spirals (Laser induced current pulse shapes, TCT )
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Some Test Results on Test Structures (560 um pitch, even X and Y): I1SD with

Square spirals (EBIC: electron beam induced current )

SEM
picture
of the
detector

EBIC
signal
of the
detector

EBIC
signal
of all X
strips

EBIC
signal
ofall Y
strips




EBIC signal EBIC signal
of2Xand2Y of1 Xand1lY
strips strips

1

n
iLiLBuLL

n
r




Micron Resolution Detector (“Stripixel”) Prototype
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EBIC signal EBIC signal
of a 8.5 um pitch of a 20 um pitch
Stripixel detector Stripixel detector
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First Prototype Stripixel Detector
PHENIX Upgrade

80 um X and Y pitches

4.6° stereo angle

2x384 X strips
2x384 Y strips

3cm x 6 cm chip size

5-mask step, 2-metal
process
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Schematic of the Prototype Stripixel Detector
PHENIX Upgrade
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Y -strip 1000 £m I for charge
diffusion

Z. Li, Inst. Div., BNL
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est Results on

15t Batch Prototype

I-V Data on Strip detector (Wafer 1234)

Y-strip
1010 ¢ /
- Strip Detector 1234-BY1,

. 10 = 400 um, 0.024 cm2/strip, 10 cm long =
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Capacitance (pF)
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Strip Detector 1234-BX411,
400 um, 0.024 cm2/strip, 10 cm long

10|]_ I EEEN Ll Ll L1
0.1 1 10 100 500

Bias voltage (V)

First beta source test at RIKEN and beam test at KEK
in late 2002 have shown X and Y position resolution of
25 um.




Schematic of the an AC coupled Stripixel Detector

No Increase In line capacitance --- no interleaving necessary
(Top view)

A test AC coupled stripixel | Y SUP

structure with 3x3 pixels (AF2)
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A test AC coupled stripixel
structure with 3x3 pixels
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Cut line (for cross
section view, not
part of design)
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Schematic of an AC coupled Stripixel Detector
(Cross section view)

Connected by Y strip

\ Connected by X strip
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Simulation of

Pl_,InCI‘_l through \\D@mi:(leu:ling-zsw
an AC coupled Blas lines oo
Stripixel Detector
processing

(Cross section view)

Front side: p* implant in
Areas of punch through
Bias lines and pixels

Back side: uniform n*
Implant

Detector: 300 um thick
Pitch: 250 um

Pixel size: 230 pmx230 um
Xand Y cell: 110 x230 um
Punch through line width:

10 um, gap 10 um
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File: AC-Coupling-3_80V.plt2
a~+am AC-Coupling-3_80V.std
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Simulation of
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SUMMARY

Novel stripixel detector concept combines many advantages of
strip detector and pixel detectors:

0 Single-sided process
0 Two dimensional position sensitivity
0 Minimum channel numbers

Stripixel detectors also exhibit some unique capabilities:
0 Two dimensional sub-micron position sensitivities (ASD)
0 Schemes to eliminate of two-hit ambiguity (ASD and ISD)

Preliminary test results on test structures are promising

First prototypes for PHENIX upgrades have been made and
source and beam test results shows position resolution of 25 um in
both X and Y coordination's
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